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1. Introduction

Recent advances in the field of quantum computing have greatly increased interest in the
investigation of topological states. Especially, Majorana fermions promise novel architec-
tures for quantum computers that would be more robust and less sensitive to their environ-
ment than current manifestations. These hypothetical quasi-particles are predicted to arise in
systems, among others, where superconductivity is present in a topological insulator.

Early on, graphene was predicted to be a topological insulator [1]. However, the intrin-
sic spin–orbit coupling (SOC) that would give rise to these topological states in single-layer
graphene was found to be too weak and experimentally irrelevant. In a fortunate turn of
events, a novel way to induce strong spin-orbit coupling in graphene was found. By placing
graphene in close proximity of materials with large spin–orbit coupling like transition-metal
dichalcogenides (TMDCs), it is possible to increase the SOC strength by orders of magni-
tude [2] [3].

Furthermore, the investigation of the effects of spin-orbit coupling and superconductivity
has become technologically more feasible due to the recent appearance of Van der Waals
(VdW) heterostructures. This method enables us to combine graphene with a whole zoo of
two-dimensional materials, including TMDCs, without sacrificing the outstanding electronic
properties that made graphene the focus of intense research interest in the first place.

With this motivation in mind, my project was divided into two, seemingly separate, parts.
First of all, we have started to investigate the effects of proximity-induced spin–orbit cou-
pling in Van der Waals heterostructures based on single-layer and bilayer graphene including
WSe2 layers, where the latter two-dimensional material is a TMDC that is, in our case, re-
sponsible for the induced SOC. In parallel to this, we have started to develop superconducting
electrodes to high-mobility encapsulated graphene.

Although we will touch upon our recent progress in the fabrication of superconducting
electrodes and the detection of supercurrent in graphene (which will be the main focus of
my master work), due to the limited spread of this work, mainly the results concerning
proximity-induced spin–orbit coupling are presented. However, this phenomenon, even on
its own, is worthy of attention. Experimental investigation of SOC-related effects could lead
to better theoretical understanding of the nature of different types of spin–orbit coupling
present in such systems, propelling forwards the field of spintronics. Furthermore, the vision
of on-demand spin–orbit coupling in bilayer graphene [4] – which is explained in detail in
section 2.2 – promises technologically feasible applications in spintronics that could become
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reality.
The structure of this work is as follows. In chapter 2, the theoretical background is pre-

sented that is necessary for understanding the investigates phenomena. This includes the ba-
sic properties of single-layer and bilayer graphene (section 2.1), the intrinsic and proximity-
induced spin-orbit coupling in graphene (section 2.2) and electronic transport in graphene
(section 2.3). After this, in chapter 3, the experimental techniques used during this project
are presented, including the fabrication of VdW heterostructures (section 3.1) with special
emphasis on the complexity of the fabrication of heterostructures based on bilayer graphene
and WSe2 (section 3.2). Furthermore, the fabrication of superconducting electrodes (sec-
tion 3.3) is also discussed in this chapter, along with the detection supercurrent in single-layer
graphene. Chapter 4 discusses the experimental results corresponding to proximity-induced
SOC in single-layer (section 4.1) and bilayer graphene (section 4.2). Here, basic device char-
acterization and weak anti-localization measurements are discussed. Finally, the main results
are summarized in chapter 5.

It is important to note that this project was carried out as a collaboration of the BME na-
noelectronics group and the Nanoelectronics group of the University of Basel, lead by Prof.
Christian Schönenberger. Sample fabrication has mostly taken place in Basel, along with the
measurements regarding proximity-induced spin–orbit coupling. The fabrication of super-
conducting electrodes was done partly in Budapest and partly in Basel, while supercurrent
measurements were conducted in Budapest.
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2. Theoretical background

This chapter gives an overview of the theoretical background necessary to understand
the experimentally investigated phenomena. We touch upon the basic electronic properties
of single-layer and bilayer graphene. Intrinsic and proximity-induced spin–orbit coupling is
also discussed. Finally, their transport properties are summarized.

2.1 Band structure of single-layer and bilayer graphene

2.1.1 Single-layer graphene

Graphene is a two-dimensional allotrope of carbon where atoms are arranged in a hexag-
onal lattice as it is shown on fig.2.1.a. The unit cell of the honeycomb lattice contains two
carbon atoms, denoted A and B. The lattice vectors a1 and a2 as well as the nearest neigh-
bour vectors δδδ 1, δδδ 2 and δδδ 3 can be expressed in real space using the inter-atomic distance
a0 = 1.42 Å:

a1 =
a0

2

(
3√
3

)
and a2 =

a0

2

(
3
−
√

3

)
(2.1)

δδδ 1 = a0

(
1
0

)
, δδδ 2 =

a0

2

(
1√
3

)
and δδδ 3 =

a0

2

(
1
−
√

3

)
. (2.2)

A free carbon atom has the electronic configuration of 1s22s22p2 with a total of six elec-
trons. However, in graphene three of the four valence electrons occupy sp2 hybrid orbitals
while the remaining electron occupies the pz orbital. The sp2 electrons form strong σ -bonds
localized in the plane of the atoms while the pz electrons form delocalized π-bonds perpen-
dicular to the graphene sheet. The 1s2 core electrons do not contribute to chemical bonds.

To obtain a qualitative picture of the low-energy spectrum of graphene it is enough to
consider a tight-binding model with nearest neighbour hopping. In this case, the model
Hamiltonian can be written as:

H =−t ∑
〈i, j〉,σ

(
a†

i,σ b j,σ +h.c.
)
, (2.3)

where a†
i,σ (b j,σ ) creates (annihilates) an electron on lattice site Ri (R j) on sublattice A (B).

To obtain the hopping parameter t ≈ 2.8 eV it is enough to keep the pz orbitals of the A and
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B atoms since only these will contribute to the low-energy spectrum. From this, the energy
bands can be derived:

E±(q) =±

√√√√3+2cos
(√

3qya0

)
+4cos

(
3
2

qxa0

)
cos

(√
3

2
qya0

)
. (2.4)

Figure 2.1: (a) The unit cell of graphene consist of two atoms denoted A and B. Each A atom
has three nearest neighbour B atoms. The lattice vectors a1 and a2 are also shown. (b) The
Brillouin zone of the honeycomb lattice with the reciprocal lattice vectors b1 and b2. The K
and K’ points play special roles as it is shown later. Image adapted from Ref. [5].

A more detailed calculation can be found in [5] in which second nearest neighbour hop-
ping is also considered that results in the asymmetry of the valence and conduction bands as
it is plotted in fig.2.2. The valence and conduction bands touch at the so-called Dirac points.
Two of the six Dirac points are not equivalent, these are called the K and K’ valleys. Their
positions in the momentum space can be given by:

KKK =
2π

3
√

3a0

(√
3

1

)
and KKK′′′ =

2π

3
√

3a0

(√
3
−1

)
. (2.5)

By introducing q = K+k, where |k| � |K| is the quasi-momentum measured from the K
point, the band structure can be expanded around the K point (and similarly around the K′

point):
E±(k) =±h̄vF |k|. (2.6)

Here vF = 3ta0/(2h̄)∼ 1×106 m/s is the Fermi velocity. This part of the band structure can
be seen on the inset of fig.2.2.

The linearized Hamiltonian describing both valleys can be written as:

H0 = h̄vF (κkxσ̂x− kyσ̂y) , (2.7)

where σ̂i are the Pauli matrices acting on the sublattice space (also called the pseudospin) and
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κ = ±1 stands for the K and K’ valley. This Hamiltonian is equivalent to the Dirac Hamil-
tonian describing massless relativistic particles with velocity vF , therefore charge carriers
in graphene are often referred to as Dirac particles and the K and K’ points are commonly
known as Dirac points.

Figure 2.2: The band structure of graphene resulting from the tight binding model con-
sidering hopping up to second nearest neighbours. The inset shows the low energy linear
dispersion relation around the Dirac point [5].

2.1.2 Bilayer graphene

Two layers of graphene stacked on top of each other is referred to as bilayer graphene
(BLG). In most cases, the crystal structure follows the so-called AB stacking (also called
Bernal stacking) that is shown in fig.2.3. Fig. 2.3.b also shows the relevant hopping terms
denoted by γi. The unit cell (Fig. 2.3.a) contains four atoms, A1 and B1 are situated on
the lower layer, while A2 and B2 sit on the upper layer. The B1 and A2 atoms are aligned
vertically, these are called dimer atoms, while A1 and B2 are referred to as non-dimer atoms.

Figure 2.3: (a) Top and (b) side view of a bilayer graphene lattice. The unit cell contains
four atoms. The dimer B1 and A2 atoms are vertically aligned. The relevant hopping terms
γi are also shown [6].
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The band structure of bilayer graphene can be calculated using a tight-binding model [6]
similar to single-layer graphene. The Hamiltonian in this model takes the following form:

HBLG =− γ0 ∑
〈i, j〉,m,σ

(
a†

m,i,σ bm, j,σ +h.c.
)

− γ1 ∑
j,σ

(
a†

1, j,σ a2, j,σ +h.c.
)

− γ3 ∑
j,σ

(
a†

1, j,σ b2, j,σ +a†
2, j,σ b1, j,σ +h.c.

)
− γ4 ∑

j,σ

(
b†

1,i,σ b2, j,σ +h.c.
)
,

(2.8)

where am,i,σ (bm, j,σ ) annihilates an electron on layer m=1,2 at lattice point Ri (R j) on sub-
lattice A (B). From this, the energy eigenvalues can be derived. The calculated spectrum
is plotted along the high symmetry points of the Brillouin zone in Fig. 2.4.a, considering
only the pz orbitals of the four atoms in the unit cell and all the relevant hopping terms.
Considering only γ0 and γ1 couplings the low energy spectrum is given by:

Eα
± = (−1)α · γ1

2
± γ1

2

√
1+
(

k · 3γ0a0

γ1

)2

, (2.9)

where α = 0,1 describes the conduction and valence bands respectively. Two subbands are
shifted away from zero energy as a result of the γ1 interlayer coupling between dimer atoms.
For small k the dispersion relation is quadratic with an effective mass m= γ1/(2v2

F)∼ 0.03me

where me is the free electron mass.

Figure 2.4: Tight binding band structure of bilayer graphene considering the pz orbitals of the
four atoms in the unit cell. Two bands are shifted from zero energy as a result of γ1 interlayer
coupling. The inset shows the low energy dispersion relation that is quadratic around the K
and K’ points. [6] (b) Without an external electric field the low energy dispersion relation is
parabolic, however a transverse electric field opens a band gap with a size dependent on the
strength of the electric field [7].
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An interesting feature of the bilayer bandstructure is the tunable band gap. By applying a
transverse electric field the two layers will be placed at different potential energies resulting
in an inter-layer asymmetry. This broken inversion symmetry will eventually result in a band
gap that is dependent on the strength of the applied electric field. The effect of transverse
electric field on the low energy parabolic dispersion can be seen in Fig. 2.4.b.

By including the γ3 skew interlayer coupling in calculations one can obtain the low en-
ergy spectrum shown in Fig. 2.4.b featuring a triangular perturbation of the circular iso-
energetic lines, known as trigonal warping, which results in the appearance of four mini
Dirac cones. As a consequence of trigonal warping, a so-called Lifshitz transition can be
observed in bilayer graphene when the Fermi surface topology changes from four separate
Fermi pockets to a single one.

Figure 2.5: (a) The γ3 skew interlayer coupling introduces trigonal warping to the low energy
band structure resulting in the appearance of four mini Dirac cones [8]. (b) The iso-energetic
lines clearly show a Lifshitz transition as the Fermi surface topology changes from four
separate pockets into a single one [6].

2.2 Spin–orbit coupling in graphene

2.2.1 Introduction to spin–orbit coupling

Spin–orbit interaction (SOI) is the relativistic effect connecting the spin of a particle to
its motion. An electron moving at a speed v in an external electric field E experiences an
effective magnetic field B′ in its resting frame of reference that is given by the Lorentzian
transformation:

B′ =− 1
c2 v×E. (2.10)
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Writing this into the well-known Zeeman energy term coming from the Dirac equation:

HSOI =+gµBS · 1
c2 v×E =

1
c2 gµBS · p

m
×E, (2.11)

where g is the electron g-factor, µB = eh̄/(2me) is the Bohr-magneton, S is the spin angular
momentum and p is the momentum. Let us consider a central atomic potential where:

E = ∇
Ze

4πε0r
=

r
|r|

d
dr

Ze
4πε0|r|

. (2.12)

Using this in eq. 2.11:

HSOI =
1
c2 gµBS · p

m
×E ∝ S · (p× r) ∝ S ·L, (2.13)

where L = (r×p)/h̄ is the orbital angular momentum. In this case, it is easy to see how the
spin and the orbital angular momenta are connected, hence the name spin–orbit interaction
can be understood.

2.2.2 Intrinsic spin–orbit coupling in single-layer and bilayer graphene

In pristine graphene, symmetry allows only one type of spin–orbit coupling [9]. This
spin-conserving next-nearest neighbour hopping spin–orbit term can be written as an effec-
tive Hamiltonian in the following form:

HI = κλIσ̂zŝz. (2.14)

Here λI ≈ 12 µeV [10] is the intrinsic spin–orbit strength, κ =±1 is the usual valley index,
while σ̂z and ŝz are the Pauli matrices acting on the pseudospin and the spin respectively.
Combining this with the orbital contributions from eq. 2.7 the low energy spectrum takes the
following form:

E±(k) =±
√

h̄2v2
F
(
k2

x + k2
y
)
+λ 2

I . (2.15)

This intrinsic spin–orbit coupling splits the valence and conduction bands by 2|λI|, however,
the bands remain spin and valley degenerate.

Furthermore, since bilayer graphene features the same symmetry properties as single-
layer graphene the intrinsic spin–orbit interaction HI will take the same form in the two
cases. This will also result in the appearance of a band gap of 2|λI|. It is worth noting that
the intrinsic SOC is relatively weak and negligible in most experiments. However, other
spin–orbit interaction terms are allowed once the symmetry of our system is reduced which
might have a significant impact on the low-energy band structure.
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2.2.3 Proximity-induced spin–orbit coupling in single-layer graphene

Figure 2.6: Sketch of the atomic structure of graphene on a monolayer TMDC [11].

A novel way to introduce additional SOI terms in graphene is to place it on a transi-
tion metal dichalcogenide (TMDC) substrate as it is shown in Fig. 2.6. TMDCs contain
heavy elements which gives rise to strong intrinsic spin–orbit coupling. Furthermore, a
graphene/TMDC system lacks inversion and horizontal mirror symmetry which allows addi-
tional spin–orbit terms to exist in graphene. An enhancement of the spin–orbit coupling can
be understood by the hybridization of the graphene orbitals with the TMDC orbitals. For the
case of the Dirac cones lying in the band gap of the TMDC, virtual hopping terms can be
used to incorporate an enhanced spin–orbit coupling.

At low energy, the band structure of single-layer graphene can be described in a simple
tight-binding model containing the orbital terms and all the symmetry allowed SOC terms
H = H0 +H∆ +HI +HV Z +HR:

H0 = h̄vF (κkxσ̂x + kyσ̂y) · ŝ0

H∆ = ∆σ̂z · ŝ0

HI = λIκσ̂z · ŝz

HV Z = λV Zκσ̂0 · ŝz

HR = λR (κσ̂x · ŝy− σ̂y · ŝx) .

(2.16)

The first term H0 is the usual graphene Hamiltonian that describes the linear band structure
at low energies. H∆ represents an orbital gap that arises from a staggered sublattice potential.
HI is the intrinsic SOC term that opens a topological gap of 2λI , as previously discussed. HV Z

is a valley-Zeeman SOC that couples valley to spin and results from different intrinsic SOC
on the two sublattices. This term leads to a Zeeman splitting of 2λV Z that has opposite sign in
the K and K’ valleys and leads to an out of plane spin polarization with opposite polarization
in each valley. HR is a Rashba SOC arising from the structure inversion asymmetry. This
term leads to a spin splitting of the bands with a spin expectation value that lies in the plane
and is coupled to the momentum via the pseudospin. At higher energies k-dependent terms,
called pseudospin inversion asymmetric (PIA) SOC, come into play, which can be neglected
at lower doping [12].
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2.2.4 Proximity-induced spin–orbit coupling in bilayer graphene

A more specific example of graphene/TMDC systems, pointing towards possible applica-
tions, is bilayer graphene on WSe2 [4]. An illustration of the atomic structure of this system
can be seen in Fig. 2.7. First-principles calculations suggest that an intrinsic transverse elec-
tric field is built up in the system, pointing from the WSe2 towards the bilayer graphene
(Fig. 2.7.b). As a result, the two graphene layers have different potential energies meaning
that the valence and conduction bands are formed by the pz orbitals of the B1 and A2 atoms
respectively. It is worth noting that the bands originating from the A1 and B2 dimer atoms
form the two high-energy bands, as previously discussed, and are ignored for transport.

Figure 2.7: (a) Sketch of the atomic structure of bilayer graphene on monolayer WSe2. (b)
A built-in electric field points from the WSe2 substrate towards the bilayer graphene which
places the two graphene layers on different potential energies thus introducing an asymmetry
in the system with several consequences [4].

The band structure calculated in Ref. [4] using density functional theory can be seen
in Fig. 2.4. As a direct consequence of the built-in electric field, an indirect band gap of
approximately 12 meV is formed. Furthermore, as it is also visible in Fig. 2.4.b the proximity
also induces a significant spin-splitting of about 2 meV in the valence band, while there is
no spin-splitting in the conduction band. This comes from the fact that the valence band
is formed by B1 atoms that are close to the WSe2 substrate where the built-in electric field
is large, while A2 atoms sit far away from WSe2 where proximity effects are practically
non-existent.

Furthermore, in this system proximity effects can be efficiently controlled by external
electric fields. Fig. 2.9 shows the evolution of the low-energy band structure as a function
of the external transverse electric field. By applying an appropriate electric field countering
the built-in field the intrinsic band gap can be closed. By applying a stronger electric field,
the top layer will experience a lower potential, therefore, the valence and conduction bands
will originate from A2 and B1 atoms respectively, a situation opposite to the original case
where zero external field is applied. This means that by applying an external electric field
the spin–orbit coupling can be effectively switched off for holes and on for electrons making
this system a promising candidate for applications in spintronics.
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Figure 2.8: (a) Theoretically predicted band structure for a BLG/WSe2 heterostructure along
the high-symmetry points of the Brillouin zone. (b) A close-up of the low-energy band
structure around the K point, also showing spin polarization [4].

Figure 2.9: The low-energy band structure of the BLG/WSe2 heterostructure for different
external transverse electric fields. Proximity effects can be effectively switched on and off
for the valence and conduction bands [4].

In addition, it is worth noting that, based on [13], the picture where the valence and
conduction bands originate from orbitals of different layers of the bilayer graphene breaks
down at higher energies. Fig. 2.10 shows the low-energy band structure of a biased bilayer
graphene on a TMDC, with an interlayer bias of 10 meV and induced spin-orbit coupling of
2 meV. The color of the dispersion curves indicate the layer polarization which effectively
tells us which layer of the bilayer graphene the bands originate from. It can be observed that,
at higher energies, the layer polarization becomes mixed, which means that charge carriers
will no longer be localized to a certain layer. This results in the appearance of spin-orbit
splitting at higher energies in both the valence and the conduction bands.
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Figure 2.10: The low-energy band structure of a biased bilayer graphene, with an interlayer
bias of 10 meV and induced spin-orbit coupling of 2 meV. The color of the dispersion curves
indicate the layer polarization which effectively tells us which layer of the bilayer graphene
the bands originate from. It can be observed that, at higher energies, the layer polarization
becomes mixed, which means that charge carriers will no longer be localized to a certain
layer. This results in the appearance of spin-orbit splitting at higher energies in both the
valence and the conduction bands. [13].

2.3 Electronic transport in graphene

2.3.1 Electric field effect

It was discovered early-on that graphene exhibits a strong electric-field effect [14] that
allows the tuning of charge carrier concentrations by external gate voltages. This can be
understood in a simple planar capacitor model which can be applied to many graphene-based
Van der Waals (vdW) heterostructures. A finite voltage difference between the graphene
layer and the gate electrode will induce a charge carrier density proportional to the gate
capacitance:

C = ε0εr
A
d
, (2.17)

where ε0 is the vacuum permittivity, εr is the relative permittivity of the dielectric of thickness
d placed between the graphene layer and the gate electrode of area A. From this, the induced
charge carrier density as a function of the gate voltage:

n =
C
eA

Vg =
ε0εr

e
Vg, (2.18)

where e is the electron charge and Vg is the gate voltage.

In a diffusive Drude picture, conductivity can be written as:

σ = neµ =
ne2τ

m
, (2.19)
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where n is the charge carrier density, µ is charge carrier mobility and τ is momentum relax-
ation time. In graphene, this equation can be brought to the following form:

σ =
e2vFτ

√
n

h̄
√

π
, (2.20)

where we used that m = h̄kF/vF due to the linear dispersion relation and that in two dimen-
sions k =

√
nπ .

In transport measurements, usually, the conductance G is measured, from which the con-
ductivity can easily be calculated using the geometric factors of the sample. This allows
us to obtain basic information about the quality of the sample by extracting the field-effect
mobility:

µ =
l

we
dG
dn

, (2.21)

where dG/dn can be obtained from a simple linear fit to the measured G(n) function, while
l and w are the length and width of the sample respectively.

It is also worth mentioning that, even though graphene is a semimetal with zero band gap
where electron and hole conduction are both achievable, in a real device it is impossible to
reach the Dirac point, also referred to as charge neutrality point (CNP), due to ever-present
potential fluctuations. This means that below a certain doping level the device breaks up
into electron and hole regions, commonly referred to as puddles. Therefore, another way
to characterize sample quality is to determine the residual doping n∗, which is the lowest
homogeneous doping level achievable in the sample.

Considering bilayer graphene the situation becomes slightly more complex. While it is
possible to tune the charge carrier density with a single gate electrode as previously pre-
sented, it is evident that it will also induce a potential difference between the two graphene
layers that eventually opens a gap in the band structure. However, by introducing a second
gate electrode to the system it is possible to control the charge carrier density and the trans-
verse electric field separately. This can easily be realized in a planar system where the bilayer
graphene is isolated from a top and a bottom gate electrode by a dielectric as in Ref. [15] and
[16]. Here, the charge carrier density and the transverse electric field can be calculated by
extending the previous planar capacitor model. For this we have to solve the following set of
equations:

n =
ε0εb

e
· Vb−Vb0

db
+

ε0εt

e
· Vt−Vt0

dt
(2.22)

E =
Vb−Vb0

db
− Vt−Vt0

dt
, (2.23)

where the index b (t) labels quantities describing the bottom (top) gate electrode, while Vt0

and Vb0 account for the shift of the Dirac point due to contaminants in the sample or electric
fields built into the structure.
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After some simple but rather lengthy calculation one can express the gate voltages at a
given charge carrier density and electric field:

Vb =Vb0 +n
(

db

αbdb +αtdt

)
+E

(
αtdbdt

αbdb +αtdt

)
(2.24)

Vt =Vt0 +n
(

dt

αbdb +αtdt

)
−E

(
αbdbdt

αbdb +αtdt

)
, (2.25)

where we introduced the lever arm α = ε0εr/(de) for each gate electrode.

2.3.2 Quantum Hall effect

It is well known that charge carriers moving in a magnetic field experience a Lorentz
force according to FL = qv×B. As a consequence, if we apply a perpendicular magnetic
field to a two-dimensional conductor in which a current I is flowing in a given direction,
the trajectories of charge carriers will be bent which results in the appearance of a potential
difference perpendicular to the direction of the current and the applied magnetic field. This
phenomenon is called the classical Hall effect, in which the Hall voltage can be given by
VH = IB/(en) and the Hall resistance is Rxy = B/(ne).

In a quantum mechanical picture, let us consider the problem of a free electron in a
magnetic field with the Hamiltonian:

H(p,r) =
1

2m
[p+ eA(r)]2 , (2.26)

where in Landau gauge the vector potential is A=(0,Hx,0) with H=rotA. By introducing the
cyclotron frequency ωc = eH/m this can be written in the following form:

H(p,r) =
1

2m

[
p2

x +(py +mωcx)2 + p2
z
]2
. (2.27)

By solving the Schrödinger equation with this Hamiltonian one can easily find that in the
x− y and z directions decouple and the solution to the former part can be described by a
simple harmonic oscillator. The energy eigenvalues will then look like:

EN =
h̄2k2

z

2m
+ h̄ωc

(
N +

1
2

)
. (2.28)

Therefore, in a two-dimensional system, e.g. a 2DEG, where one can omit the term describ-
ing the z-direction due to confinement, the energy spectrum will consist of equidistant energy
levels, commonly known as Landau levels (LLs).

The appearance of Landau levels has a significant impact on transport properties. In
a finite sample at large magnetic field the longitudinal resistance Rxx becomes zero, while
the Hall resistance Rxy becomes quantized at values of h/(e2ν) with ν = 1,2,3, ... being a
positive integer. This can be understood in a simple picture where the confining potential
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of the sample causes to the LLs to bend upwards (or downwards for holes, see Fig. 2.11.a)
at the edges of the sample leading to the formation of edge channels. Charge carriers on
these edge channels move in one direction and there is no scattering between channels of
opposite directions due to the large spatial separation which results in no backscattering and
eventually zero longitudinal resistance (e.g. between contacts 2 and 3 in Fig. 2.11.b).

Figure 2.11: (a) Landau level structure including the chemical potentials of electrodes 1
and 4 of the setup in (b): a Hall-bar geometry at filling ν = 6, with current injected in
contact 4 and grounded in 1, and voltmeters between two pairs of floating contacts. Due to
LL bending, propagating states (red and orange arrows) are formed at the edges, where the
chemical potentials intersect - in this example - the 0th and 1st LLs, as highlighted by red and
orange circles. Because of the Landau gap, edge states are spatially separated by insulating
regions [17].

It is worth noting that this quantum mechanical picture is only valid if the electrons can
move several times around the cyclotron orbital between two scatterings when h̄ωc� h̄/τ .
From this, the relation B� 1/µ can be derived which gives us a practical tool to estimate
charge carrier mobility from the magnetic field strength at which quantum oscillations in the
conductivity are visible. Furthermore, it is also required that temperature fluctuations should
be negligible compared to the energy of the LLs such that kBT � EN .

The LLs in single-layer graphene can be obtained by solving the Dirac equation in a
perpendicular magnetic field. The energy eigenvalues are the following:

EN = sgn(N)vF
√

2eh̄B|N|. (2.29)

From this, it is easy to see that the lowest LL is at zero energy being half filled by elec-
trons and half filled by holes. Furthermore, the square-root dependence on N results in
non-equidistant level spacing. The transverse conductivity takes the form:

σxy =
4e2

h
(N +

1
2
), (2.30)

where the factor of 4 comes from the valley and spin degeneracy of the conducting channels
(Fig. 2.12.a). At higher magnetic field values, due to electron-electron interactions, the spin
and valley degeneracy can be lifted and quantized conductance at all integer values of e2/h
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can be observed.

Since the charge carriers in bilayer graphene are massive, the Landau level spacing is
nearly equidistant and described by [18]:

EN =±h̄ωc
√

N(N−1). (2.31)

From this, it is trivial that the LLs N = 0 and N = 1 both lie at zero energy which leads
to an eight-fold degeneracy, while the other Landau levels are four-fold degenerate. As in
single-layer graphene, this Landau level is half-filled by holes and half-filled by electrons.
For N = ...−2,−1,0,1,2, ..., the transverse conductance is given by:

σxy =
4e2

h
N (2.32)

Figure 2.12: Schematic of the dependence of the Hall conductivity σxy on carrier density n
for (a) single-layer graphene and (b) bilayer graphene, where φ0 = h/e is the flux quantum
and B is the magnetic field strength [6].

2.3.3 Weak localization and antilocalization

In diffusive systems charge carriers in a conductor can form closed loops due to a series
of scattering events as it is illustrated in Fig. 2.13. In a system with time-reversal symmetry,
such a loop and its time-reversed pair will interfere with each other. Let us denote the com-
plex quantum mechanical amplitudes of these paths by A+ and A− for a given loop and its
time-reversed path respectively. Now if we calculate the probability of the particle returning
to its starting point it reads:

|A++A−|2 = |A+|2 + |A−|2 +A+∗A−+A+A−∗. (2.33)

Since time-reversal symmetry requires that A+ = A− = A, the above expression simply
gives us Pqm = 4A = 2Pcl which means that the probability of backscattering in a quantum
mechanical treatment is twice the probability calculated in a classical picture without taking
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into account the interference terms. This phenomenon is called weak localization which
eventually results in an increase of the resistance compared to the classical case.

Figure 2.13: Charge carriers in a diffusive picture can form closed loops after several scatter-
ing events. In case of time-reversal symmetry, a loop and its time-reversed path can interfere
constructively, resulting in an enhanced back-scattering [19].

By applying an external magnetic field perpendicular to the plane of the conductor, time-
reversal symmetry can be broken. Charge carriers moving around the loop in opposite direc-
tions will pick up an Aharonov-Bohm phase ΦAB of opposite sign and the quantum mechan-
ical amplitudes will be A± = Ae±iΦAB . As a consequence, the interference condition at the
starting point will also depend on the applied magnetic field:

Pqm = A2 +2A2 cos(2eSB/h̄) , (2.34)

where B is the applied out-of-plane magnetic field and S is the area enclosed by the loops.
Since many loops with different areas contribute to the conductance, the interference terms
will average out at larger magnetic fields. This means that weak localization results in a dip
in the magneto-conductance at zero magnetic field.

On the other hand, in the presence of strong spin–orbit coupling, the spin of the electron
on such a pair of trajectories rotates in opposite direction during the scattering process. Even
though the final spin states are random, on average this will result in a destructive interference
and thus in a decreased resistance compared to the classical case [20]. This phenomenon is
called weak antilocalization.

Although an expression for the quantum correction of the magneto conductivity without
spin–orbit coupling can be given, in this work only the strong SOC limit is experimentally
investigated, therefore it is not discussed. In the case of single-layer graphene, the quantum
correction to the magneto conductivity ∆σ in the presence of strong SOC is given by:

∆σ(B) =− e2

2πh

[
F

(
τ
−1
B

τ
−1
φ

)
−F

(
τ
−1
B

τ
−1
φ

+2τ
−1
asy

)

−2F

(
τ
−1
B

τ
−1
φ

+ τ
−1
asy + τ

−1
sym

)]
,

(2.35)
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where F(x) = ln(x)+Ψ(1/2+1/x), with Ψ(x) being the digamma function, τ
−1
B = 4eDB/h̄,

where D is the diffusion constant, τφ is the phase coherence time, τasy is the spin–orbit scat-
tering time due to SOC terms that are asymmetric upon z/-z inversion (HR) and τsym is the
spin–orbit scattering time due to SOC terms that are symmetric upon z/-z inversion (HI ,
HV Z). The total spin–orbit scattering time is given by the sum of the asymmetric and sym-
metric rate τ

−1
SO = τ−1

asy + τ−1
sym. In general, Eq. 2.35 is only valid if the intervalley scattering

rate τ
−1
iv is much larger than the dephasing rate τ

−1
φ

and the rates due to spin–orbit scattering
τ−1

asy , τ−1
sym [12].
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3. Experimental techniques

In this chapter, the state-of-the-art fabrication process of encapsulated graphene het-
erostructures is presented. We show the assembly process of Van der Waals heterostruc-
tures and highlight the complexity of our devices. Further optimization of the fabrication
process is also discussed. Finally, our recent advances in the fabrication of superconducting
side contacts to graphene are also presented, along with the measurement of supercurrent in
single-layer graphene.

3.1 Sample fabrication

3.1.1 Assembly of van der Waals heterostructures

In order to investigate the effects of proximity-induced spin–orbit coupling on TMDCs,
graphene-based van der Waals heterostructures were fabricated. These included single and
bilayer graphene flakes encapsulated in hBN and WSe2 flakes of a typical thickness between
20 and 50 nm. The role of hBN in these heterostructures is to isolate graphene from its
environment, preventing the adsorption of contaminants on the graphene surface that would
introduce disorder in the system and reduce charge carrier mobility and device quality.

The encapsulation of graphene between different 2D materials is realized by dry polymer
stacking technique (Fig.3.1). This process is based on the different strength of van der Waals
forces acting between different materials. Graphene, hBN and WSe2 are mechanically exfo-
liated onto a Si+SiO2 substrate. First, the top layer is picked up from the substrate using a
poly(bisphenol A carbonate) layer attached to a polydimethylsiloxane (PDMS) cube of some
5 mm thickness. During this, the PC layer is brought into contact with the Si substrate which
is then heated up to ∼80 ◦C in a way that the contact front (CF, Fig. 3.1.G) of the PC layer
and the substrate slowly move over the desired hBN or WSe2 layer. After that, the heating is
turned off so that the CF moves backwards picking up the flake and the PC layer can be fully
retracted. The pick-up of the graphene layer, the bottom flake and any other additional layer
is done in the exact same fashion, after which we end up with the complete heterostructure
residing on the PC layer. The substrate is then heated up 150 ◦C and the PC layer is slowly
laminated onto its surface making use of the slight tilt angle of the substrate. At this tem-
perature, the PC detaches from the PDMS cube leaving the heterostructure on the substrate.
The PC layer can later be chemically dissolved in chloroform.
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It is worth noting that the process described above can easily be extended to heterostruc-
tures consisting of several layers. In some cases, we have used single-layer WSe2 instead
of a bulk flake. This can be done by picking up the WSe2 monolayer with an hBN flake
and then continuing the process with the pick-up of graphene and the bottom hBN layer.
Similarly, if we want to use a graphite bottomgate, a full heterostructure can be placed on a
suitable graphite flake.

After the removal of the PC layer, AFM measurements are done on the heterostructues.
Such an AFM image of an hBN/graphene/hBN heterostructure is shown in Fig. 3.5. This
provides useful information for further fabrication steps such as the thicknesses of different
layers. Furthermore, since contaminants between the layers usually accumulate into blisters
(see Fig. 3.1.a and Fig. 3.5) these measurements facilitate the location of clean regions of the
heterostructures where the contacts should be designed.

Figure 3.1: Dry polymer stacking technique as presented in [21]: (A-F) different layers
of the heterostructure are brought into contact with the help of a PC layer attached to a
PDMS cube making use of the different van der Waals forces acting on the interface of
different materials. (G) The heterostructure is then laminated to a Si substrate at 180 ◦C
which removes the contaminants from between the layers. (H) At this temperature the PC
detaches from the PDMS and (G) can be chemically dissolved at room temperature which
leaves the heterostructure on the Si substrate.

3.1.2 Fabrication of metallic contacts

In order to conduct transport measurements, Cr/Au metallic contacts and - in some cases
- gate electrodes were fabricated on the heterostructures using standard e-beam lithogra-
phy. For detailed parameters see Appendix.A.1. During this process, first of all, a PMMA
(Poly(methyl methacrylate)) e-beam resist is spin-coated onto the substrate on which the de-
vice geometry is patterned using an electron microscope. The resist layer can be chemically
dissolved from the regions where the electron beam has passed. As a result of this so-
called development process, the remaining resist layer forms a mask for further fabrication
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steps. Since, at this point, the graphene layer is fully encapsulated inside the heterostructure,
we have to remove parts of the sample so that one dimensional edge contact [22] could be
formed. This is achieved by reactive ion etching (RIE), using CHF3 gas as the main etching
component. After this, edges of the graphene flake become partly exposed to the environ-
ment, making it possible for the evaporated metallic layer to form contact. In case of gate
electrodes, no etching is required. After evaporation, the remaining part of the resist layer
can be dissolved in acetone along with the surplus of the metallic layer, this step is called
lift-off. As a final step, in order to control device geometry and make calculations easier,
another reactive ion etching step is done to shape the graphene flake into a suitable form by
the help of a PMMA etch mask.

Figure 3.2: Optical microscopic images taken after different steps of the fabrication process
of the metallic contacts and gate electrodes. Scale bars are 20 µm. (a) A WSe2/BLG/hBN
heterostructure placed on a graphite backgate. The highlighted layers are (from bottom to
top): graphite backgate (blue), WSe2 (red), BLG (black dashed line) and hBN (green). (b)
The PMMA layer after development with the pattern of the topgate electrodes and the con-
tacts for the graphite bottomgate. (c) The heterostructure after the first lift-off steps with
the topgate electrodes. (d) The heterostructure after the RIE and lift-off steps of the Cr/Au
contacts.

It is important to note that in some cases the heterostructures include graphite bottom
gates. If such a device was completely etched through then, during evaporation, metallic
contact would be established between the gate electrode and the graphene layer rendering any
transport measurement impossible. This means that etching parameters have to be precisely
controlled in order to stop the etching process after removing the top hBN or WSe2 layer
but before cutting through the entire bottom layer (Fig. 3.3). Similar problems can arise
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in case of metallic topgates. For example, if the topgates are fabricated after the shaping
step of the heterostructure when graphene edges are exposed, then an oxide layer has to be
deposited to avoid metallic contact between the graphene layer and the topgate. The number
of fabrication steps can be reduced if the topgates are fabricated before the shaping RIE step,
however, in this case, the parts of the heterostructre under the topgates will not be etched
away.

Figure 3.3: Schematic cross-section of a typical van der Waals heterostructure featuring
a graphite backgate and metallic topgates. During the design phase and the etching steps
special care has to be taken to avoid metallic contact between the gate electrodes and the
graphene layer. If there is no bottom graphite layer then the strongly doped Si substrate acts
as the backgate.

3.1.3 Optimization of stacking procedure

It is worth mentioning that the method presented in [21] promises graphene-based het-
erostructures with extremely large clean areas and outstanding charge carrier mobility. How-
ever, our setup has only recently been modified to be able to reach the relatively high
temperatures needed to reproduce the exact method. Since then, we have fabricated hBN-
encapsulated graphene heterostructures that were laminated onto the Si substrate at 180 ◦C
as prescribed by the article, instead of 150 ◦C which was the limit of our previous setup.

Figure 3.4: Optical microscopic image of one of our devices fabricated with the process
described above, on top of the PDMS cube before laminating it onto the substrate and after
lamination. Blister movement can clearly be seen on the latter. The black dashed line shows
the approximate position of the graphene flake.
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Optical microscopic images of an hBN/graphene/hBN heterostructure fabricated with
the modified setup can be seen in Fig. 3.4. The figure shows the heterostructure on top of
the PDMS cube before the stamping process where it is clearly visible that contaminants
between the hBN and graphene flakes accumulated in blisters as usual. However, on the
image taken after the stamping process on top of the SiO2 surface the region of the graphene
flake (highlighted with the dashed line) appears to be clean. To further investigate this,
we have conducted AFM measurements on the sample. This is shown in Fig. 3.5 where
the blister movement is clearly visible. As suggested by [21], during the high-temperature
stamping process, blisters are pushed out of the graphene/hBN interface and get pinned to
the edge of the graphene flake or other inhomogeneities or cracks in the sample. This process
could enable us to further improve device quality in heterostructures featuring TMDC layers,
however, the applicability of the method remains an open question until further samples with
WSe2 layers are fabricated.

Figure 3.5: AFM image of the previous device. Graphene edge is clearly visible due to
the alignment of blisters. Blisters reaching the edge of the hBN-graphene interface or any
inhomogeneities/cracks in the hBN layer become pinned and are not mobile anymore.

3.2 Fabrication of BLG/WSe2 heterostructures

Although the fabrication process presented in the previous section is general and applies
to heterostructures featuring WSe2 and bilayer graphene flakes as well, some additional de-
tails have to be noted.

The identification of single-layer graphene on SiO2 is a well-studied and reliable method
that is based on the interference of light reflected from the graphene flake and the oxide
layer. This enables us to distinguish between graphene flakes of different thicknesses as it
is shown in Fig. 3.6.a. In case of a flake with homogeneous thickness, where the naked eye
might fail to provide reliable information, another tool is to measure the contrast of the flake
compared to the oxide layer. This is usually done by isolating the green channel of an optical
microscopic image where the contrast is the highest. In case of a single-layer graphene flake
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on a 300 nm thick SiO2 layer, the optical contrast with the setup used in this study is 6-7%,
while for bilayer graphene it is 12-15%.

Fig. 3.6.b also shows a mechanically exfoliated single-layer WSe2 flake. While it is
possible to identify such flakes with optical microscopy, in this case another powerful method
we have is photoluminescence (PL) microscopy. Fig. 3.6.c shows a PL image of the flake
shown in Fig. 3.6.b. It is easy to see that only the monolayer parts of the flake show a PL
signal, while thicker parts remain invisible. This is due to the fact, that whereas multilayer
TMDCs have indirect band gap, single-layer TMDCs have a direct one, which increases the
yield of the PL process.

An additional difficulty in case of bulk WSe2 flakes is that their colour changes only
slightly with thickness. The colour of hBN flakes changes from dark blue to almost white
in a range of 10-50 nm which makes it easy to estimate their thickness only by optical mi-
croscopy. On the other hand, WSe2 flakes of the same thickness range are almost impossible
to be distinguished, therefore AFM measurements are necessary to determine layer thick-
nesses.

Figure 3.6: Optical microscopic image of (a) a bilayer (BL) graphene flake, with small
fractions of single-layer (SL) and trilayer (TL) graphene, and (b) monolayer WSe2 flake. (c)
Photoluminescent microscopic image of the monolayer WSe2 flake shown in (b). Scale bar
on (a) is 10 µm.

3.3 Supercurrent in graphene Josephson junctions

3.3.1 Fabrication of superconducting side contacts

As mentioned in the introduction, in a further step, we would like to couple graphene,
with induced spin-orbit interaction, to superconducting electrodes. This section describes
our first attempts towards this goal, yet without induced spin-orbit. For this, we have fabri-
cated hBN/graphene/hBN heterostructures using various superconducting materials to con-
tact graphene. The fabrication of these samples was done with the method described in
section 3.1, except that, instead of evaporating Cr/Au contacts, we have sputtered supercon-
ducting materials including NbTiN and MoRe. The parameters of the sputtering process can
be found in Appendix A.3. While MoRe is a well-established material in such applications,
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NbTiN promises larger critical magnetic fields and temperatures. On the other hand, we have
not used NbTiN before to contact graphene, therefore MoRe can provide a good benchmark
in terms of device quality.

In order to optimize the quality of the one dimensional edge contact between the graphene
layer and the NbTiN layer, we have tried different sticking layers. The first sample featured
no sticking layer which means we simply sputtered NbTiN after the first RIE step. However,
two terminal resistances - that contain the contact resistance and the resistance of the metallic
leads - were on the order of 100 kΩ at room temperature which made transport measurements
impossible. For a better comparison, in case of Au leads with Cr sticking layer the two
terminal resistance is typically around 1-2 kΩ. Considering the relatively high resistivity of
NbTiN, our initial goal was to achieve two terminal resistances below 10 kΩ.

Figure 3.7: Optical microscopic image of one of the hBN/graphene/hBN heterostructures
featuring (a) NbTiN and (b) MoRe side contacts. On the latter, the approximate position of
the graphene flake is highlighted by the black dashed line. Scale bars are 10 µm.

To reach this goal, we have tried NbTi sticking layer that promotes the formation of the
one-dimensional edge contact. By doing this, we were able to reduce two-terminal resis-
tances to around 10-20 kΩ at room temperature. As it is shown in Fig. 3.8.a, the field-effect
mobility of the sample with NbTiN contacts and NbTi sticking layer, measured in a two-
terminal setup at 4 K, is approximately 100 cm2/Vs. Furthermore, the change in conduc-
tance due to a relatively large change in backgate voltage is very small, smaller than 10%.
Therefore, it is essential to further improve the quality of NbTiN side contacts, otherwise
graphene-related physical effects are masked by the large contact resistances.

After discussions with other research groups, we have tried another sticking layer, namely
Ti. This enabled us to further decrease two-terminal resistances to around 6-7 kΩ. Unfor-
tunately, at the same time, a drawback of using NbTiN was also discovered. After leaving
the sample at ambient conditions for a few weeks the contacts oxidized and two-terminal
resistances increased up to around 100 kΩ. For this reason, so far, we have only attempted to
detect supercurrent in graphene-based Josephson junctions with MoRe side contacts, as it is
presented in the next section. This device can be seen in Fig. 3.7.b. The geometry consists of
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several SGS (Superconducting-Graphene-Superconducting) Josephson junctions made up of
superconducting leads intermitted with short graphene sections with lengths varying between
0.5 and 1 µm.

Figure 3.8: Two-terminal conductance as a function of the voltage applied to the backgate in
case of the sample with (a) NbTi/NbTiN and (b) MoRe side contacts. The black dashed lines
show the linear fits from which the field-effect mobilities were calculated.

3.3.2 Detection of supercurrent in graphene

Since the sample with MoRe contacts showed promising quality, we have started more
complex measurements. For this, we have cooled down the sample to a temperature of 30 mK
in a 3He/4He dilution fridge. Furthermore, we have measured the differential resistance of
the sample by applying a current bias consisting of an AC component superimposed on a DC
component and measuring the quasi-four-terminal voltage drop over the graphene section.
This is illustrated in Fig. 3.9. It is important to note, that the measured differential resistance
contains the contact resistances and the sample resistance as well.

Fig. 3.10 shows the differential resistance for junction 4-5 (see Fig. 3.7.b) as a function
of DC current bias I and the voltage applied to the backgate electrode VBG. As it is clearly
visible on the line cut, the resitance drops to zero over a wide range of bias current, indicating
that the graphene is proximitized by the MoRe contacts and supercurrent is flowing through
the device.

Several features of this two-dimensional map have to be discussed. First of all, the strong
asymmetry of the electron and hole regions, corresponding to the positive and negative side
of the CNP in gate voltage respectively, is due to the formation of pn and np junctions near
the contacts. This is a well-known phenomenon in such devices which results from the fact
that the graphene regions close to the MoRe leads become n-doped. Hence, when the bulk
of the graphene is p-doped, pn junctions will form, introducing an electron-hole asymmetry
to the system [23]. This asymmetry is also visible in Fig. 3.8.b.

Secondly, another asymmetry around I = 0 µA is also visible. This can be accounted for
in the RCSJ (resistively and capacitively shunted junction) model of Josephson junctions,
where the physical junction is modelled by an ideal junction shunted by a resistance R and
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Figure 3.9: The measurement setup used for the detection of supercurrent. An AC compo-
nent is superimposed onto a DC current. The AC voltage drop across the graphene section is
measured with standard lock-in technology in quasi-four-terminal setup.

a capacitance C [24]. This implies that, in case of an underdamped junction where the RC

component is large, the I-V curve becomes hysteretic. This means that upon increasing the
current bias from zero, the voltage will stay zero until we reach the critical current Ic where
it jumps to a finite value. However, when decreasing the current bias below Ic, the voltage
does not drop back to zero until the current reaches the so-called retrapping current Ir < Ic

value. Since we have ramped the current bias I from negative to positive values at a given
gate voltage VBG, thus the differential resistance jumped to zero at Ir and jumped back to a
finite value at Ic, with |Ic|> |Ir| in accordance with the theory.

Last, but not least, it is also easily visible that Ic increases with gate voltage VBG, or, more
precisely, with charge carrier density n. Since we can safely assume from device quality that
the graphene section is in the diffusive regime, we can introduce the Thouless energy as:

Eth =
h̄D
L2 , (3.1)

where D is the diffusion constant and L is the characteristic length of the sample. Based
on [25], we can write that RNIc = αET h, where α is a constant and RN is the normal-state
resistance. Making use of the fact that D ∝

√
n and RN ∝ n, this implies that Ic ∝ n3/2. This

means that the critical current should increase with n and, thus, with the gate voltage, in
accordance with our measurement. It is important to note that we neglected the effect of
contact resistance that limits the critical current at larger densities.
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Figure 3.10: Differential resistance of junction 4-5 as a function of the applied DC current
bias and backgate voltage. The critical current shows clear dependence on the applied gate
voltage and almost disappears at the CNP. The subplot on the right shows a cut of the two-
dimensional map along the red line, at -7 V gate voltage.

These measurements confirm that we were able to fabricate graphene-based Josephson
junctions of sufficient quality for supercurrent measurements. Further measurements are cur-
rently being conducted, including Fraunhofer pattern measurements investigating the mag-
netic field dependence of the critical current. On the other, we have seen that NbTiN contacts
need further optimization. For this, the application of a Ti sticking layer could be the first
step.
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4. Discussion of experimental results

This chapter gives an overview of the main experimental results concerning proximity-
induced spin–orbit coupling. The main results of a previous project concerning single-layer
graphene are presented. Then, the case of bilayer graphene is discussed. First, a basic
characterization of the sample is given. The effectiveness of electric field tunability is shown
by quantum Hall effect measurements. Finally, the weak anti-localization measurements are
discussed.

4.1 Proximity-induced spin–orbit coupling in single-layer
graphene

This section is based on [12] to which the author of this work had contributed by de-
signing and fabricating samples. Here, the main findings of the article – Phys. Rev. B 97,
075434 – are presented. All figures are adapted from the publication.

This part of the work focused on the investigation of proximity-induced SOC in single-
layer graphene on WSe2. For this purpose, hBN/graphene/WSe2 heterostructures were fabri-
cated with local topgates. The highly doped Si substrate acted as a global backgate. Fig. 4.1.a
shows a typical device and its schematic cross-section. The two-terminal resistance of this
device measured with standard lock-in technique is shown in Fig. 4.1.b. The increased re-
sistance along the diagonal shows the charge neutrality point that is tunable by both gates.
The faint vertical line can be attributed to regions that are not covered by the top gate and
are therefore only tunable only by the backgate. Field effect mobilities extracted from the
four-terminal conductance show high device quality reaching 130 000 cm2/Vs.

The combination of a top- and a bottomgate allows the measurement of magneto-conductivity
in zero perpendicular electric field. This is shown in Fig. 4.2.a versus out-of-plane magnetic
field Bz and charge carrier density n. Large modulations of the conductance in Bz and n are
due to universal conductance fluctuations (UCFs). This phenomenon occurs in devices with
a size comparable to phase coherence length lΦ where different trajectories are added up
phase-coherently, resulting in a deviation from the classically expected conductance value.
The fluctuating behaviour is due to the change in trajectories as a result of a change in mag-
netic field or charge carrier density. To reduce the effect of UCFs an average over a range
of densities is taken which results in curves as in Fig. 4.2.b. After the subtraction of the
classical background obtained at T=30 K, the curves show clear WAL peaks, a sign of large
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Figure 4.1: (a) An optical image of device A before the fabrication of the top gate, whose
outline is indicated by the dashed white rectangle. On the right is a schematic cross-section
and the directions of the magnetic fields are indicated. The scale bar is 1 µm. The data
in (b)–(e) are from device B. The two-terminal resistance measured from lead 1 to lead 2
is shown as a function of top and back gate voltage. A pronounced resistance maximum
tunable by both gates indicates the charge neutrality point (CNP) of the bulk device, whereas
a fainter line only changing with VBG indicates the CNP from the device area close to the
contacts that are not covered by the top gate. (c) Cuts in VTG at different VBG of the
conductivity measured in a four-terminal configuration, which are also used to extract field
effect mobility (linear fit indicated by the dashed black line) and residual doping as indicated.

SOC. Fig. 4.2.c shows the autocorrelation function of UCF measured at finite magnetic fields
where the WAL contribution to the conductance is negligible. From the inflection point of
the function, the phase coherence time τΦ = 8 ps can be extracted. See [12] for details.

By fitting the resulting curves with the help of the formula presented in section 2.3.3 τsym

and τasy can be extracted. These are the spin–orbit scattering times corresponding to SOC
terms that are symmetric and asymmetric upon−z/z inversion. Spin–orbit scattering rates at
the CNP were extracted and τasy was found to be around 4–7 ps, whereas τsym was found to
be much shorter, around 0.1–0.3 ps. The acquired scattering times show that τasy� τsym,
indicating that symmetric SOC terms are stronger than the asymmetric ones. Moreover,
τasy/2 is predicted to represent the out-of-plane spin relaxation time τ⊥ and τSO = (τ−1

sym +

τ−1
asy)
−1 then represents the in-plane spin relaxation time τ‖. For the time scales extracted,

a lower bound of the spin relaxation anisotropy τ⊥/τ‖ ∼ 20 can be given which indicates a
strong valley-Zeeman SOC term.

My contribution to this project was mainly device fabrication that enabled the measure-
ment of momentum scattering time τp dependence of the spin–orbit scattering rates as pre-
sented in Fig. 4.3. It can be seen that τ−1

sym increases with τp, while τ−1
asy stays approximately

constant. This, along with the estimated SOC strengths, has lead to the conclusion that the
relaxation rate related to symmetric SOC terms τ−1

sym is dominated by a strong valley-Zeeman
SOC term that relaxes in-plane spins via the Dyakonov-Perel mechanism.
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Figure 4.2: (a) Magneto-conductivity versus Bz and n is shown at T = 0.25 K. A clear fea-
ture is observed around B = 0 mT and large modulations due to UCF are observed in Bz
and n. (b) Magneto-conductivity averaged over all traces at different n. The WAL peak
completely disappears at T = 30 K, leaving the classical magneto-conductivity as a back-
ground. The 30 K trace is offset vertically for clarity. The quantum correction to the
magneto-conductivity is then obtained by subtracting the high-temperature background from
the magneto-conductivity; see (b) on the right for different temperatures. With increasing
temperature the phase coherence time shortens and therefore the WAL peak broadens and
reduces in height. (c) Autocorrelation of the magneto-conductivity in red and its derivative
in blue (without scale). The minimum of the derivative indicates the inflection point (Bi p) of
the autocorrelation, which is a measure of τΦ

Figure 4.3: Density dependence of device C. The dependence of the spin–orbit scattering
rates τ−1

sym and τ−1
asy as a function of τp are shown for device C. The error bars on the spin–orbit

scattering rates are given by a conservative estimate of 50%. The two-terminal conductivity
is shown in the inset and the extracted mobilities for the n and p side are indicated. The
density of each data point is indicated in blue above the top graph. The magneto-conductivity
was averaged over a density range of 3.3×1012 cm−2 centered around the value given at the
top.
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4.2 Proximity-induced spin–orbit coupling in bilayer graphene

4.2.1 Basic device characterization

As a next step, we have started to investigate the effects of proximity-induced SOC in
bilayer graphene, an obvious follow-up to the project discussed in the previous section. For
this reason, we have fabricated hBN/BLG/WSe2 and hBN/SLWSe2/BLG/hBN heterostruc-
tures with graphite backgates and metallic topgates in the previously discussed fashion. One
of the devices, featuring single-layer WSe2, can be seen in Fig. 4.4.a.

Figure 4.4: (a) Optical microscopic image of an hBN/SLWSe2/BLG/hBN heterostructure
placed on a graphite backgate and featuring metallic topgates. Scale bar is 10 µm. Mea-
surements were conducted on bilayer graphene sections between contacts 1-2 and 2-3, as
these were of sufficient quality. (b) Schematic cross-section of the device shown in (a). The
single-layer WSe2 and the bilayer graphene layers are encapsulated in hBN and the whole
heterostructure is placed on graphite backgate.

To obtain basic information about the device, we have conducted low temperature trans-
port measurements. For this, we have cooled down the sample in liquid helium environment
in a cryostat equipped with a VTI (Variable Temperature Insert) valve. The VTI valve en-
abled us to reach a minimal temperature of 1.6 K instead of the 4 K that is the boiling point
of liquid Helium-4 in ambient conditions. The two-terminal conductance of the sample was
measured with standard lock-in technique.

Fig 4.4.a shows the two-terminal conductance of the bilayer graphene section between
contacts 1 and 2, as a function of the voltage applied to the back- and topgates. The blue
line in the diagonal is the CNP. Along this line the electric field changes within the sample,
and the doping remains constant. This is also the case for lines parallel to this (see Fig. 4.5.b
for equidensity lines). Perpendicular to this line, the doping changes in the sample. The
broadening of CNP along the diagonal indicates the appearance of a band gap due to the
transverse electric field E resulting from the voltages applied to the gate electrodes. A hori-
zontal feature around VBG =−1 V is also observable (wide green line) that can be attributed
to the regions of the device that are not covered by the topgates and, as a result, are only
tunable by the backgate.
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Figure 4.5: (a) Two-terminal conductance G of the section between contacts 1 and 2, as
a function of back- and topgate voltages. The broadening of the CNP along the diagonal
indicates the opening of a band gap due to the transverse electric field. The horizontal feature
can be attributed to regions that are not covered by the topgate. (b) The contours of the
electric field and the charge carrier density as a function of the gate voltages placed on the
gate-gate map shown in (a). The lines parallel to the diagonal feature of low conductance
correspond to the charge carrier density (in units of 1/m2), while those that are perpendicular
correspond to the electric field (in units of V/m).

The high-resistance feature along the diagonal of the gate-gate map allows us to obtain
important information about the device. First of all, the lowest resistance point of the line
shows us where the electric field acting on the BLG is zero. It can be seen that this is
not at zero gate voltages, but at Vb0 = 560 mV and Vt0 = −820 mV. We believe that this
comes from the built in electric field of∼ 2×107 V/m from WSe2 (close to the theoretically
predicted displacement field of 0.267 V/nm). Here, we note that Ref. [4] gives values of
the displacement field, whereas we use the electric field strength to describe the transverse
electric field, with the conversion being the dielectric constant ε ≈ 4 of WSe2. Also, one can
see that the main CNP (diagonal line) goes through Vbg =Vtg = 0 V, which suggests that, in
the topgated region, there is no offset doping, only a built-in electric field is present.

Figure 4.6: (a) Two-terminal conductance of the graphene section between contacts 1 and
2. The black dashed line shows the linear fit used to calculate field-effect mobility. (b)
Extraction of the residual doping on a log-log scale. Linear fits are guidelines to the point
where the dependence deviates from linear.
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Making use of eq. 2.24 and 2.25, it is possible to calculate the combination of VBG and
VT G for any given pair of E and n. The contours of the electric field and the charge carrier
density are shown on Fig. 4.5.b placed on the gate-gate map of the two-terminal conductance.
Therefore, it is possible to measure the two-terminal conductance of a junction purely as a
function of charge carrier density. For the graphene section between contacts 1 and 2, this
is shown in Fig. 4.6.a which is, although a standalone measurement, essentially a cut of the
gate-gate map along the line of zero transverse electric field.

From the density-dependence of the conductance, we have calculated the field-effect mo-
bility µ = 16000 cm2/Vs of the device which shows a relatively good quality. However, it
is also visible that at large negative values the effect of the non-gated regions comes into
play and the conductance drops again. This places a severe limitation on the region where
further measurements can be conducted. Furthermore, by looking at the log-log plot shown
in Fig. 4.6.b, we can estimate the residual doping from the point where the function deviates
from the linear dependence. In this case, this is n∗ = 2.5× 1014 1/m2 that corresponds to
an energy of 1 meV. Whereas it is not outstanding compared to other encapsulated graphene
samples, it is still smaller than the theoretically expected intrinsic band gap of 10 meV. More-
over, here, a large advantage of BLG can be seen: a similar density fluctuation would lead to
much larger energies in single-layer graphene (∼ 20 meV), due to the small density of states
at low energies.

4.2.2 Quantum Hall effect

To further characterize our sample, we have carried out additional measurements, includ-
ing the investigation of quantum Hall effect. These measurements here were made on the
graphene section between contacts 2 and 3 of the previously introduced device (see Fig. 4.4).
We have started quantum Hall measurements near zero transverse electric field by fixing the
backgate voltage at V BG = 0.7 V and sweeping the topgate voltage VT G and the out-of-plane
magnetic field Bz.

From Fig. 4.7.a, it is clearly observable that at low magnetic fields the four-fold degen-
erate quantum Hall plateaus become visible, whereas at larger magnetic fields – around
Bz = 6 T – this four-fold degeneracy splits and all integer plateaus (ν = ...,−2,−1,0,1,2, ...)
are present. This splitting of the valley and spin degeneracy is due to electron-electron inter-
action and is commonly observed in high quality encapsulated BLG devices.

After this, we have conducted the same measurements at finite transverse electric field
values by fixing the backgate voltage at VBG = −6 V. The derivative of the two-terminal
conductance is presented in Fig. 4.7.b. Here, the most prominent and striking features are
the ν =−3 and−6 plateaus (see Fig. 4.7.c) that become visible at low magnetic field values,
as opposed to the usual ν = 4 or 0, 2, 4 plateaus. Furthermore, a crossing of the ν = −2,
−3 and −4 plateaus is also observable at around Bz = 5 T. At even higher magnetic fields,
all integer plateaus become visible.
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Figure 4.7: (a) Derivative of the two-terminal conductance with respect to topgate volt-
age VT G as a function of VT G and out-of-plane magnetic field Bz for zero backgate voltage
VBG. The expected four-fold degenerate quantum Hall plateaus become visible at low mag-
netic fields. At higher magnetic fields the valley and spin degeneracy splits and all integer
plateaus become visible. (b) Same as (a) for finite transverse electric field at VBG = −6 V.
Pronounced ν =−3 and −6 plateaus become visible. At higher magnetic fields the ν =−2,
−3 and −4 plateaus cross, indicating the Lifshitz transition. (c) Same as (b) with the theo-
retically expected positions of quantum Hall plateaus of ν(e2/h) marked with dashed lines.
(d) Schematic low energy band structure of gapped bilayer graphene at the K valley with
characteristic cross sections shown on the insets.

Even though a thorough explanation of this phenomenon goes beyond the scope of this
work, we give a short insight to the cause of the previous observations. Based on Ref. [26],
to understand this peculiar behaviour of the quantum Hall plateaus, we have to take a closer
look at the bilayer graphene band structure in the presence of an asymmetry-induced band
gap. This is shown in Fig. 4.7.d. At low energies, the Fermi surface consist of three sepa-
rate pockets, as illustrated by insets of the figure. However, at energies further away from
the CNP, the three pockets merge and an electron-like island forms in the center. Further
lowering of the energy will result in the disappearance of this island.
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Due to the inter-layer asymmetry gap, the valley degeneracy is lifted. Therefore, the
ν = −6 plateau is the result of a six-fold degenerate Landau level arising from the three
separate Fermi pockets with linear single-layer-like spectrum (with spin degeneracy). The
ν =−3 plateau is a result of ferromagnetic exchange of electrons on the six-fold degenerate
LL. Furthermore, the crossing of the plateaus can be attributed to the appearance of the
electron-like island near the Lifshitz transition that results in a crossing of LLs.

This effect has already been observed in Ref. [26], however, it is expected to be more
robust in the samples with WSe2 [4]. We have not seen any obvious sign of spin–orbit
interaction on the Lifschitz transition. If such modification is present, it should manifest
itself as an symmetry breaking between the positive and negative electric field case (in case
of fixed magnetic field), or as an asymmetry in the positive and negative magnetic field case
(for fixed electric fields) due to the valley-dependent built-in magnetic fields from the sipn–
orbit interaction. Moreover, at high magnetic and electric fields special quantum Hall states
are predicted [27] [28], which could be interesting to investigate in the future.

4.2.3 Weak anti-localization measurements

As seen in the previous subsection and section 2.2, strong SOC leads to pronounced
WAL peaks in the magneto-conductance. Therefore, to investigate the effects of proximity-
induced spin–orbit coupling, we have started weak localization measurements by measuring
the conductance as a function of the out-of-plane magnetic field Bz. The magnetic field was
created by a superconducting coil inside the cryostat.

In a naive picture, based on [4], since the SOC strength is different for the valence and
conduction bands, one would expect an electron-hole asymmetry in the WAL measurements
and that this asymmetry could be reversed by a suitable external electric field. Therefore,
we have measured the quantum correction to the magneto-conductance ∆G as a function
of charge carrier density at different values of the transverse electric field. To extract the
quantum correction, we have measured the two-terminal conductance at temperatures of
1.6 K and 30 K for different values of the transverse electric field, as shown in Fig. 4.8.a
and 4.8.b. for E = 2× 107 V/m. At first sight, no magnetic field dependence is observable
in these maps because the density dependence dominates the change in colour. Although
the measured data at low and high temperatures look fairly similar, the high-temperature
measurement is expected to contain only the classical magneto-conductance due to very short
phase coherence times τΦ. Therefore, by subtracting the high-temperature curves from the
low-temperature ones, we can obtain the quantum correction for the magneto-conductance,
as shown in Fig. 4.8.c. When doing this, we have supposed that the temperature dependence
of the classical conductance can be neglected. However, this map is still dominated by the
gate dependence of the conductance, which suggest that maybe not all the background could
be subtracted due to a small temperature dependence of the conductance. After subtracting
the line containing the Bz = 0 mT data, maps such as the one shown in Fig. 4.8.d are obtained
where the magnetic field dependence becomes visible.
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Figure 4.8: The steps of data analysis for WAL measurements. The two-terminal conduc-
tance is measured at a temperature of (a) 1.6 K and (b) 30 K. (c) The quantum correction
to the magneto-conductance is obtained by subtracting the high-temperature curves from the
low-temperature ones. (d) For better visibility, the map is offset by subtracting the Bz = 0
mT line. In this way, signs of WAL peaks become observable around zero magnetic field.

It is important to note that the range in which n was tuned is asymmetric around zero.
The reason for this is that, in order to avoid false results coming from the non-gated regions,
we restricted our measurements to the parts of Fig. 4.5 where the horizontal feature is not
visible.

Fig. 4.9 shows the quantum correction to the magneto-conductance for E = 0 V/m and
E = −2×107 V/m. What is clearly visible, is that large modulations of the conductance in
Bz and n are present due to UCFs, as it was also seen in the case of single-layer graphene
(Fig. 4.2.a). On the other hand, signs of WAL peaks become slightly visible at finite electric
field values around zero magnetic field, as it is seen in Fig. 4.9.b. Also, at zero electric field
the weak-localization dip is absent which could already suggest that SOC is present in the
system.
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Figure 4.9: The magneto-conductance measured at transverse electric field values of (a)
E = 0 V/m and (b) E = −2×107 V/m. No sign of WAL is visible in (a), while small WAL
peaks become visible around zero magnetic field in (b).

This is further investigated by taking an ensemble average of curves measured in a range
of ∆n = 2×1015 1/m2 around different values of n as it is shown in Fig. 4.10.b. Here, the line
cut taken at n = 6×1015 1/m2 shows a small WAL peak near zero magnetic field. However,
for the trace taken at n = −6× 1015 1/m2, no peak is visible. While some asymmetry is
visible, it is obvious that no clear assumption can be made due to the fact that the size of the
peak is close to the resolution of the magnetic field sweep and that large fluctuations persist
in spite of averaging.

Figure 4.10: (a) The magneto-conductance at E = 2× 107 V/m. (b) Ensemble average of
curves of the magneto-conductance over a range of ∆n = 2× 1015 1/m2 taken at different
central values of n, illustrated by dashed lines in (a). A small WAL peak is visible around
zero magnetic field on the cut taken at n = 6× 1015 1/m2. However, it is clear that larger
resolution in magnetic field is needed. Traces are offset for clarity.

Therefore, we have recently started measurements in a smaller magnetic field range with
higher resolution. This is shown in Fig. 4.11.a for E = −2× 107 V/m where the resolution
of the magnetic field sweep is increased from 1 mT to 0.2 mT. The effect of SOC is better
visible in Fig. 4.11.b where we show cuts of the two-dimensional map at different values of
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n. Here, a clear WAL peak is visible at non-zero densities, indicating the presence of SOC.
For better comparison, a line cut from the measurements at T = 30 K is also shown. This
trace is offset for better visibility. The small offset in magnetic field originates from the offset
of the magnet.

Figure 4.11: (a) The magneto-conductance at E = −2× 107 V/m as a function Bz and n
with a magnetic field resolution of ∆Bz = 0.2 mT. (b) Cuts along the dashed line in (a) show
clear WAL peaks. However peaks are observable on both sides of the CNP. A trace of the
high-temperature background is also shown. This trace is offset for better visibility.

From the data presented so far, it is easily visible that SOC is present in the system.
To be able to address the electric field tunability, further measurements at different electric
fields and dopings will be required. We also note here that the WAL peaks in the magneto-
conductance are very small. A possible reason for this is that the spin-orbit coupling is small,
such that the spin-orbit scattering time τSO is comparable to the phase coherence time τΦ.
A possible solution for this could be to cool the sample even further in a dilution fridge,
where temperatures on the order of 10 mK are achievable, making SOC-related effects more
prominent. However, it is important to note that the presence of WAL also depends on the
type of spin-orbit coupling, therefore further analysis of the SOC terms present in such a
system is needed.

Moreover, it is also visible that the resolution of the charge carrier density sweep has
to be increased as well. It is especially important if we consider that – as mentioned in
section 2.2.4 – at higher densities a spin-orbit splitting appears in both bands, therefore the
supposed asymmetry in the WAL measurements could be lost. Based on [13] and Fig. 2.10,
we can assume that the difference in SOC for the valence and conduction bands should be
visible below charge carrier densities of |n|= 5×1015 1/m2 that corresponds to an energy of
20 meV.

Since the author’s internship ended in the beginning of September, the measurements
were suspended due to limited cryostat measurement time. However, they have been very
recently restarted by one of the supervisors, Simon Zihlmann. Further WAL measurements
have already started on the junction between contacts 2 and 3. An advantage of this graphene
section is that its area is larger compared to the previously measured device which could
reduce the contribution from UCFs. Moreover, as already mentioned, further cooling of the
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device could also help to make effects of WAL more prominent. Also, the analysis of these
measurements, the fitting of the magneto-conductance curves is still to be done. Whereas
there exist formulae similar to eq. 2.11 of single-layer graphene, the number of terms here
is significantly larger [29]. Therefore assumptions and simplifications of these formulae will
be needed.

To summarize, we have successfully fabricated encapsulated bilayer graphene heterostruc-
tures, where we have observed the Lifschitz transition in the QHE, demonstrating the large
tunabilty of the electronic spectrum. We have shown the appearance of spin–orbit in these
heterostructures. Further measurements will focus on the electric field tunability to achieve
the layer tunability of the SOC.
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5. Summary and outlook

At this point, all that remains is to conclude our findings. In this work, the first steps
towards engineering topological states in graphene has been presented. We have investigated
the effects of proximity-induced spin–orbit coupling in single-layer and bilayer graphene.
For this, we have fabricated Van der Waals heterostructures using hBN and WSe2 layers to
encapsulate graphene, where WSe2 is a TMDC that is used as the source of this induced
spin–orbit coupling.

After briefly presenting the necessary theoretical background in chapter 2, the fabrica-
tion process of these heterostructures was discussed in chapter 3. Here, the state-of-the-
art method of the assembly of two-dimensional materials was presented that is a well-
established and reliable method based on the Van der Waals force acting on the interface
of different materials. It was also shown that, although it is a well-established and reliable
method, some difficulties arise in case of WSe2. For instance, the identification of suitable
bulk WSe2 layers can be problematic due to the small change in flake colour in a rela-
tively large thickness range of 20-80 nm. Moreover, although using graphite gates promises
higher quality devices, the fabrication of these heterostructures becomes more challenging
as precise control of the etching process is required. Therefore, for these structures, AFM
measurements are necessary to determine layer thicknesses. Furthermore, we have shown
that single-layer WSe2 flakes are also observable by optical microscopy, however, photolu-
minescent microscopy can be a powerful tool to obtain more reliable information.

The main experimental results presented in chapter 4. Firstly, the case of proximity-
induced SOC in single-layer graphene was shortly summarized. The author’s contribution to
this part of the project was mainly sample fabrication that enabled the measurement of the
spin-orbit scattering rates as a function of the momentum scattering time. The main findings
were published in [12] (Phys. Rev. B 97, 075434). Contributing to this project allowed me
to gain insight, among many other things, to weak anti-localization measurements that allow
us to extract information about the type of SOC terms present in such systems.

Building on this experience, we have started to investigate the effects of proximity-
induced SOC in bilayer graphene. For this, we have successfully fabricated hBN/BLG/WSe2

heterostructures with local metallic topgates and a global graphite backgate. This double-
gate structure enabled us to tune the transverse electric field and charge carrier density sepa-
rately in the device. Based on a simple planar capacitor model, we were able to construct a
map of constant electric field and charge carrier density lines based on the gate-gate map of
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the two-terminal conductance. This allowed us to conduct weak anti-localization measure-
ments at different transverse electric fields that clearly indicated the presence of SOC in the
bilayer graphene. Furthermore, it also highlighted the difficulty that lies in the data analysis
of such measurements. The initial results are promising results and further measurements
will be needed to investigate the tunability of the induced SOC by electric fields. Also, the
fitting of the measured curves to extract spin–orbit scattering rates will require further the-
oretical work. This will enable the understanding of the nature of the underlying spin–orbit
mechanism.

As it was briefly also presented, in parallel to the previously discussed part of the project,
we have fabricated hBN/G/hBN heterostructures with superconducting side contacts. We
have started to optimize the electrical contact of NbTiN to graphene by depositing various
sticking layers. Although Ti/NbTiN showed promising contact resistances, low-temperature
measurements did not take place due to the oxidization of the sample. On the other hand,
samples with MoRe contacts were also fabricated that enabled us to detect supercurrent in
graphene as presented in section 3.3. Further measurements are currently being carried out,
including Fraunhofer pattern measurements to obtain information about the current distribu-
tion in graphene. This project will be the main focus of my master work.

As mentioned in the introduction, the combination of spin–orbit coupling and supercon-
ductivity could lead to the appearance of topological states in graphene. Here, we have
shown that both of these ingredients are technologically feasible. After a thorough investiga-
tion of the effects of proximity-induced spin–orbit coupling and superconductivity, the next
big step would be to fabricate samples that can host the combination of these two phenomena
and investigate the novel effects induced by their coexistence.
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Appendix

A.1 E-beam lithography parameters

Resist type: 950k PMMA

• Spin-coating:

– 4000 rpm, 40 s

– Nominal thickness: 300 nm

– Heat treatment: 180 ◦C, 3 min

• Patterning parameters:

– Extractor voltage: 20 kV

– Dose: 450 µC/cm2

• Development:

– Developer: IPA:H2O (7:3), 1 min at 0 ◦C

– N2 blow-dry

Resist type: 600k PMMA

• Spin-coating:

– 4000 rpm, 40 s

– Nominal thickness: 300 nm

– Heat treatment: 180 ◦C, 3 min

• Patterning parameters:

– Extractor voltage: 20 kV

– Dose: 240 µC/cm2

• Development:

– Developer: IPA:MIBK (1:3), 1 min at room temperature
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– Stopper: IPA, 30 s

– N2 blow-dry

A.2 Reactive ion etching

• Gases: CHF3 (40 sccm), O2 (4 sccm)

• pbase = 5e−5 mBar

• pbackground = 60 mTorr

• P = 60 W

• Etching rates:

– hBN: 20 nm/min

– WSe2: 18 nm/min

– SiO2: ∼10 nm/min

A.3 Sputtering parameters

NbTiN

• Target: NbTi

• Pressure: pbg = 50 mTorr

• Gases: N2 (8 sccm), Ar (2.5 sccm)

• Rf power: P = 250 W

• Plasma ignition: 20 mTorr, 50 W

• Rate: unknown, ∼ 1.5 Å/s

NbTi*

• Target: NbTi

• Pressure: pbg = 50 mTorr

• Gases: Ar (2.5 sccm)

• Rf power: P = 250 W

*NbTi and NbTiN can be done in the same sputtering step by simply delaying the opening of the N2 valve.
In our case, the valve was opened 30 s after opening the target shutter, which corresponds to a sticking layer
thickness of ∼5 n
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• Plasma ignition: 20 mTorr, 50 W

• Rate: unknown, ∼ 1.5 Å/s

Ti

• Target: Ti

• Pressure: pbg = 35 mTorr

• Gases: Ar (4 sccm)

• Rf power: P = 50 W

• Plasma ignition: 20 mTorr, 50 W

• Rate: 0.2 Å/s

MoRe

• Target: MoRe

• Pressure: pbg = 35 mTorr

• Gases: Ar (2 sccm)

• Rf power: P = 100 W

• Plasma ignition: 35 mTorr, 100 W

• Rate: 3 Å/s
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