A BME Oktatóreaktorában használt grafit reflektorok vizsgálata a radioaktív hulladékkezelés szempontjából

TDK Dolgozat

2013

Adamecz Ágnes

Energetikai mérnök Bsc. IV. évfolyam

Konzulens: Dr. Czifrus Szabolcs

egyetemi docens

BME Nukleáris Technika Tanszék

Kivonat

A grafit felhasználása a nukleáris energetikában rendkívül elterjedt, előnyös tulajdonságainak köszönhetően. Elsősorban mint moderátor és reflektor alkalmazzák különböző atomreaktorban. Először az 1942.-es Manhatten Projekt keretein belül használták a chicagói "atommáglyában", az első önfenntartó láncreakció moderátoraként. Napjainkban azonban nem csak a nagy teljesítményű reaktorokban alkalmazzák, hanem a kutató-illetve oktatóreaktorokban is.

A reaktorok leszerelésének kérdése nagy jelentőséggel bír. Már a világ több pontján is foglalkoztak nagy teljesítményű és kis teljesítményű atomreaktorok leszerelésével, ahol a grafitot reflektorként illetve moderátorként használták. Ilyen országok például az Amerikai Egyesült Államok, Anglia és Oroszország. Ebből adódóan, rendelkezésre állnak kutatási eredmények, mérések, számítások tudományos irodalmakban, hogy miként kell a grafittal, mint radioaktív hulladékkal foglalkozni egy atomreaktor leszerelése során. Emiatt megfelelő mennyiségű forrás áll rendelkezésre BME Oktatóreaktorában található grafit tanulmányozására.

Dolgozatomban szó lesz arról, hogy milyen atomreaktorokban alkalmazzák a grafitot, gyártásának folyamatáról, a lehetséges szennyező anyagairól és ezek forrásairól. Leszerelésnél alkalmazott kezelési módszereiről, a különböző tárolási megoldásokról vagy az esetleges újrahasznosítási lehetőségekről. A hulladékkezelés szempontjából kiemelkedő fontosságú a neutron sugárzás hatása a grafitra, amit a kezdetektől fogva kutatnak mind a mai napig. Besugárzás hatására, megfelelő körülmények között egyrészt az úgynevezett Wigner-energia halmozódik fel a rácsszerkezetben, ami bizonyos külső feltételek mellett képes felszabadulni hő formájában. Ez a jelenség komoly balesetek okozója is lehet, példa erre a Windscale-i reaktor baleset, amely során a grafit kigyulladt a reaktor zónájában, károsítva ezzel az üzemanyag kazettákat. Másrészt érdekes viselkedése a grafitnak, hogy neutron sugárzás hatására megváltoznak a fizikai és mechanikai tulajdonságai.

A dolgozat célja annak meghatározása számítások segítségével, hogy az Oktatóreaktor esetén pontosan mekkora neutronsugárzás érte a grafit tömböket, ezek milyen mértékben aktiválódtak fel az Oktatóreaktor üzemelése óta. Mivel nem állnak rendelkezésre pontos adatok, az itt használt grafit típusát illetően, aktivációs analízis segítségével meghatározható a szennyező anyagösszetétel. Ezen eredmények alapján többféle következtetést lehet levonni a fent említett források segítségével, azzal kapcsolatban, hogy milyen változások mentek végbe

az itt használt grafitban, milyen szennyezőanyagok találhatóak benne, valamint milyen megoldások léteznek az ilyen jellegű radioaktív hulladék kezelésére, tárolására.

TARTALOMJEGYZÉK

Bev	ezetés1
1.	A grafit felhasználási lehetőségei a nukleáris iparban
2.	A nukleáris grafit gyártásának folyamata4
З.	A grafit szennyezői6
4.	Besugárzás hatása a grafitra7
	4.1 A grafit fizikai, mechanikai tulajdonságainak megváltozása besugárzás hatására 7
	4.1.1 Fizikai tulajdonság megváltozása8
	4.1.2 Wigner-effektus
	4.1.3 A neutron sugárzás hatása a grafit mechanikai tulajdonságaira
	4.1.4 A termikus jellemzők változása16
	4.2 Radiokémiai effektusok16
	4.3 A grafit felaktiválódás17
5.	A BME Oktatóreaktorában található grafit bemutatása18
6.	A BME Oktatóreaktorában alkalmazott grafit reflektorok és termikus oszlop
fela	ktiválódásának vizsgálata21
	6.1 Alkalmazott számítás
	6.2 A grafit reflektor elemekre vonatkozó számítási eredmények
	6.3 A besugárzó alagútban lévő termikus oszlop vizsgálata
	6.4 A termikus oszlopból kivett grafit hasáb gamma-spektrometriás mérése
7.	Összefoglalás

Bevezetés

A grafit felhasználása az atomenergetika iparban rendkívül széles körű előnyös tulajdonságainak köszönhetően. A grafitra általánosan jellemző a kis neutronelnyelő képesség, alacsony tömegszám, jó hőellenálló képesség, alacsony hőtágulási-együtthatója valamint magas olvadás- és alacsony forráspontja. Ezen reaktorfizikai tulajdonságai alkalmassá teszik moderátor illetve reflektor anyagként történő felhasználásra atomerőművekben. Jelenleg több mint száz atomerőműben és számos kutató illetve kísérleti reaktorban alkalmazzák a grafitot elsősorban, mint moderátor és reflektor.

Egy nukleáris létesítmény esetén nem csak annak megfelelő tervezéséről, építéséről és biztonságos üzemeltetéséről kell gondoskodni, hanem a későbbiekre nézve annak megfelelő leszereléséről, és a benne keletkező radioaktív hulladékok kezeléséről és tárolásáról. Mivel nem csak a létesítési költsége nagyon magas egy ilyen létesítménynek, hanem annak leszerelése is, gondosan meg kell tervezni a leszerelés minden egyes lépését és a keletkező veszélyes hulladékok kezelésének stratégiáját. Erős sugárzással jellemezhető környezetben töltött hosszú idő ellenére a grafit megőrzi viszonylag jó mechanikai tulajdonságait, vízben oldhatatlan és kémiailag nem különösebben reaktív, így úgy gondolnánk, hogy minden olyan követelménynek eleget tesz, ami a szilárd halmazállapotú radioaktív hulladékok elhelyezésére vonatkozik. Nemzetközi tapasztalatok, kutatások és szakirodalmak igazolják, hogy a nukleáris célra alkalmazott grafit bizonyos tulajdonságai megváltoznak a neutronbesugárzás hatására, így a grafit kezelésének kérdése már nem is olyan egyszerű, mint ahogy azt elsőre gondolnánk.

Jelen dolgozat célja bemutatni, hogy a grafitra milyen hatással van a neutronsugárzás, valamint megvizsgálni, hogy a BME Oktatóreaktorában alkalmazott nagy mennyiségű grafitot a reaktor eddigi élettartama során mennyi neutron fluencia érte, ez kiválthat-e a későbbiekben olyan változásokat a grafit szerkezetében, amelyekre oda kell figyelni. Ezek alatt értem a térbeli változások lehetőségének a megvizsgálást, a Wigner-effektus mértékének becslését. Mivel a radioaktív hulladékkezelés során elengedhetetlen a grafit felaktiválódásának és annak szennyező izotópjainak ismerete, ebben a dolgozatban szó lesz ezekről a lehetséges szennyező radionuklidokról, ezek lehetséges forrásairól. Az Oktatóreaktorban használt grafit pontos összetételéről, szennyezőiről nem állt rendelkezésre információ, ezért szükséges volt egy

gamma-spketrometriás mérés, amelynek segítségével ezeket meghatározhatóak. Ennek a mérésnek a kivitelezéséről és eredményeiről is szó lesz a dolgozatban.

1. A grafit felhasználási lehetőségei a nukleáris iparban

Mint már fent említettem előnyös reaktorfizikai tulajdonságainak köszönhetően sokszor alkalmazzák moderátorként a gyors neutronok termikussá lassításához, valamint reflektorként használják a láncreakció szempontjából értékes neutronok kiszökésének csökkentésére, így csökkentve a reaktor kritikus méretét. A nukleáris technikában először az 1942.-es Manhatten Projekt keretein belül használták, a világon elsőként megvalósuló önfenntartó láncreakció moderátoraként, a chicagói "atommáglyában".[Nuc19]

A grafit alkalmazzák továbbá speciális technológiákban üzemanyag burkolatként is az úgynevezett nagyon magas hőmérsékletű reaktorok esetében. Ezeknél a reaktor típusoknál az üzemanyagként alkalmazott urán-dioxidot, vagy urán-karbidot tartalmazó golyókat grafittal vonják be. Ilyen esetben a grafit, mint elsődleges moderátor funkcionál. Ezen kívül egyes gázhűtéses reaktor típusoknál az alkalmazott üzemanyag- kazetták középső pálcája is grafitból készül, de más reaktor típusoknál is alkalmaznak különböző grafitot tartalmazó szerkezeti elemeket biológiai védelem céljából. [Ele01]

Jelenleg több reaktor típusban is alkalmaznak grafitot moderátorként, illetve reflektorként. Ezekre a példák a következőek:

- Gázhűtéses reaktorokban (GCR) a grafitot moderátorként építették be CO₂ vagy héliumos hűtőközeg mellett. Ezek közé a tartozik a Magnox illetve az Advanced Gas-Cooled Reactor (AGR) típusú blokkok. A világon jelenleg 1 darab Magnox és 14 darab AGR típusú blokk üzemel, a másik 26-ot már leállították.
- Könnyűvízhűtésű reaktorokban (LWGR) szintén, mint moderátor használják a grafitot. Az ilyen típusú reaktoroknál a legelterjedtebb az RBMK típusú szovjet fejlesztésű reaktor. RBMK-1000 típusú blokkból 11 üzemel még Oroszországban, 6 darabot pedig már leállítottak a csernobili baleset után.
- Magas hőmérsékletű gáz-hűtésű reaktorok (HTGR) közül összesen kettő épült fel, mindkettő az Amerikai Egyesült Államokban. Mára mind kettő leállt. Két féle ilyen magas hőmérsékletű reaktor típus van: a prizmatikus és az úgynevezett kavicságyas. Mindkettő hélium hűtésű, és grafit a moderátora. [Wor02]

A nagy teljesítményű atomerőműveken kívül alkalmazzák a grafitot oktató-és kutatóreaktorokban is. Többek között az Amerikai Egyesült Államokban, Nagy-Britanniában és Oroszországban foglalkoztak, foglalkoznak ma is olyan reaktorok leszerelésével, amikben grafit alkalmaztak moderátorként.

A fent leírtakból látszódik, hogy jelentős mennyiségű szakirodalom, kutatási jelentés áll rendelkezésre, azzal kapcsolatban, hogy miként viselkedik a grafit nukleáris környezetben, illetve milyen lépések, eljárások léteznek a grafit radioaktív hulladékként történő kezelésére. Így pontos forrásokra támaszkodva lehetőség nyílik a BME Oktatóreaktorában használt grafit tanulmányozására.

2. A nukleáris grafit gyártásának folyamata

A nukleáris iparban alkalmazott grafitok úgynevezett elektorgrafitok, amiknek alapja a nagy széntartalmú petrolkoksz vagy kátránykoksz. Ezeknek a grafitoknak a gyártása nagy odafigyelést igényel, hogy minden olyan szennyezőt kizárjanak a gyártás során, amelyek nagy neutron befogási hatáskeresztmetszettel rendelkeznek, mint például a bór. Az első lépés a forgókemencében történő kalcinálás 1300 C° hőmérsékleten. Ez azért fontos, mert ilyenkor távozik a koksz illó szénhidrogén tartalma. Ezt a térfogat változást a későbbiekben lehet ellenőrizni. Ez az ellenőrzés kifejezetten a nagyméretű tömbök gyártásánál fontos. Az így keletkező anyagot felaprítják, majd finomra őrlik, körülbelül 300 µm átmérőjű szemcsékké. Ezután kötőanyagként kőszénkátrányt adagolnak hozzá. A kapott keveréket keverőgépbe adagolják, folyamatos melegítés mellett. A hozzáadott kötőanyag ~165C°.nál kezd el megolvadni. A megolvadt keveréket vagy gumiformákba öntik, hogy préselés után felvegye a kívánt alakot, vagy extrudálják, általában kocka formájúvá. A gyártásnak a préselés az egyik legfontosabb lépése. Ilyenkor elkerülhető, hogy az anyag szerkezetében anizotrópia alakuljon ki. Ez az atomerőművekben használt anyagok egyik alapkövetelménye. Az anyaghibák elkerülésére alkalmas az izosztatikus préselés, vagy a vibrációs öntés. Ha anizotrópia, azaz tűkristályos szerkezet alakul ki a grafit anyagában az töréshez, ezáltal az élettartam megrövidüléséhez vezethet. De nem csak az élettartam csökkenését okozhatják, hanem az üzem közben a pórusokon áthaladó gázok, folyadékok miatt szennyezők halmozódhatnak fel nem csak a grafit felszínén, hanem belül is. A préselés után következik a leghosszabb lépése a gyártási folyamatnak. Három vagy hat héten át folyamatosan melegítik a préselt anyagot 800-1000 C° körül. Ha túl gyorsan történne a melegítés, a távozó gázok eltörhetik az alakra formált grafit tömböket, rudakat. A folyamat végén a porozitás csökkentése céljából, vagy a sűrűség növelése miatt további adalékanyagot adhatnak (petrolgyantát) a termékhez, majd újra hőkezelhetik. Ha a kívánt sűrűséget (1,6-1,8 g/cm³) elérték, akkor az eljárás utolsó lépéseként a grafitizáció folyamata következik. A grafitizáció elektromos kemencében egytől akár három hétig terjedő, 2500-3000°C-os hőmérsékleten tartást jelent. A végső forma elnyerése előtt különböző tisztítási folyamatokon esik át a grafit, hogy a lehető legtöbb szennyező anyagot eltüntessék a grafit anyagából. [Gra03]

A világon összesen mintegy egymillió tonna körüli grafitot állítanak elő évente. A termelésben kimagasló szerepet játszik Kanada, Brazília és Oroszország. [Gra05]

2.1 ábra: A grafit gyártásának folyamata [Win04]

A kritériumok, amiknek meg kell felelnie a reaktorban moderátorként vagy reflektorként alkalmazott grafitnak a következőek:

- nagyfokú tisztaság
- nagy sűrűség
- sugárkárosodással szembeni ellenállás
- melegszilárdság
- korrózió- és erózióállóság
- kismértékű anizotrópia
- kis hőtágulási együttható

Az atomerőművekben felhasznált grafitnak nagy tisztaságúnak kell lennie, úgynevezett reaktortisztaságúnak. Ez olyan grafitot jelent, amelynek tisztasági foka nagyobb 5 ppm bór

egyenértéknél, és sűrűsége nagyobb 1,5 g/cm³-nél, ha a mennyisége meghaladja a 30 tonnát tetszőleges 12 hónap tartamú időszakon belül.¹

3. A grafit szennyezői

Atomreaktorokban és más nukleáris létesítményekben nem csak a zóna jelent komoly sugárforrást, hanem a felaktiválódott moderátorok, reflektorok és más szerkezeti elemek is. Ez a felaktiválódás a grafit esetén a kezdeti anyagösszetételtől és a grafitot érő neutronfluenciától függ. A besugárzott grafit és például az árnyékoló beton radioaktivitása hosszú időtávlatban több radionuklidból is származhat: ³H, ¹⁴C, ⁶³Ni, ⁶⁰Co, ³⁶Cl, ⁵⁵Fe, ⁴¹Ca, ¹⁵²Eu, ⁹⁰Sr, ¹³⁵B, ¹³⁷Cs és néhány transzurán.

Minden olyan anyag estén, melynek gyártása során természetes eredetű összetevőket is alkalmaznak, tartalmazhat ⁵⁹Co izotópot, melynek természetes állapotban való előfordulási gyakorisága a kobaltban 100%. Az ⁵⁹Co izotóp neutron befogás révén 5,24 éves felezési idejű ⁶⁰Co izotóppá alakul, mely a leszerelést követő néhány évtizedben, a besugárzott anyag kezdeti kobalt-tartalmának függvényében domináns szerepet játszik a radioaktivitás mértékét illetően. A leszerelést követő ⁶⁰Co aktivitása nagyjából egyenesen arányos a kezdeti, inaktív kobalt-tartalommal.

A ⁶⁰Co mellett kulcsfontosságú a kezdeti ³⁵Cl-tartalom ismerete is, mely a régebbi gyártástechnológiáknál használt grafittisztítási eljárások során nem kívánt, addicionális szennyezőként jelentkezett. A természetes klór mintegy 75%-át kitevő ³⁵Cl izotóp aktivációs termékeként keletkező rendkívül hosszú, 301 000 éves felezési idejű ³⁶Cl izotóp aktivitása a hosszú távú hulladékkezelési stratégia kérdését illetően meghatározó. [Ele01]

A grafit kezdeti lítium-tartalmának függvényében a ⁶Li izotóp aktivációjának eredményeképp 12,32 éves felezési idejű H³ keletkezik, melynek jelentősége a grafit hulladék kezelésének és tárolásának szempontjából természetes körülmények közötti gáz halmazállapota miatt a gázfázisú aktivitás-kibocsátásban rejlik. De a lítium nem csak, mint szennyező kerülhet a grafit anyagába, hanem mint bomlástermék is a reaktorüzem során.

Az aktivitás szempontjából ugyancsak fontos a ¹⁴C izotóp. Ez az izotóp több úton is keletkezhet. Ezek közül a grafit kezdeti szennyezettségével összefüggő lehetőség a

¹ Nukleáris tisztaságú grafit definiálása: 34/1988. (V. 6.) MT rendelet

http://net.jogtar.hu/jr/gen/hjegy_doc.cgi?docid=99900090.TV 2013.10.15

¹⁴N(n,p)¹⁴C reakciója, illetve a ¹³C aktivációja. Emellett mind nitrogén, mind levegő hűtés estén meghatározó keletkezési útvonal lehet egyrészt a már említett ¹⁴N(n,p)¹⁴C magreakció, illetve a ¹⁶O(n,γ)¹⁷O(n,α)¹⁴C vagy közvetlenül a ¹⁷O(n,α)¹⁴C reakció. A C¹⁴ beleépülhet a kristályrácsba, de ez csak kezdeti szennyezés estén történhet meg. Ha a hűtőközeggel érintkezik a grafit, akkor rá is rakódhat a felületére ez az izotóp, vagy beleülhet a nyitott pórusokban, így felületi szennyezést okozva.

További fémszennyezők, mint a vas, a nikkel, a kalcium, illetve az európium aktivációra hajlamos izotópjainak jelenléte is meghatározó lehet az aktivitás alakulásának szempontjából.[Xi06]

4. Besugárzás hatása a grafitra

Neutron besugárzás hatására a grafitnak nem egy tulajdonsága változik meg. Ezeket a tulajdonság változásokat három fő csoportra különíthetjük el. Az első jelenségkörbe tartozik a grafit fizikai és mechanikai tulajdonságainak a megváltozása. A második csoport a grafit felaktiválódása, ami függ a kezdeti anyagösszetételtől, a szennyező izotópoktól illetve a neutron fluencia nagyságától. Végül pedig különböző radiokémiai jelenségek is felléphetnek. Ezen utóbbihoz tartozik a grafit direkt oxidációja, illetve az oxidációs termékként megjelenő szén-monoxid polimerizációja. A polimerizációval kialakuló anyag ezerszer reaktívabb, mint a grafit, így jelentős problémákat okozhat a radioaktív hulladékkezelés során.

4.1 A grafit fizikai, mechanikai tulajdonságainak megváltozása besugárzás hatására

A gyors neutron sugárzás hatását a grafit kristályrácsának térbeli változásaira számos grafit fajtára vizsgálták a neutron fluenciák és hőmérsékletek széles skáláján. A legtöbb atomreaktorban alkalmazott grafit megváltozását a részecskék úgynevezett rácspontokból való kilökődése a nagy energiájú gyors neutronok által és a kezdeti, még sugárzásnak ki nem tett grafit anizotrópiái idézik elő. Ezek a változások erősen függenek a környezeti hőmérséklettől, a fluenciától. Ha a grafitot 300 C° alatt éri neutron sugárzás, a kapcsolat a geometria paraméterek megváltozása és a neutron fluencia között igen összetett. [Gra03]

A fizikai tulajdonságok megváltozásán az alábbi jelenségeket értjük:

- méretbeli változás a tengelyre párhuzamos és keresztirányban (ún. duzzadás és zsugorodás)
- folyáshatár és a szakítószilárdság növekedése
- hővezetési tényező csökkenése

4.1.1 Fizikai tulajdonság megváltozása

A grafit szerkezetében a geometriai változásokat a gyors neutronok okozzák. Üközések során a nagy kinetikus energiájú neutronok kiüthetik a szén atomokat a kristályrácsból. Irodalmi források szerint már 100 eV kinetikus energiai elégséges.

4.1 ábra: A grafit kristályrácsa [Gra03]

A kristályrácsban a gyors neutronok hatására a kilökött szén atomok helyén úgynevezett üres helyek, vakanciák keletkeznek. Ezek a kiütött atomok (interstíciós atomok) újabb és újabb részecskék kilökődését eredményezhetik. A rugalmas szórás következtében a kiütött magok átlagos számát meg lehet becsülni bizonyos módszerekkel, amelyek szakirodalmakban felelhetőek. [Gra03; IAE07]

A kiütött atomok interstíciós atomként a bázislapok közé ékelődhetnek, így új párhuzamos bázislapokat képezve. Ennek a jelenségnek az eredménye a bázislap tengelyével párhuzamos és keresztirányú változás a térben. Ezt a méretbeli változást röntgen-diffrakciós mérésekkel támasztották alá, amit 5 K és 1700 K között végeztek. A mérésekből meg lehet határozni milyen mértékben, változik a grafit rácsállandója gyors neutron besugárzás hatására.

4.3 ábra: A grafit rácsállandójának változása a fluencia és a besugárzási hőmérséklet függvényében [IAE07]

4.4 ábra: A felső diagram a "c" tengely menti méretváltozás, az alsó diagram az "a" tengely menti méretváltozás [IAE07]

A 4.3 ábrán látható, hogy nagyon alacsony besugárzási hőmérséklet mellett- 30 C°- a legnagyobb a rácsparaméter változása, és ahogy nő a besugárzási hőmérséklet egyre kisebb lesz a térbeli változás mértéke. Ez a rácsparaméter változás sem tart a végtelenig, egy idő után telítődik a görbe a maximális értéknél.

A fenti diagramokon jól látható, hogy minél nagyobb a besugárzás hőmérséklete, annál nagyobb a hosszváltozás a "c" irányban, bázislap tengelyével párhuzamosan (4.1. ábra szerint). 150 C° besugárzási hőmérséklet mellett ez a változás elértheti akár a 30 % - t is. A tengelyre kereszt irányban, az "a" irányban a zsugorodás mértéke elérheti az 5 %- t, ezt is a legkisebb besugárzási hőmérsékleten. (4.4 ábra) Mind a kettő ábra kiméréséhez nagy tisztaságú pirolitikus grafitot alkalmaztak. [IAE07]

A grafit ilyen jellegű sugárkárosodása nem csak a besugárzás hőmérsékletétől, a grafitot ért neutron fluenciától, a szerkezet kristályosságának fokától, és ezeknek a kristályoknak az orientációjától függ. Ha olyan grafittömböt vizsgálnak, aminek a rácsszerkezete nem szabályos felépítésű akkor a vakanciák keletkezése nem jár ilyen mértékű méretbeli változással. Ha egy ilyen anizotrópiákat tartalmazó grafit tömböt éri neutronsugárzás, az el is törhet. De ha szabályos a rácsszerkezete, akkor a fenti ábrákon látott komplex jelenségek lépnek fel. [Ele01]

4.5 ábra: (a)- szabályos kristályrács (b)- nem szabályos, anizotróp kristályrács [Arj08]

4.1.2 Wigner-effektus

A grafitban tárolt energia felszabadulása nem várt, veszélyes események kiváltója lehet a felaktiválódott grafit kezelése során, vagy akár a tároláskor, ártalmatlanításkor. Ha ez az energia nem távozik a grafit szerkezetéből, jelentős hőmérsékletnövekedést eredményezhet. A korai kísérletek és elméletek szerint ez az energia felszabadulás nagyon rövid idő alatt (percek) lejátszódik. 200C° alatti, gyors neutronokkal történő besugárzás hatására megnövekszik a grafit szerkezetében tárolt energia. Ez abból adódik, hogy a grafit atomok az eredeti rácspozíciójukból kimozdulva magasabb energia szintre kerülhetnek a vakanciák és interstíciós atomokat hozva létre. Ez az energia növekedés jelenti a felhalmozódott energiát a grafit szerkezetében. A hőfelszabadulás akkor történik, ha például rekombináció lévén ezek az interstíciós atomok alacsonyabb energiájú állapotba kerülnek. Ezt a tárolt energiát Wigner –energiának nevezzük, amelyet először 1944-ben sikerült részben kimérnie, két egymástól független kutatócsoportnak Hanford és Chicago városában. Mivel nagyon alacsony értéket kaptak: 8,4 J értékű energiát mértek ki egy grammnyi mintából egy teljes nap alatt. Ez alapján arra a következtetésre jutottak, hogy ez a tárolt energia nem lehet

jelentős, és a kutatások irányát inkább a grafit térbeli, geometriai változására fordították. A Windscale-i baleset során figyeltek fel újra a problémára. 1957. október 10.-én Nagy-Britanniában egy levegőhűtéses, grafit moderátoros szaporító reaktorban a grafit kigyulladt, súlyosan károsítva az üzemanyag kazettákat, nagy mennyiségű radioaktív anyagot a környezetbe juttatva. Így újra fontossá vált ennek a különös jelenségnek a tanulmányozása, megismerése. [Win09]

Ha a grafitot radioaktív sugárzás éri alacsony hőmérsékleten, immáron a besugárzási hőmérséklet felett a tárolt energia hő formájában felszabadulhat. Tehát a felaktiválódott grafit melegítése spontán energia felszabadulást válthat ki, és például adiabatikus feltételek mellett a hőmérséklet nagyon rövid idő alatt több száz fok fölé is ugorhat. Az általános eljárás ennek a tárolt energiának a meghatározására megmérni, hogy mekkora szobahőmérsékleten, a grafit fűtőértéke. [Gra10]

4.6 ábra: A maximális tárolt energia felhalmozódása különböző besugárzási hőmérsékleteken, adott neutron fleuncia mellett [Gra10]

A fenti 4.6 ábrán jól látható, hogy ha 30° -on 5×10^{20} n/cm² nagyságú gyors neutron fluencia éri a grafitot a teljes energia, ami felhalmozódik benne 2646 J/g. Ez az energia mennyiség, megfelel a sugárzást nem szenvedett grafit hő felvételének 100 és 1500 C° között. 30 C° - n a grafitban tárolt energia maximális értékének függvénye 2730 és 2940 joule között telítésbe megy, ennél nagyobb értéket nem tud felvenni. Ahogy növekszik a

besugárzási hőmérséklet ezek a maximális értékek egyre kisebbek lesznek, majd 350C°nál feltehetőleg elhanyagolhatóan kicsi.[Gra10]

4.7 ábra: A grafitban tárolt energia mértéke különböző besugárzási hőmérséklet esetén a besugárzást jellemző fluencia függvényében [IAE07]

Mérési eredmények szerint minél magasabb a besugárzás hőmérséklete, annál kisebb a belső energia felhalmozódásának mértéke. Ezt jól szemlélteti, a 4,6 és 4,7 ábra is. Az utóbbi grafikon x-tengelyén ún. "DIDO Equivalent Dose" (EDND vagy EDN) mennyiséggel jellemzik a grafitot ért neutron fluencia nagyságát. A DIDO Eq. Dose az ⁵⁸Ni(n,p)⁵⁸Co reakciójára vonatkoztatott, 0,107x10⁻²⁴ cm² ún. dpa-hatáskeresztmetszet felhasználásával, mérés által meghatározott érték. Egy dpa-hoz tartozó fluencia a fenti reakcióra vonatkoztatva, a DIDO Eq. Dose mennyiséget felhasználva 7,62x10²⁰ n/cm² vagy ellentétes irányból megközelítve, egy EDND dpa-hatáskeresztmetszete 1,313x10⁻²¹ cm² egy target magra vonatkoztatva. [IAE07]

A Wigner-energia felhalmozódása mellett, ennek a felhalmozott energiának a kibocsájtásával is számolni kell. A felhalmozódó energia becslése nem nyújt elegendő információt, hiszen, mint már említettem ez az energia felszabadulás nagyon gyorsan lejátszódhat. Jó példa erre egy szakirodalmi forrás, miszerint a grafitot 30 C°- n sugározták be, majd ezt követően 70 C°- ra történő melegítés 400 °C-s hőmérsékletnövekedést eredményezett. A másik példa: egy grafit tömböt 150 C°- n besugároztak, a felhalmozódott Wigner –energia olyan nagy lett,

hogy egy kis hőközlés hatására is bekövetkezett az ugrásszerű hőmérsékletnövekedés, ami 2700 J/g leadott energiát jelentett. Ha ez adiabatikus körülmények között játszódott volna le, az 1500 C°- s hőmérsékletnövekedést jelentene. [IAE07]

Ha a besugárzott grafitot megfelelő melegítési sebesség mellett, a besugárzási hőmérsékletét körülbelül 50°C-kal meghaladó hőmérsékleti érték fölé hevítjük, akkor tárolt energiájának csaknem 90%-át képes normál körülmények között, egyenletesen, hő formájában leadni [IAEA11]. Ahhoz azonban, hogy az összes tárolt energiáját leadja, 2000°C-nál magasabb hőmérsékletre lenne szükséges, így a valóságban a Wigner-energiát tároló rácshibákat nem lehet teljes mértékben megszüntetni.

4.8 ábra: A Wigner-energia leadásának mértéke a hőkezelés hőmérsékletének függvényében különböző besugárzási hőmérsékletek mellett [Gal12]

Ahhoz, hogy a Wigner-effektus közvetlen a grafit égését okozza, az alábbi feltételeknek kell teljesülni. A grafit hőmérséklete el kell, érje a minimum 650 C°- t, és ezt a hőmérsékletet folyamatosan fent kell tartani. Emellett az égés fontos feltétele a megfelelő mennyiségű égési levegő mennyisége, az oxidáció fenntartásához.

4.1.3 A neutron sugárzás hatása a grafit mechanikai tulajdonságaira

4.9 ábra: Young modulus változása a neutron fluencia hatására [Gal12]

Egy anyag mechanikai tulajdonságát többek között jellemzi a rugalmassági, azaz Young modulus. Ez a tényező egy adott anyag merevségéről nyújt információt. A grafit egy rideg, törésre hajlamos anyag normál körülmények között. Szakító diagramja nem lineáris, szakító szilárdsága rendkívül alacsony. Ha neutronsugárzás éri, szakító diagramja lineárisabbá válik. Szakítószilárdsága valamint rugalmassági modulusa akár 50%-kal növelhető. A fenti 4.9 ábrán jól látható, hogy besugárzás hatására a Young modulus értéke növekszik a neutron fluencia függvényében. Az itt alkalmazott mennyiség a fluencia mértékére az úgynevezett dpa (displacement per atom) Ez egy időben állandó neutrontér esetében adott idő alatt bekövetkező atomkimozdítások számát jelöli egy target magra vonatkozóan.

4.10. táblázat: Adott energiatartományban beérkező neutronfluencia és a dpa értékek közötti konverziós tényezők grafit esetén [Bur99]

Neutronenergia-tartomány (MeV)	Konverziós tényező (dpa cm ² /n)
0,05 - 0,99	6,8E-22
0,10-0,18	7,3E-22
0,18 - 1,00	8,9E-22
1,00 -	1,45E-21

4.1.4 A termikus jellemzők változása

Az alábbi ábrán jól látható, hogy besugárzás hatására a hővezetési tényező erősen lecsökken, a grafitot ért neutron fluencia függvényében. Ez a keletkező rácshibák növekedésével magyarázható, amelyek rontják az anyag hővezető képességét. A hővezetési képesség romlása, a hőelnyelő képesség csökkenése hátrányt jelenthet üzemzavari helyzetekben.

4.10 ábra: A grafit hővezetési tényezőjének romlása a besugárzás hatására [Gal12]

4.2 Radiokémiai effektusok

A besugárzott grafit kapcsán két főbb radiokémiai jelenséget különböztetünk meg. Az egyik a grafit levegő vagy CO₂ hűtőközeg hatására bekövetkező oxidációja, a másik jelenség pedig a CO₂ hűtőközeg esetén a hűtőközegben lévő CO polimerizációja.

A kémiai oxidáció csak gáz-és levegő hűtésű zónák esetén jelentős. Üzemi hőmérsékleten ez a kémiai oxidáció leginkább a grafit pórusaira jellemző, ezért jelentős alak és méretbeli változásokról nem beszélhetünk az üzemidő során. Fogyás csak az eredeti és a besugárzott grafit tömegkülönbségében figyelhető meg.

A grafit oxidációja szobahőmérsékleten elenyésző akár gáz akár levegőhűtésről van szó. Jelentőssé 350-400 C° környékén válik csak. Az oxidáció mértékét a grafit és az oxigén közötti kémiai reakció sebessége határozza meg. Az égést gyorsíthatja egyéb más

katalizátorok jelenléte. Az oxidáció lejátszódhat a felületen, illetve a pórusokban is, ahová be tud jutni kellő mennyiségű oxigén. A hőmérséklet növekedésével az oxidáció mértéke a grafit felületén növekszik. A pórusokra ez már nem jellemző, hiszen nem tud bejutni ekkor már kellő mennyiségű oxigén.[IAE07]

Termikus oxidáció eddig csak baleset alkalmával következett be. Ilyen például a fent már említett Windscale-i reaktor esete. Baleset helyzeten kívül akkor következhetne be önfenntartó oxidáció, ha az alábbi öt kritérium teljesül [Sch17]:

- minimum 900 C° hőmérséklet elérése
- a fenti hőmérséklet folyamatos biztosítása
- az égéshez szükséges oxigénmennyiség biztosítása
- elegendő mértékű gázáram a reakciótermékek elszállítására, de ez nem hűtheti a grafit felszínét

4.3 A grafit felaktiválódás

A grafit felaktiválódása több tényezőtől is függ. A legfontosabbak a kezdeti nyomelem tartalom, a neutronfluxus energia-és térbeli eloszlása, illetve a besugárzás időtartama.

A grafit nyomelemként tartalmazhat kobaltot (⁵⁹Co). Ez az egyik olyan izotóp, amely a hosszú távú aktivitásért felelős közvetett módon. A ⁵⁹Co neutronbefogás révén ⁶⁰Co izotóppá alakul, aminek a felezési ideje 5,27 év. Régebben a gyártás technológiában alkalmaztak klórt. A klórban természetesen előforduló ³⁵Cl izotóp, aminek az aktiváció során a rendkívül hosszú, 301 000 éves felezési idejű ³⁶Cl izotóppá alakul. Pont emiatt a jelenlegi előállítási folyamatokból a klórt elkerülik. [Met18] A kezdeti lítium tartalom függvényében a ⁶Li aktivációjának eredménye a trícium (³H). A 12,32 éves felezési idejű trícium a hulladékkezelés során kibocsájtott gáz halmazállapotú aktivitásért felelős. A felaktiválódásért további szennyező izotópok is felelősek lehetnek, ezekről bővebben már szó esett a 2. fejezetben.

Izotópok		Felezési idő (T _{1/2})	Anyaelem	Természetes előfordulási gyakoriság [%]	Magreakció
1	³ H	12,33 év	⁶ Li	7,5	(n,α)
2	^{14}C	5730 év	¹³ C	1,11	(n,γ)
3	³⁶ Cl	301000 év	³⁵ Cl	75,77	(n,γ)
4	⁴⁶ Sc	83,81 nap	⁴⁵ Sc	100	(n,γ)
5	⁵⁴ Mn	312,3 nap	⁵⁴ Fe	5,845	(n,p)
6	⁵⁹ Fe	44,6 nap	⁵⁸ Fe	0,282	(n,γ)
7	⁶⁰ Co	5,271 év	⁵⁹ Co	100	(n,γ)
8	124 Sb	60,2 nap	¹²³ Sb	42,79	(n,γ)
9	¹³¹ Ba	11,8 nap	¹³⁰ Ba	0,106	(n,γ)
10	¹³³ Ba	10,51 év	¹³² Ba	0,101	(n,γ)
11	¹⁵² Eu	13,537 év	¹⁵¹ Eu	47,8	(n,γ)

^{4.1} táblázat: A felaktiválódásért felelős izotópok és főbb jellemzői

5. A BME Oktatóreaktorában található grafit bemutatása

A BME Oktatóreaktora úgynevezett medence típusú reaktor, aktív zónája maximálisan 100kW hőteljesítmény leadására képes. A hűtőközeg és a moderátor szerepét sótalanított víz látja el, ami másodsorban biológiai védelemként is szolgál. Az Oktatóreaktorban reflektorként alul és felül sótalanított vizet alkalmaznak, míg vízszintes irányban grafitot használnak, körülvéve ezzel a

zónát.[BME13]

5.1 ábra: A BME Oktatóreaktorának zónaelrendezése- zölddel jelölve a grafit reflektorok [BME13]

A $65mm \times 65mm$ keresztmetszetű, 600 mm magas grafit reflektor tömböket 1,5mm vastagságú alumínium tok veszi körül, amely tokozás megegyezik a fűtőelem-kazettákat körülvevő tokkal. Az itt alkalmazott grafit szovjet gyártmányú, sűrűsége mért adatok alapján 1,78 ± 0,02 g/cm^3 .[Czi14] Mivel pontos adatatok nem állnak rendelkezésre a grafit összetételét illetően, szükséges volt egy gamma-spketrometirás analízis ennek megállapítása céljából.

Az aktív zónán belül 41 ilyen reflektor hasáb található, ezek közül 32 darab tömör grafit hasáb, a maradék 9-ben pedig függőlegesen egy besugárzó csatorna halad keresztül. A reflektor tömbökön kívül a besugárzó alagútban is találhatóak grafit tömbök, ún. termikus oszlopot alkotva. Mivel a reflektor zónában lévő grafit tömbök és a termikus oszlop is azonos időben, a reaktor létesítésekor készültek, feltételezhetjük, hogy ugyanabból a grafitból készült mindkettő. A besugárzó alagútban található termikus grafit oszlopok egy kocsin vannak elhelyezve, így távvezérléssel mozgathatóak.

Ebben az alagútban 5 kisebb méretű grafittömb található, amelyek kísérleti célokat szolgálnak, ezeket el is lehet távolítani. A besugárzó alagútban lévő termikus oszlopok a védelem külső falától kezdve lépcsőzetesen szűkülnek befelé. A besugárzó alagút belső felülete (0,5×0,64 m²) az aktív zóna szélétől 90 mm távolságban helyezkedik el. Az Oktatóreaktorban összesen 2,75 tonna grafit található, ebből körülbelül 176 kg-ot tesznek ki a zónában található reflektor kazetták, a besugárzó alagút maga 2560 kg grafitot jelent, míg a benne lévő 5 kis méretű grafit tömb 11,1 kg-ot nyom összesen.

5.2 ábra: A besugárzó alagút elhelyezkedése [BME13]

5.3 ábra: A termikus oszlopok geometriai méretei; a 75x 1170 mm-es bevágás a kivehető grafit tömböket jelöli

6. A BME Oktatóreaktorában alkalmazott grafit reflektorok és termikus oszlopok vizsgálat felaktiválódásának vizsgálata

6.1 Alkalmazott számítás

Az ebben a fejezetben ismertetett számításaim célja az volt, hogy meghatározzam a különböző helyeken található grafitokban a neutronfluxus nagyságát. A számítások elvégzéséhez a részecske-transzport kódok közül a legelterjedtebbet, az MCNPX-et használtam. Ehhez elsőként modellezni kell a teljes aktív zónát, benne a reflektor tömbökkel, a besugárzó alagutat valamint a biológiai védelmet is kellő részletességgel. Ennek a háromdimenziós modellnek a segítségével meg lehet határozni a neutronfluxus-eloszlást mind a reflektor elemekre, mind a besugárzó alagútban lévő termikus oszlopra. A zónában lévő reflektor tömbökre úgy lehet elvégezni a számításokat, hogy minden egyes reflektort külön térfogatként kell kezelni, és ezekre a térfogatokra meghatározni az ott kialakuló átlagos neutronfluxus értékét az adott térfogatra nézve. A termikus oszlopokra pedig úgy kell elvégezni a számításokat, hogy függőleges síkokkal részekre kell osztani a termikus oszlopokat, és az így kapott egységekre meg lehet határozni a térfogatra átlagolt neutronfluxus nagyságát. Ezeket a térfogatra átlagolt fluxus értékeket úgynevezett "tally"-k segítségével lehet meghatározni.

Mivel az Oktatóreaktor kiégetettsége nagyon alacsony- kb. 0,5 MWnap/kg- ez nem befolyásolja a zónán belüli fluxus eloszlást, így a kiégéssel, az üzemanyag-összetétel változásával nem kell számolni.

6.2 A grafit reflektor elemekre vonatkozó számítási eredmények

Az MCNPX program segítségével először a zónában lévő 41 reflektor elemre határoztam meg az ott kialakuló integrális neutron fluxus értékét, illetve az egyes neutron fluxus értékeket három nevezetes energia csoportra: termikus, epitermikus és gyors neutron fluxus. Ezeknek az energia csoportoknak a határai sorrendben a következőek: 0-0,5 eV; 0,5 eV-0,5 MeV, és 0,5 MeV-20MeV. Minden egyes kapott neutronfluxus érték 100 kW nominális reaktorteljesítményre vonatkozik.

6.1 táblázat: A zónában elhelyezett grafit reflektor elemekben kialakuló integrális neutron fluxus értékek

Pozíció	Integrális neutron	Szórás [%]
	fluxus [n/cm ² s]	
A1	7,29E+11	$\pm 0,24$
A2	1,17E+12	+0,19
A3	1,65E+12	+0,16
A4	2,01E+12	+0.14
A5	2,08E+12	± 0.14
A6	1,84E+12	±0,15
A7	1,41E+12	±0,17
A8	9,24E+11	±0,22
A9	5,29E+11	±0,27
B1	1,05E+12	$\pm 0,2$
B2	1,76E+12	±0,16
B7	2,15E+12	$\pm 0,14$
B8	1,33E+12	±0,19
B9	6,94E+11	±0,24
C1	1,29E+12	±0,18
C2	2,20E+12	<u>±0,14</u>
C9	7,36E+11	±0,23
D1	1,39E+12	±0,18
D2	2,37E+12	<u>±0,14</u>
D9	7,52E+11	±0,23
E1	1,29E+12	<u>±0,18</u>
E2	2,20E+12	<u>±0,14</u>
E9	7,01E+11	±0,23
F1	1,05E+12	±0,2
F2	1,72E+12	<u>±0,16</u>
F9	5,86E+11	±0,26
G1	7,41E+11	±0,24
G2	1,16E+12	±0,2
G3	1,57E+12	<u>±0,19</u>
G7	1,38E+12	<u>±0,18</u>
G8	8,90E+11	±0,23
G9	4,83E+11	±0,29
H1	4,53E+11	±0,29
H2	6,75E+11	±0,25
H3	8,60E+11	<u>±0,21</u>
H4	1,03E+12	<u>±0,19</u>
H5	1,21E+12	<u>±0,17</u>
H6	1,01E+12	<u>±0,2</u>
H7	7,91E+11	±0,23
H8	5,58E+11	±0,27
H9	3,37E+11	$\pm 0,34$

Α	В	C	D	E	F	G	н	
7,29E+11	1,05E+12	1,29E+12	1,39E+12	1,29E+12	1,05E+12	7,41E+11	4,53E+11	1
1,17E+12	1,76E+12	2,20E+12	2,37E+12	2,20E+12	1.72345E+12	1,16E+12	6,75E+11	2
1,65E+12						1,57E+12	8,60E+11	3
2,01E+12							1,03E+12	4
2,08E+12						CSP	1,21E+12	5
1,84E+12							1,01E+12	6
1,41E+12	2,15E+12					1,38E+12	7,91E+11	7
9,24E+11	1,33E+12					8,90E+11	5,58E+11	8
5,29E+11	6,94E+11	7,36E+11	7,52E+11	7,01E+11	5,86E+11	4,83E+11	3,37E+11	9

6.2 táblázat: Az integrális neutron fluxus értékek zónarajzon feltüntetve

A színek az alábbiakat jelölik az ábrán:

- zöld mezők: grafit reflektorok
- sárga mezők: üzemanyagot tartalmazó kazetták
- kék mezők: vizes csatornák
- barna mező: csőposta (CSP)

Pozíció	Termikus fluxus [n/cm ² s]	Szórás [%]	Epitermikus fluxus [n/cm ² s]	Szórás [%]	Gyors fluxus [n/cm ² s]	Szórás [%]
A1	5,23E+11	<u>+0,27</u>	1,51E+11	<u>+0,43</u>	5,48E+10	<u>+</u> 0, 57
A2	7,42E+11	<u>+0,24</u>	3,09E+11	<u>+</u> 0, 31	1,22E+11	±0,38
A3	8,98E+11	<u>+0,22</u>	5,07E+11	<u>+</u> 0, 24	2,41E+11	±0,27
A4	9,79E+11	<u>+</u> 0,21	6,81E+11	<u>+</u> 0, 2	3,46E+11	±0,23
A5	9,97E+11	<u>+0,2</u>	7,18E+11	<u>+</u> 0, 2	3,64E+11	$\pm 0,22$
A6	9,25E+11	<u>±0, 21</u>	6,15E+11	<u>±0, 21</u>	3,04E+11	±0, 24
A7	8,07E+11	<u>+</u> 0, 23	4,19E+11	<u>±</u> 0, 27	1,79E+11	±0, 32
A8	6,11E+11	<u>±</u> 0, 26	2,26E+11	<u>+</u> 0, 36	8,72E+10	±0,46
A9	3,95E+11	<u>+</u> 0, 31	9,69E+10	<u>±</u> 0, 54	3,68E+10	<u>±0, 69</u>
B1	6,91E+11	<u>±</u> 0, 24	2,66E+11	<u>+</u> 0, 33	9,52E+10	±0,43
B2	9,40E+11	±0, 22	5,65E+11	<u>+</u> 0, 23	2,53E+11	±0,27
B7	9,67E+11	<u>±</u> 0, 21	7,71E+11	<u>+</u> 0, 19	4,06E+11	±0, 21
B8	8,05E+11	<u>±</u> 0, 24	3,62E+11	<u>±0.29</u>	1,59E+11	±0,34
B9	5,00E+11	<u>+</u> 0, 28	1,37E+11	<u>+</u> 0, 46	5,62E+10	<u>±0,56</u>
C1	8,09E+11	<u>+</u> 0, 23	3,53E+11	<u>+</u> 0, 29	1,30E+11	<u>±</u> 0, 37
C2	1,05E+12	<u>+</u> 0, 21	7,79E+11	<u>±</u> 0, 2	3,66E+11	<u>±0,22</u>
C9	5,48E+11	<u>+</u> 0, 26	1,26E+11	<u>+</u> 0, 43	6,12E+10	<u>±0, 52</u>
D1	8,55E+11	<u>+</u> 0, 22	3,88E+11	<u>+</u> 0, 28	1,43E+11	<u>±0,35</u>
D2	1,12E+12	<u>+</u> 0, 2	8,52E+11	<u>+</u> 0, 19	4,04E+11	<u>±0, 21</u>
D9	5,64E+11	<u>+</u> 0, 25	1,23E+11	<u>+</u> 0, 43	6,54E+10	±0, 5
E1	8,08E+11	<u>+</u> 0, 23	3,56E+11	<u>+</u> 0, 29	1,31E+11	<u>±</u> 0, 37
E2	1,05E+12	<u>+</u> 0, 21	7,79E+11	<u>±</u> 0, 2	3,69E+11	<u>±0, 22</u>
E9	5,25E+11	<u>+</u> 0, 26	1,14E+11	<u>+</u> 0, 45	6,13E+10	<u>+</u> 0, 51
F1	6,84E+11	<u>+</u> 0, 25	2,68E+11	<u>+</u> 0,33	9,79E+10	<u>±0,43</u>
F2	8,98E+11	<u>+</u> 0, 22	5,64E+11	<u>+</u> 0, 23	2,61E+11	<u>±</u> 0, 27
F9	4,40E+11	<u>+</u> 0, 29	9,74E+10	<u>+</u> 0, 49	4,87E+10	<u>±</u> 0, 58
G1	5,19E+11	<u>+</u> 0, 28	1,64E+11	<u>+</u> 0, 42	5,82E+10	<u>+</u> 0, 56
G2	7,22E+11	<u>+</u> 0, 25	3,13E+11	<u>+</u> 0, 31	1,27E+11	<u>±</u> 0, 38
G3	7,60E+11	<u>±</u> 0, 23	3,65E+11	<u>±</u> 0, 3	1,66E+11	±0, 37
G7	7,68E+11	<u>±</u> 0, 24	4,01E+11	<u>±</u> 0, 27	2,13E+11	±0, 29
G8	5,73E+11	<u>±</u> 0, 28	2,17E+11	±0,0037	1,00E+11	±0, 43
G9	3,59E+11	<u>±</u> 0, 33	8,76E+10	$\pm 0,0058$	3,72E+10	±0, 69
H1	3,47E+11	±0,33	7,83E+10	<u>±0,006</u>	2,79E+10	<u>±</u> 0, 8
H2	4,88E+11	<u>±</u> 0, 28	1,36E+11	<u>±0,0046</u>	5,13E+10	±0, 59
H3	6,21E+11	<u>±</u> 0, 24	1,67E+11	<u>+0,0038</u>	7,13E+10	±0,48
H4	7,34E+11	<u>±</u> 0, 22	2,05E+11	±0,0033	9,59E+10	±0, 41
H5	7,82E+11	<u>±0, 21</u>	2,87E+11	±0,0028	1,41E+11	<u>±0,34</u>
H6	7,03E+11	<u>±0, 23</u>	2,06E+11	±0,0033	9,64E+10	<u>±0, 41</u>
H7	5,47E+11	±0, 27	1,70E+11	±0,0041	7,43E+10	±0, 49
H8	3,99E+11	<u>±0, 31</u>	1,13E+11	±0,0051	4,63E+10	±0,62
H9	2,60E+11	$\pm 0,37$	5,49E+10	$\pm 0,0072$	2,21E+10	$\pm 0, 9$

6.3 táblázat: A reflektorokban kialakuló neutronfluxus értékek három energiacsoportra nézve

A 6.2 és 6.3 táblázat alapján jól lehet látni, hogy a legkisebb neutron fluxus érték a H9 pozíciójú sarok kazettában alakul ki, az integrális fluxus minimális értéke itt: 3,37 x 10^{11} n/cm²s. Míg a legterheltebb kazetta D2 pozíciójú grafittömb,a fluxus értéke: 2,37x 10^{12} n/cm²s. Látható, hogy a reflektorokat érő neutronfluxus értékek azonos nagyságrendbe esnek, illetve sehol sem jött ki a reaktor maximális neutronfluxusánál nagyobb érték (2.7×10^{12} n/cm²s).

A felaktiválódás szempontjából a termikus neutronfluxus értéke a meghatározó. A legnagyobb ilyen érték: $1,12x10^{12}$ n/cm²s a D2 pozíciójú reflektorban. A minimális termikus neutronfluxus a H9 pozícióban lévő reflektorban alakul ki: $2,60x10^{11}$ n/cm²s. A legnagyobb gyors neutronfluxus, szintén a D2- es pozíciójú kazettában alakul ki: $4,04x10^{11}$ n/cm²s.

Neutronspektrumok alakulása a reflektor tömbökben

A következő néhány ábrán a grafit reflektorban kialakuló neutron spektrumot láthatjuk. Négy különböző pozíciójú tömbre ábrázoltam neutron fluxus alakulását az energia függvényében, széles energiatartományban: 10⁻⁹ MeV –től kezdődően egészen 20MeV –ig, hogy kellően finom legyen a felvett spektrum.

A 6.7 számú ábrán látható, hogy a B7 pozíciójú reflektor spektrumában a gyors neutronokat tartalmazó Watt-spektrum csúcsa majdnem eléri a termikus neutronokat tartalmazó Maxwellcsúcsot. A leglágyabb spektrum egy, a zónától távol lévő tömbben alakul ki, itt a legalacsonyabb a Watt-spektrum csúcsa. (H1 zónapozíció). Ez azzal magyarázható, hogy ez a tömb távol helyezkedik el az aktív zónától, illetve víz és más reflektor tömbök veszik körül alulról és felülről is. A 6.6–s ábrán egy olyan reflektor spektruma van, aminek a közepén csatorna halad át (D9-es zónapozíció). Itt is majdnem eléri a Watt-spektrum csúcsa a termikus neutronok spektrumának csúcsát. A 6.5-os ábrán egy olyan kazetta van, ami egy üzemanyag kazetta és a tartály fala között helyezkedik el. Már itt is megfigyelhető a spektrum lágyulása a B7-es pozícióban kialakulóéhoz képest. (A5)

6.4 ábra: Sarokban lévő reflektor kazetta

6.5 ábra: Tartály fal és üzemanyag kazetta közötti reflektor tömb

6.6 ábra: Tartály fal melletti, közepén vizes csatornás reflektor kazetta

6.7 ábra: Üzemanyag kazetták veszik körbe a reflektort

A következőkben az egyes reflektorokat ért neutron fluenciákat számítottam ki az elmúlt 42 éves reaktorüzemre vonatkoztatva. Az Oktatóreaktorban 2013-ig mindösszesen 511 000 kWh energia szabadult fel. A fluencia értékek meghatározása elengedhetetlen ahhoz, hogy meg tudjuk mondani milyen változások mehettek végbe a grafit szerkezetében.

pozíció Neutron fluencia		pozíció	Neutron fluencia
	$[n/cm^2]$		$[n/cm^2]$
A1	1,305E+19	E1	2,319E+19
A2	2,100E+19	E2	3,940E+19
A3	2,949E+19	E9	1,255E+19
A4	3,592E+19	F1	1,880E+19
A5	3,725E+19	F2	3,086E+19
A6	3,301E+19	F9	1,050E+19
A7	2,517E+19	G1	1,327E+19
A8	1,654E+19	G2	2,082E+19
A9	9,476E+18	G3	2,817E+19
B1	1,885E+19	G7	2,474E+19
B2	3,147E+19	G8	1,595E+19
B7	3,842E+19	G9	8,658E+18
B8	2,376E+19	H1	8,115E+18
B9	1,242E+19	H2	1,209E+19
C1	2,314E+19	H3	1,539E+19
C2	3,935E+19	H4	1,853E+19
C9	1,318E+19	H5	2,166E+19
D1	2,481E+19	H6	1,800E+19
D2	4,247E+19	H7	1,417E+19
D9	1,346E+19	H8	9,998E+18
		H9	6,039E+18

6.8 táblázat: A különböző zónapozícióban elhelyzett reflektorokban kialakulú integrális neutron fluencia értékek az elmúlt 42 évre számolva

6.9 ábra: Az egyes integrális neutron fluenciák zónarajzon feltüntetve

	Н	G	F	E	D	С	В	Α
1	8,12E+18	1,33E+19	1,88E+19	2,32E+19	2,48E+19	2,31E+19	1,88E+19	1,31E+19
2	1,21E+19	2,08E+19	3,09E+19	3,94E+19	4,25E+19	3,94E+19	3,15E+19	2,10E+19
3	1,54E+19	2,82E+19						2,95E+19
4	1,85E+19							3,59E+19
5	2,17E+19	CSP						3,72E+19
6	1,80E+19							3,30E+19
7	1,42E+19	2,47E+19					3,84E+19	2,52E+19
8	1,00E+19	1,59E+19					2,38E+19	1,65E+19
9	6,04E+18	8,66E+18	1,05E+19	1,25E+19	1,35E+19	1,32E+19	1,24E+19	9,48E+18

A színek az alábbiakat jelölik az ábrán:

- zöld mezők: grafit reflektorok
- sárga mezők: üzemanyagot tartalmazó kazetták
- kék mezők: vizes csatornák
- barna mező: csőposta (CSP)

6.10 táblázat: Az egyes reflektor elemekre számított, különböző energiájú neutron fluenciák értéke

Pozíció	Termikus neutron	Epitermikus	Gyors neutron fluencia
fluencia [n/cm ²]		neutron fluencia	$[n/cm^2]$
		$[n/cm^2]$	
A1	9,372E+18	2,701E+18	9,811E+17
A2	1,328E+19	5,529E+18	2,190E+18
A3	1,609E+19	9,086E+18	4,315E+18
A4	1,753E+19	1,219E+19	6,195E+18
A5	1,786E+19	1,286E+19	6,525E+18
A6	1,657E+19	1,101E+19	5,436E+18
A7	1,445E+19	7,511E+18	3,206E+18
A8	1,094E+19	4,041E+18	1,562E+18
A9	7,081E+18	1,736E+18	6,594E+17
B1	1,238E+19	4,764E+18	1,704E+18
B2	1,683E+19	1,011E+19	4,524E+18
B7	1,732E+19	1,381E+19	7,278E+18
B8	1,442E+19	6,490E+18	2,848E+18
B9	8,957E+18	2,460E+18	1,006E+18
C1	1,449E+19	6,330E+18	2,323E+18
C2	1,885E+19	1,394E+19	6,558E+18
C9	9,822E+18	2,264E+18	1,096E+18
D1	1,530E+19	6,947E+18	2,558E+18
D2	1,999E+19	1,525E+19	7,226E+18
D9	1,009E+19	2,201E+18	1,171E+18
E1	1,447E+19	6,370E+18	2,350E+18
E2	1,884E+19	1,396E+19	6,601E+18
E9	9,400E+18	2,048E+18	1,098E+18
F1	1,225E+19	4,803E+18	1,754E+18
F2	1,608E+19	1,010E+19	4,682E+18
F9	7,881E+18	1,744E+18	8,723E+17
G1	9,293E+18	2,930E+18	1,042E+18
G2	1,293E+19	5,610E+18	2,278E+18
G3	1,360E+19	6,544E+18	2,979E+18
G7	1,375E+19	7,181E+18	3,814E+18
G8	1,026E+19	3,890E+18	1,794E+18
G9	6,423E+18	1,568E+18	6,668E+17
H1	6,212E+18	1,403E+18	5,003E+17
H2	8,731E+18	2,443E+18	9,187E+17
H3	1,112E+19	2,991E+18	1,276E+18
H4	1,314E+19	3,673E+18	1,718E+18
H5	1,400E+19	5,139E+18	2,518E+18
H6	1,258E+19	3,691E+18	1,726E+18
H7	9,797E+18	3.038E+18	1,330E+18
H8	7,142E+18	2,027E+18	8,285E+17
H9	4,659E+18	9,830E+17	3,966E+17

A Wigner- energia szempontjából a gyors neutron fluencia értéke a meghatározó. A fenti táblázatból (6.10 táblázat) láthatjuk, hogy a legnagyobb gyors neutronfluencia érték a legterheltebb D2 pozíciójú kazettában alakul ki, értéke: 7,226E+18 n/cm². A gyors neutron fluencia 10¹⁹ n/cm² értéknél nem lesz nagyobb a számítások szerint. A besugárzás átlagos hőmérséklete az Oktatóreaktorban 30°C körül van. Ezen adatok alapján, illetve a 4.6 ábra segítségével megállapítható, hogy a grafit reflektorok szerkezetében felhalmozódott energia maximális értéke néhány 100 J/g -ra becsülhető. Igaz, hogy a besugárzási hőmérséklet 30 C° és a 4.3 ábra alapján azt mondhatnánk, hogy a lehető legtöbb energia tárolódik a grafit szerkezetében, a gyors neutron fleuncia értéke még sem éri kell a küszöb értékét. A szakirodalomban levont következtetések alapján a Wigner-effektusnak alacsony hőmérsékletű besugárzás esetén (<70 C°) 3,5x10¹⁹ n/cm² fluencia érték alatt nincs jelentősége. [Sch17] Így megállapíthatjuk, hogy a Wigner- effektus bekövetkezésének lehetőségével nem kell komolyabban számolni a hulladékkezelés során. Ez nem jelenti azt, hogy egyáltalán nem kell ezzel a jelenséggel foglalkozni. Például darabolás, aprítás esetén figyelembe kell venni, hogy ezek a grafit hőmérsékletét növelik, illetve a hővezetési tényező értéke is romlik (ez látható a 4.2.1 -s ábrán) Ezek együttesen okozhatják a belső energia gyors leadását, de mint ahogy már fent is olvasható, ennek a jelenségnek nincs komoly veszélye az Oktatóreaktorban lévő grafitot illetően.

A 4.1.1 alfejezetben ismertetett diagramok alapján látható, hogy a térbeli változások mértéke 10^{20} n/cm² gyors neutron fluxus mellett kezdenek jelentkezni. Mivel a legnagyobb ilyen gyors neutron fluencia érték sem éri ezt a határt el, a méretbeli változásokkal nem kell számolni, a grafit reflektorok élettartamát ez a jelenség nem rövidíti.

6.3 A besugárzó alagútban lévő termikus oszlopok vizsgálata

Mint már említettem, ahhoz, hogy a besugárzó alagútban található termikus oszlopokat kisebb egységekre kellett felosztani, és ezekre az egységekre kiszámolni az ott kialakuló integrál neutronfluxus értékeket, illetve a neutron fluenciákat.

A termikus oszlop felosztása az alábbi ábrákon látható:

6.11 ábra: A termikus oszlop függőleges metszete

6.12 ábra: Az Oktatóreaktor vízszintes metszeti rajza

6.13 ábra: Az integrális neutronfluxus alakulása a besugárzó alagút belsejében

6.14 táblázat: Az integrális neutronfluxus értékek táblázatosan összefoglalva

Belső oldaltól	Integrális	Szórás
mért távolság	neutron	[%]
[cm]	fluxus	
	$[n/cm^2s]$	
10	1,72E+10	<u>±0,3</u>
20	1,05E+10	<u>+</u> 0,43
30	6,36E+09	<u>+</u> 0,53
40	3,79E+09	±0,63
50	2,25E+09	<u>+</u> 0,75
59	1,39E+09	<u>+</u> 0,91
69	6,35E+08	<u>+</u> 1,18
79	4,13E+08	<u>+</u> 1,24
89	2,66E+08	<u>+</u> 1,35
99	1,70E+08	<u>+</u> 1,53
109	1,09E+08	<u>+</u> 1,77
121	6,79E+07	<u>+</u> 2,07
131	3,52E+07	<u>+</u> 2,81
141	2,36E+07	<u>+</u> 2,93
151	1,59E+07	<u>+</u> 3,52
161	1,08E+07	<u>+</u> 5,03
171	7,69E+06	<u>+</u> 8,68
182,5	5,81E+06	<u>+</u> 15,73

6.15 ábra: A különböző energiájú neutron fluxusok alakulása a besugárzó alagútban

6.16 táblázat: A különböző energiájú neutron fluxus értékek táblázatosan a besugárzó alagútban

Belső						
oldaltól	Termikus	Szórás	Epitermikus	Szórás	Gyors	Szórás
mért	neutron fluxus	[%]	fluxus	[%]	fluxus	[%]
távolság	$[n/cm^2s]$		$[n/cm^2s]$		$[n/cm^2s]$	
[cm]						
10	1,22E+10	<u>+</u> 0,33	3,37E+09	0,56	1,56E+09	<u>+</u> 0,56
20	7,67E+09	<u>±0,47</u>	2,20E+09	0,73	6,59E+08	<u>+</u> 0,77
30	4,89E+09	<u>+</u> 0,57	1,22E+09	0,85	2,57E+08	<u>+</u> 1,03
40	3,10E+09	<u>+</u> 0,66	5,93E+08	1,02	9,91E+07	<u>+</u> 1,36
50	1,95E+09	<u>+</u> 0,78	2,68E+08	1,3	4,01E+07	<u>+</u> 1,92
59	1,26E+09	<u>±0,94</u>	1,21E+08	1,78	1,68E+07	<u>+</u> 2,61
69	5,92E+08	<u>±1,2</u>	3,80E+07	2,74	5,47E+06	<u>+</u> 4,29
79	3,94E+08	±1,25	1,63E+07	2,98	2,27E+06	<u>+</u> 4,52
89	2,58E+08	<u>+</u> 1,36	7,03E+06	3,82	9,70E+05	<u>+</u> 5,19
99	1,67E+08	<u>+</u> 1,54	2,94E+06	5,63	4,30E+05	<u>+</u> 6,51
109	1,08E+08	<u>+</u> 1,77	1,31E+06	8,82	1,86E+05	<u>+</u> 6,56
121	6,73E+07	<u>+</u> 2,07	4,80E+05	7,92	7,80E+04	<u>+</u> 7,15
131	3,50E+07	<u>+</u> 2,81	1,63E+05	19,7	2,47E+04	<u>+</u> 8,42
141	2,35E+07	<u>+</u> 2,93	8,67E+04	32,37	1,25E+04	<u>+</u> 9,97
151	1,58E+07	<u>+</u> 3,53	3,38E+04	23,92	5,87E+03	<u>+</u> 11,39
161	1,08E+07	<u>+</u> 5,03	1,43E+04	16,88	2,96E+03	<u>+</u> 12,13
171	7,68E+06	<u>+</u> 8,69	6,26E+03	13,39	1,45E+03	<u>+</u> 13,91
182,5	5,81E+06	<u>+</u> 15,73	1,99E+03	12,67	5,94E+02	<u>+</u> 16,58

6.17 táblázat: A besugárzó alagútra számolt neutron fluencia értékek különböző energiákra az elmúlt 42 évre vonatkoztatva

Belsőoldaltól	Termikus	Epitermikus	Gyors neutron
mért távolság	neutron	neutron	fluencia
[cm]	fluencia	fluencia	$[n/cm^2]$
	$[n/cm^2]$	$[n/cm^2]$	
10	2,19E+17	6,04E+16	2,80E+16
20	1,37E+17	3,94E+16	1,18E+16
30	8,76E+16	2,18E+16	4,60E+15
40	5,55E+16	1,06E+16	1,77E+15
50	3,48E+16	4,80E+15	7,18E+14
59	2,25E+16	2,17E+15	3,00E+14
69	1,06E+16	6,80E+14	9,79E+13
79	7,05E+15	2,92E+14	4,07E+13
89	4,62E+15	1,26E+14	1,74E+13
99	2,99E+15	5,26E+13	7,69E+12
109	1,93E+15	2,34E+13	3,33E+12
121	1,21E+15	8,60E+12	1,40E+12
131	6,28E+14	2,92E+12	4,43E+11
141	4,21E+14	1,55E+12	2,25E+11
151	2,83E+14	6,06E+11	1,05E+11
161	1,93E+14	2,55E+11	5,31E+10
171	1,38E+14	1,12E+11	2,59E+10
182,5	1,04E+14	3,57E+10	1,06E+10

A termikus oszlopokban kialakuló integrális neutron fluxus értékek lecsengését a 4.14 ábra szemlélteti. A maximális neutron fluxus értéke -1,72 x 10^{10} n/cm²s.

A 4.15 ábrán látható, ahogy a három különböző energia tartományú neutron fluxus folyamatosan csökken a legbelső felülettől a legkülsőig.

A gyors neutronfluencia maximális értéke a termikus oszlopban $2,8x10^{16}$ n/cm². Mivel sem a Wigner-effektus küszöb értékét ($3,5x10^{19}$ n/cm²), sem a térbeli változásokhoz szükséges küszöb értéket (10^{20} n/cm²) nem éri el, a termikus oszlop esetén egyik jelenséggel sem kell számolni a későbbiekben a hulladékkezelés során.

6.4 A termikus oszlopból kivett grafit hasáb gamma-spektrometriás mérése

Mint már említettem a gamma-spektrometriás analízisre azért volt szükség, mert nem álltak rendelkezésre pontos adatok a grafit összetételét illetően. Erre a mérésre azért volt lehetőség, mert a besugárzó alagútból a termikus oszlop és így a benne lévő 5 kisebb méretű grafit tömb eltávolítható. A besugárzó alagútban 5 egyforma 7,3 x 7,3 cm keresztmetszetű, de eltérő hosszúságú grafit tömb található. Ezeknek hossza sorrendben, az alagút bejárata felől a következő: 50 cm; 10cm; 14,5cm; 15cm; és végül a legbelső 28cm hosszú. Ezek közül a tömbök közül sorrendben a negyediket, az aktív zónához második legközelebbit, vizsgáltuk meg, a 15 cm hosszú tömböt, a neutron aktivációs analízis során. Miután eltávolítottuk a besugárzó alagútból a grafit tömböt, egy nagy tisztaságú germániumos (HPGe) félvezető detektor fölé helyeztük el egy alacsony hátterű kamrába. A mérés ideje 300 000 s volt. A detektor üreges kialakítású (well-típusú). A Ge kristály méretei 54 mm átmérő, 52,5 mm hosszúság. A benne lévő üreg 35 mm mély és 21,5 mm átmérőjű. A háttér megállapítása érdekében ugyanilyen hosszú mérést végeztünk el előtte. A kapott spektrum kiértékeléséhez a Genie programot használtuk.

Izotóp	Felezési
	idő- T _{1/2}
^{187}W	24 óra
¹³³ Ba	7,5 év
¹³¹ Ba	11,5 nap
⁵⁴ Mn	291 nap
¹⁵² Eu	12,2 év
⁴⁶ Sc	83,9 nap
⁵⁶ Mn	2,58 óra
⁵⁹ Fe	45,1 nap
⁶⁰ Co	5,24 év
¹²⁴ Sb	60,9 nap

6.18 táblázat: A spektrometriai elemzéssel megtalált izotópok és felezési idejük

A fenti táblázatban azokat az izotópokat foglaltam össze, amelyeknek viszonylag nagy felezési idejük van.(nagyobb, mint 10 nap) Ezek közül csak azok fontosak a hulladékkezelés szempontjából, amelyek több éves felezési idővel rendelkeznek: Eu¹⁵², Co⁶⁰, Ba¹³³, Mn⁵⁴.

Mivel nem állt rendelkezésre a detektor energiafüggő hatásfoka, ezt a problémát úgy lehetett kiküszöbölni, hogy elkészítettük a mérési elrendezés modelljét az MCNPX program segítségével, így kiszámíthatóvá vált ez az energiafüggő hatásfok.

6.19 ábra: A mérési elrendezés MCNPX modellje

A modell segítségével meghatároztam a detektor hatásfokát 20 energia értéknél 0,05 MeV-től 3MeV-ig, amire a következő eredmény adódott a detektor hatásfokának energiafüggésére.

6.20 ábra: A detektor-grafit hasáb elrendezés energiafüggő hatásfoka

Ahhoz, hogy a spektrum elemzés által megállapított energiákhoz hatásfok értékeket tudjunk rendelni, meg kellett állapítani az illesztett görbe egyenletét. Úgy illesztettem harmadfokú polinomot, hogy vettem az energiák logaritmusát majd ehhez értékpárként a számított hatásfokok értékének logaritmusát, és erre illesztettem görbét az Origin nevű program segítségével.

6.21 ábra: Az illesztett harmadfokú polinom-"x" tengelyen az energiák logaritmusa; "y" tengelyen a hatásfok értékek logaritmusa

Erre a fent látható görbére az illesztett harmadfokú polinom függvénye:

(1)
$$y = -7,19839 + (-0,84743) \times x + (0,06379) \times x^2 + (0,05201) \times x^3$$

x: Adott energia érték természetes alapú logaritmusa

y: logaritmikusan detektor hatásfok érték

A grafit hasábra végzett mérést az így kapott hatásfokokkal lehet kiértékelni. A grafitban kimért különböző radioizotópok energiavonalainak energiájával, az ehhez tartozó gammagyakoriság értékekből, az energiavonalakhoz tartozó csúcsterületekből és ezek szórásából ki lehet számítani a kimért radioizotópok abszolút aktivitásának értékét. A kapott eredményeket, aktivitás értékeket a 6.22 táblázatban foglaltam össze.

Aktivitás értékének számítása, ha a felezési idő jóval nagyobb, mint a mérés ideje:

(2)
$$A = \frac{N}{t_{m\acute{e}r\acute{e}s} \times \eta_{detektor} \times k_{\gamma}}$$

Ha a mérés időtartama nagyobb, mint a mért izotóp felezési ideje, bomlás korrekció szükséges. Mivel a kimért izotópok felezési ideje jóval nagyobb, mint a mérés ideje, azért alkalmazható volt az összefüggés, az egyes energiacsúcsokhoz tartozó "részaktivitások" számításához.

A: aktivitás [Bq] N: adott energiához tartozó csúcsterület [beütés szám] $\eta_{detektor}$: adott energiához tartozó detektor hatásfok k_{γ} : gamma gyakoriság [%] $t_{mérés}$: 300 000 sec.

Abszolút aktivitás értékének meghatározása:

(3)
$$A_{abszolút} = \frac{\sum_{s_i^2}^{A_i}}{\sum_{s_i^2}^{1}}$$

Ai: adott energiacsúcshoz számolt aktivitás [Bq]

si: csúcsterülethet tartozó szórás [%]

(00)	1111 1	A C.	1 /1		1 /		/ / 1	1 /	, .
んノノキ	ahlazat	A oratif	hasah	oamma-si	nektrom	etrias	meresnek	eredme	nvei
0.22 1	uoluzut.	a grant	nusuo	Summa S		ourus			JII Y 01

Izotóp	Energia [keV]	kγ [%]	Csúcsterület [beütés] Szórás [%		Aktivitás [Bq] (súlyozott átlag)
	123,73	32,0	1,53E+05	1,4	
Ba-131	216,05	21,0	1,08E+05	0,6	329,2
	373,15	13,0	4,88E+04	0,9	
	496,3	41,0	1,36E+05	0,4	
Do 122	81,01	36,0	3,52E+04	2,5	251.7
Da-155	302,71	19,6	2,25E+04	1,9	231,7
	355,86	67,0	6,64E+04	1,5	
	121,78	33,2	1,60E+04	0,5	
	344,27	31,4	5,47E+03	6,9	
Eu-152	778,85	15,2	1,38E+03	7,1	921,4
	964	17,3	2,36E+03	6,2	
	1407,92	24,3	2,33E+03	5,3	
Mn-54	834,81	99,97	1,43E+05	0,3	834,0
Ea 50	1099,27	56,0	1,04E+04	1,9	1220.0
ге-39	1291,58	44,0	7,06E+03	2	1230,9
Co 60	1173,23	99,88	4,61E+04	0,3	1250.0
0-00	1332,52	100	4,27E+04	0,6	1239,0
	602,71	98,1	1,07E+04	2,5	
Sb-124	722,78	10,8	1,09E+03	2,5	778,8
	1691,04	50	4,33E+03	2,6	
So 16	889,3	100	1,21E+04	1,1	1007.8
30-40	1120,5	100	1,18E+04	1,7	1007,8

A 6.23 táblázatban a hulladékkezelés szempontjából fontosnak ítélt, hosszú felezési idejű izotópokat foglaltam össze, azok kimért energiavonalaival, az ezekhez tartozó gamma-

gyakoriság értékekkel, a mért csúcsterületekkel és az ezekhez tartozó szórás értékekkel. Valamint az ezekkel meghatározott abszolút aktivitás értékekkel. A 2. fejezetben említett trícium és ¹⁴C azért nem mutathatóak ki ezzel a mérési eljárással, mert ezek tisztán β - bomlóak.

A fajlagos aktivitás értékek a mért grafit hasáb tömegét figyelembe véve kiszámítható:

 $m_{minta}\!\!=\!\!1423~g$

Izotóp	Fajlagos aktivitás (Bq/g)
Ba ¹³³	0,177
Mn ⁵⁴	0,648
Eu ¹⁵²	0,587
Co^{60}	0,884

6.23 táblázat: Fajlagos aktivitás értékek

A radioaktív hulladékkezlés szempontjából fontos a fajlagos aktivitás értékének ismerete minden egyes grafit tömbre. Ezt úgy lehet meghatározni, hogy kiszámoljuk mekkora neutronfluxus érte a termikus oszlopban elhelyezett grafit hasábot. Mivel feltételezhetően azonos a nyomelem tartalom minden egyes grafitot tartalmazó elemben, illetve azonos a neutron fluxus időfüggése is az aktív zóna és a termikus oszlop grafitja esetében, elég a grafit hasábra nézve kiszámítani a neutron fluxus értékét. Így a korábbi fejezetekben meghatározott termikus neutronfluxus értékekkel aránypárt képezve megadható bármelyik elem fajlagos aktivitása.

A vizsgált grafit tömb elhelyezkedése a számításhoz alkalmazott modellben:

6.24 ábra: Függőleges metszet

6.25 ábra: Vízszintes metszet:

100 kW-os nominális teljesítmény mellett számításaim alapján a fenti elrendezésnek megfelelően elhelyezett grafit hasáb az alábbi neutron fluxusokat érzékeli: $1,62 \cdot 10^8$ n/cm²s termikus, $1,60 \cdot 10^6$ n/cm²s epitermikus és $2,76 \cdot 10^5$ n/cm²s gyorsneutron-fluxust.

A kapott aktivitáskészlet a BME Oktatóreaktorában az egyes grafit elemekre:

6.26. ta	áblázat.	A grafit reflektorok	várható fajlago	s és teljes	aktivitása az	: Oktatóreaktor
leállítá	sakor					

Pozíció	Fa	ajlagos akt	tivitás (Bq/	/g)		Aktivit	ás (Bq)	
	Ba133	Mn54	Eu152	Co60	Ba133	Mn54	Eu152	Co60
A1	5,71E2	2,09E3	1,90E3	2,85E3	2,58E6	9,44E6	8,55E6	1,29E7
A2	8,11E2	2,97E3	2,69E3	4,05E3	3,66E6	1,34E7	1,21E7	1,83E7
A3	9,81E2	3,59E3	3,25E3	4,90E3	4,43E6	1,62E7	1,47E7	2,21E7
A4	1,07E3	3,92E3	3,55E3	5,34E3	4,83E6	1,77E7	1,60E7	2,41E7
A5	1,09E3	3,99E3	3,61E3	5,44E3	4,91E6	1,80E7	1,63E7	2,45E7
A6	1,01E3	3,70E3	3,35E3	5,05E3	4,56E6	1,67E7	1,51E7	2,28E7
A7	8,82E2	3,23E3	2,92E3	4,40E3	3,98E6	1,46E7	1,32E7	1,99E7
A8	6,68E2	2,44E3	2,21E3	3,33E3	3,01E6	1,10E7	9,99E6	1,50E7
A9	4,32E2	1,58E3	1,43E3	2,16E3	1,95E6	7,13E6	6,46E6	9,73E6
B1	7,55E2	2,76E3	2,50E3	3,77E3	3,41E6	1,25E7	1,13E7	1,70E7
B2	1,03E3	3,76E3	3,41E3	5,13E3	4,63E6	1,70E7	1,54E7	2,31E7
B7	1,06E3	3,87E3	3,50E3	5,28E3	4,77E6	1,75E7	1,58E7	2,38E7
B8	8,80E2	3,22E3	2,92E3	4,39E3	3,97E6	1,45E7	1,32E7	1,98E7
B9	5,46E2	2,00E3	1,81E3	2,73E3	2,46E6	9,02E6	8,17E6	1,23E7
C1	8,84E2	3,24E3	2,93E3	4,41E3	3,99E6	1,46E7	1,32E7	1,99E7
C2	1,15E3	4,20E3	3,80E3	5,73E3	5,18E6	1,90E7	1,72E7	2,59E7
C9	5,99E2	2,19E3	1,99E3	2,99E3	2,70E6	9,89E6	8,96E6	1,35E7
D1	9,34E2	3,42E3	3,10E3	4,67E3	4,21E6	1,54E7	1,40E7	2,11E7
D2	1,22E3	4,48E3	4,06E3	6,11E3	5,52E6	2,02E7	1,83E7	2,76E7

D9	6,16E2	2,26E3	2,04E3	3,08E3	2,78E6	1,02E7	9,22E6	1,39E7
E1	8,83E2	3,23E3	2,93E3	4,41E3	3,98E6	1,46E7	1,32E7	1,99E7
E2	1,15E3	4,20E3	3,80E3	5,73E3	5,18E6	1,90E7	1,72E7	2,59E7
E9	5,74E2	2,10E3	1,90E3	2,86E3	2,59E6	9,48E6	8,58E6	1,29E7
F1	7,47E2	2,74E3	2,48E3	3,73E3	3,37E6	1,23E7	1,12E7	1,68E7
F2	9,81E2	3,59E3	3,25E3	4,90E3	4,43E6	1,62E7	1,47E7	2,21E7
F9	4,81E2	1,76E3	1,59E3	2,40E3	2,17E6	7,94E6	7,19E6	1,08E7
G1	5,67E2	2,08E3	1,88E3	2,83E3	2,56E6	9,37E6	8,49E6	1,28E7
G2	7,89E2	2,89E3	2,62E3	3,94E3	3,56E6	1,30E7	1,18E7	1,78E7
G3	8,30E2	3,04E3	2,75E3	4,15E3	3,75E6	1,37E7	1,24E7	1,87E7
G7	8,39E2	3,07E3	2,78E3	4,19E3	3,79E6	1,39E7	1,26E7	1,89E7
G8	6,26E2	2,29E3	2,08E3	3,13E3	2,82E6	1,03E7	9,37E6	1,41E7
G9	3,92E2	1,44E3	1,30E3	1,96E3	1,77E6	6,48E6	5,87E6	8,84E6
H1	3,79E2	1,39E3	1,26E3	1,89E3	1,71E6	6,26E6	5,67E6	8,54E6
H2	5,33E2	1,95E3	1,77E3	2,66E3	2,41E6	8,81E6	7,98E6	1,20E7
H3	6,79E2	2,48E3	2,25E3	3,39E3	3,06E6	1,12E7	1,02E7	1,53E7
H4	8,02E2	2,94E3	2,66E3	4,01E3	3,62E6	1,32E7	1,20E7	1,81E7
H5	8,54E2	3,13E3	2,83E3	4,27E3	3,86E6	1,41E7	1,28E7	1,93E7
H6	7,68E2	2,81E3	2,55E3	3,84E3	3,47E6	1,27E7	1,15E7	1,73E7
H7	5,98E2	2,19E3	1,98E3	2,98E3	2,70E6	9,87E6	8,94E6	1,35E7
H8	4,36E2	1,60E3	1,45E3	2,18E3	1,97E6	7,20E6	6,52E6	9,82E6
H9	2,84E2	1,04E3	9,42E2	1,42E3	1,28E6	4,69E6	4,25E6	6,40E6
Összesen					1,42E8	5,18E8	4,69E8	7,07E8

6.27. táblázat. A termikus oszlopban lévő grafit régióinak fajlagos és teljes aktivitása az Oktatóreaktor leállításakor

	F	ajlagos akt	ivitás (Bq/g	g)	Aktivitás (Bq)			
	Ba133	Mn54	Eu152	Co60	Ba133	Mn54	Eu152	Co60
0-10	1,33E1	4,88E1	4,42E1	6,66E1	8,78E5	3,21E6	2,91E6	4,38E6
10-20	8,38E0	3,07E1	2,78E1	4,19E1	5,52E5	2,02E6	1,83E6	2,76E6
20-30	5,34E0	1,96E1	1,77E1	2,67E1	3,52E5	1,29E6	1,17E6	1,76E6
30-40	3,39E0	1,24E1	1,12E1	1,69E1	2,23E5	8,17E5	7,40E5	1,11E6
40-50	2,13E0	7,80E0	7,07E0	1,06E1	1,40E5	5,14E5	4,65E5	7,01E5
50-59	1,38E0	5,04E0	4,57E0	6,88E0	8,18E4	3,00E5	2,71E5	4,09E5
59-69	6,47E-1	2,37E0	2,15E0	3,23E0	8,43E4	3,09E5	2,79E5	4,21E5
69-79	4,30E-1	1,58E0	1,43E0	2,15E0	5,61E4	2,05E5	1,86E5	2,80E5
79-89	2,82E-1	1,03E0	9,35E-1	1,41E0	3,67E4	1,34E5	1,22E5	1,83E5
89-99	1,82E-1	6,68E-1	6,05E-1	9,11E-1	2,38E4	8,70E4	7,88E4	1,19E5
99-109	1,18E-1	4,32E-1	3,91E-1	5,89E-1	1,54E4	5,63E4	5,10E4	7,68E4
109-121	7,35E-2	2,69E-1	2,44E-1	3,67E-1	1,15E4	4,21E4	3,82E4	5,75E4
121-131	3,82E-2	1,40E-1	1,27E-1	1,91E-1	6,94E3	2,54E4	2,30E4	3,47E4
131-141	2,57E-2	9,40E-2	8,52E-2	1,28E-1	4,66E3	1,71E4	1,55E4	2,33E4
141-151	1,73E-2	6,32E-2	5,73E-2	8,62E-2	3,13E3	1,15E4	1,04E4	1,57E4
151-161	1,18E-2	4,32E-2	3,91E-2	5,89E-2	2,14E3	7,84E3	7,11E3	1,07E4
161-171	8,39E-3	3,07E-2	2,78E-2	4,19E-2	1,52E3	5,58E3	5,05E3	7,61E3
171-								
182,5	6,35E-3	2,32E-2	2,11E-2	3,17E-2	1,04E3	3,80E3	3,44E3	5,18E3
Összesen					2,47E6	9,06E6	8,21E6	1,24E7

7. Összefoglalás

A dolgozat célja annak vizsgálata volt, hogy milyen hatással van a BME Oktatóreaktorában alkalmazott grafit reflektorokra és termikus oszlopokra a neutronsugárzás, és ez milyen következményekkel járhat a későbbi hulladékkezelés szempontjából. Meg kellett határozni, hogy a nemzetközi szakirodalom alapján részletesen leírt jelenségek közül melyek azok, amelyek jelentőséggel bírhatnak a későbbi grafit későbbi kezelésének szempontjából. Végül a grafit szennyező elemeinek méréssel való meghatározása és ebből az aktivitáskészlet megállapítására is sor került.

Ahhoz, hogy a fenti fejezetekben leírt jelenségekről következtetéseket lehessen levonni az Oktatóreaktorral kapcsolatban, különböző számításokat kellett elvégezni a zónában elhelyezett reflektor elemekre és a besugárzó alagútban található termikus oszlopra egyaránt. Elsőként a reflektor elemekben kialakuló neutrontér meghatározását végeztem el, majd az 1973 óta tartó reaktor üzem alatt kialakuló különböző neutron fluencia értékeket is kiszámítottam. Megvizsgáltam a neutron spektrumok alakulását reprezentatív reflektor tömbökre. Ezután a termikus oszlop vizsgálata következett. A számítások lecsengő integrális neutronfluxus értékeket eredményeztek, ami várható is volt. Végül kiszámítottam az ott kialakuló neutron fluencia értékeket. Ahogyan a szakirodalom feldolgozása során látni lehetett a Wigner- energia felhalmozódása szempontjából legfontosabb jellemzők a gyorsneutron fluencia értékek. Az aktív zónában a gyorsneutron fluencia maximális értéke $7x10^{18}$ n/cm², a termikus oszlopban a maximális gyorsneutron fluencia pedig 10^{16} n/cm² nagyságrendűre adódott. Egyik érték sem lépte át a szakirodalmakban megfogalmazott 10¹⁹ n/cm² küszöbértéket. Látható volt, hogy a legterheltebb pozíciójú reflektorban is csak néhány száz J/g lehet a tárolt Wigner –energia értéke a grafit rácsszerkezetében. Így megállapítható, hogy a Wigner -effektusnak súlyos jelentősége nincsen az Oktatóreaktorban található grafit későbbi hulladékkezelésének szempontjából.

A másik fő szempont a grafit későbbi, hosszú távú kezelése szempontjából a grafit felaktiválódása, és az ezt meghatározó szennyezőanyag tartalom. Gamma-spektrometriás mérés segítségével sikerült meghatározni a szennyezőanyag tartalmat egy a besugárzó alagútból eltávolított grafit hasáb vizsgálatával. A szakirodalom szerint az aktivitás fő forrásai a ⁶⁰Co, ¹⁵²Eu és ¹⁵⁴Eu, ¹⁴C és ³H. Ezeknek a forrása a kezdeti szennyezőanyag-tartalom vagy az aktiválódás. Neutronfluxus számítások segítségével pedig meghatározhatóvá vált mekkora

fluxust érzékel a besugárzó alagútban elhelyezett grafit hasáb. Így becsülhetővé vált a reaktorban lévő grafitok aktivitáskészlete négy fontos radionuklid szempontjából.

Összegzésként kijelenthető, hogy az Oktatóreaktorban alkalmazott grafit későbbi hulladékkezelése nem igényel speciális eljárásokat. A reflektorelemek esetén olyan radioaktív-hulladékkezelési módszert kell alkalmazni, amelyet a néhány ezer Bq/g aktivitáskoncentrációjú ⁶⁰Co és ¹⁵²Eu szükségessé tesz. Mint, az a 6.27 táblázatban látható, a termikus oszlop egyes szeletei különböző mértékben aktiválódtak, ezért célszerű a termikus oszlopot kisebb darabokra bontani a reaktor leszerelése során.

Felhasznált források

[Arj08]	Arjakov, M. V. et al. [2011]: Irradiation induced dimensional changes in graphite: The influence of sample size. Journal of Nuclear Materials, Volume 420, Pages 241-251.
[BME13]	BME NTI: BME Oktatóreaktor Végleges Biztonsági Jelentés. NTI-VBJ-4- 1.1/2008
[Bur99]	Burchell, T.D. [1999]: Carbon Materials for Advanced Technologies. Pergamon
[Czi14]	Czifrus Sz.: Development of a pure thermal neutron field for BNCT experiments. PhD thesis, Budapest University of Technology, 1999, Budapest
[Ele01]	Electric Power Research Institute [2006]: Graphite Decommissioning. Options
	for Graphite Treatment, Recycling, or Disposal, including a discussion of
	Safety-Related Issues. Technical Report. California, USA.
[Gal12]	Gallego, N. C.; Burchell, T. D. [2011]: A review of stored energy release of irradiated graphite. Oak Ridge National Laboratory, ORNL/TM-2011/378
[Gra03]	D.E. Baker: Graphite as a neutron moderator and reflector material. Nuclear
	Engineering and design. Pages 413-444. 1970. North-Holland Publishing
	Company
[Gra05]	Grafittermeléssel kapcsolatos adatok Graphite címmel a
	http://www.euromines.org/mineral/Graphite oldalon; Internet, 2013.08.23.
[Gra10]	D. E. Baker: Graphite as a neutron moderator and reflector material. Nuclear Engineering and design 14 (1970) Pages: 413-444. North-Holland Publishing Company
[IAE07]	IAEA [2006]: Characterization, Treatment and Conditioning of Radioactive
	Graphite from Decommissioning of Nuclear Reactors. IAEA-TECDOC-1521, ISBN 92-0-112006-0.
[IAE11]	IAEA [2010]: Progress in Radioactive Graphite Waste Management. IAEA-
	TECDOC-1647, ISBN: 978-92-0-106610-7.

- [Met18] Metcalfe, M. P., Banford, A. W., Eccles, H., Norris, S. [2013]: EU Carbowaste project: Development of a toolbox for graphite waste management. Journal of Nuclear Materials, Volume 436, Pages 158-166.
- [Nuc19] W.P. Eatherly: Nuclear Graphite- The first years. Journal of Nuclear Materilas
 1981. Pages 55-63. North-Holland Publishing Company; Oak Ridge National
 Laboratory
- [Sch17] Schweitzer, D.G. et al. [1987]: A Safety Assessment of the Use of Graphite in Nuclear Reactors Licensed by the US Nuclear Regulatory Commission.
 Brookhaven National Laboratory Report BNL-NUREG-52092, NUREG/CR-4981
- [Win04] Winders, W. et al. [2007]: Graphite Technology Development Plan. PLN-2497,Idaho Falls: Idaho National Laboratory
- [Wind09] T. Bergan, M. Dowdall, Ø. G. Salnæs: On the occurence of radioactive fallout over Norway as a result of the Windscale accident, October 1957. Journal of Environmental Radioactivity-2008 Pages: 50-61
- [Wor02] World Nuclear Association Nuclear Database a http://world-nuclear.org/Nuclear Database/Advanced.aspx?id=27246 oldalon; Internet, 2013.08.15.
- [Xi06] Xiaolin Hou: Rapid analysis of C¹⁴ and H³ in graphite and concrete for decomissioning of nuclear reactor. RisØ National Laboratory, Department of Radiation Research, Denmark. Applied Radiation and Isotopes pages: 871-822. 24 January 2005

Mellékletek

A BME Oktatóreaktorában, a helyszínen készült fényképeket tartalmazza.

A besugárzó alagút és a benne lévő termikus oszlopok

A termikus oszlopok távirányítású kocsin mozgathatóak. Látható, hogy befelé szűkül, és illeszkedik a besugárzó alagút alakjához.

2. A vizsgált grafit hasáb a kis hátterű kamrában:

