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Összefoglaló

Kutatásom célja egy kis számításigényű, elosztott pályatervezési algoritmus ki-
fejlesztése autonóm drónok számára, rögzített és mozgó akadályokkal zsúfolt térben
történő gyors és biztonságos navigáció megvalósítására. Az eljárás lehetséges alkal-
mazási területe gyártórendszerek monitorozása, városi környezetben történő navigá-
ció, illetve felderítési és mentési feladatok támogatása.

A tervezés kezdő lépése egy tervezési gráf létrehozása kizárólag a statikus objek-
tumok figyelembe vételével. A drónok egyedi pályáinak megtervezése ezután kezdő-
dik. A dolgozat első felében feltételezzük, hogy a mozgó objektumok pályája előre
ismert. A drónok egymás után, előre meghatározott sorrendben tervezik a pályáju-
kat, minden drón a sorrendben előtte állókat mozgó objektumnak tekinti. Minden
drón két fő tervezési lépést hajt végre: elsőként, konstans pályamenti sebességet fel-
tételezve egy módosított, idővel paraméterezett gráfkereső algoritmus (A*, Dijkstra)
felhasználásával minimális idő alatt bejárható utat keres a kiindulási és a célpont kö-
zött. A keresést több, előre rögzített pályamenti sebességre párhuzamosan futtatjuk
le. A konstans sebesség feltételezése azért lényeges, mert így a keresés kis számí-
tási idővel végrehajtható. Ugyanakkor, épp emiatt előfordulhat, hogy a vizsgált fix
sebességértékek mellett nem létezik ütközésmentes útvonal. Ennek elkerülésére a
keresés során megengedjük az ütközést, de alkalmas súlyfüggvény megválasztásá-
val büntetjük. Az ütközésmentes pályát a tervezés második lépésében hozzuk létre:
ebben a lépésben a korábban kapott gráfútra, pontosabban az arra illesztett folyto-
nos spline görbére alkalmas sebességprofilt tervezünk, ahol az ütközések elkerülését
szigorú korlátozásként írjuk elő. Mivel a térbeli pálya már adott, ez a tervezési
lépés kevert egészértékű kvadratikus optimalizálási feladatként (MIQP) írható fel,
amely hatékonyan megoldható a rendelkezésre álló szoftvercsomagok (pl. Gurobi)
segítségével.

A dolgozat második felében a pályatervezési eljárást továbbfejlesztjük: képessé
tesszük előre nem ismert mozgású akadályok kezelésére is. Feltételezzük, hogy az
ismeretlen mozgású objektumok pozíciójáról megbízható mérési adat áll rendelke-
zésre. Ezt felhasználva, adott időlépésenként becslést adunk az objektum jövőbeli
mozgására vonatkozóan. Ha ennek ismeretében ütközés feltételezhető, az érintett
kvadkopter pályáját módosítjuk. Az újratervezés a korábban megtervezett útvonal
lokális megváltoztatásával történik. Ennek során először több elkerülő útvonaljelöl-
tet hozunk létre, melyek közül a későbbi ütközés valószínűségét és a többi kvadkopter
mozgását figyelembe véve választunk.

Az algoritmust Python nyelven implementáljuk, működését először MuJoCo szi-
mulációs környezetben vizsgáljuk. Ezt követően az implementációt Bitcraze Crazyflie
2.1 miniatűr kvadkopterekre is elvégezzük, az eljárás alkalmazhatóságát valós rend-
szeren is teszteljük, illetve demonstráljuk.



Abstract

The aim of my research is to create an efficient, low complexity trajectory plan-
ning algorithm for autonomous quadcopters that have to navigate at high speed in
a cluttered environment, among static and dynamic obstacles. The possible field of
application of the proposed procedure could be monitoring of production systems,
navigation in an urban environment or support for surveillance and rescue tasks.

The algorithm starts with the construction of a planning graph that takes only
the static obstacles into consideration. Then the drones start designing their trajec-
tories one after another, in a predefined order. Each drone considers the others that
precede it in the design sequence as moving obstacles. For simplicity, in the first
part of the work, we assume that the trajectories of all moving obstacles are a-priori
known. The drones perform two design steps: first, assuming constant velocity,
a modified, time-parameterized shortest path algorithm (A*, Dijkstra) is applied
to find a feasible route between the starting and the target points. By fixing the
velocity, the complexity of path finding can be greatly simplified. We perform mul-
tiple searches in parallel with different velocity values to increase the probability of
success, however it is still possible that a collision-free route cannot be found. To
avoid the failure, we allow collisions during the search step, but penalize them by a
suitably chosen cost function.

The collision-free trajectory is created in the second step of the planning algo-
rithm: in this step, a velocity profile is designed for the previously constructed route,
the collision avoidance is forced by strict constraints. Since the spatial trajectory is
already given, this design step can be formulated as a mixed-integer quadratic opti-
mization problem (MIQP), which can be solved efficiently by the available software
packages (e.g. Gurobi).

In the second part of the work, we improve the trajectory planning procedure
by making it capable of handling obstacles whose motion is not known a-priori.
We assume only the position of these objects can be detected. Collecting this data
in a finite time window, the future movement of the obstacles are predicted. If a
collision is expected, the trajectory of the affected quadcopter is modified. For this,
multiple evasive route candidates are created, from which one is selected based on
the probability of a future collisions and the movement of the other quadcopters.

The algorithm is implemented in Python, and it is analyzed first in the Mu-
JoCo simulation environment. The implementation is then carried out for Bitcraze
Crazyflie 2.1 miniature quadcopters and the applicability of the procedure is tested
and demonstrated in real flight experiments as well.
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1 Introduction
Quadcopters are popular robotic platforms thanks to their simplicity and agility, and
wide range of applications. Most research quadcopters are large enough to carry cameras
and smartphone-grade computers, but they are also expensive and require a large space
to operate safely. In our work we use miniature drones which can safely maneuver in
small and dense environments but has reduced on board computational capacity and
carrying weight. In the last years Unmanned Aircraft Systems (UAS) have been widely
used in many applications for industrial use. Automated drones can be used for security,
surveillance, emergency response and infrastructure inspection. Miniature quadcopters
are great for inspecting hard to reach or hazardous indoor areas of a factory.

There are various techniques for navigating drones which can be generally classified
as global path planning, local path planning, and hybrid. In our study we use a hybrid
method which constructs a base trajectory for the drones to avoid a-priori known obstacles
with global path planning and unknown obstacles with local path planning. There are
great solutions which handles multiple drones in partially known environments [4], but
they either assume that the drones themselves calculates their paths or they controlled by
a ground PC with reference position or velocity commands. The first method expects a
larger computational capacity onboard the drones and the later one demands continuous
communication with the command PC.

Our method offers a solution where the computation is done by the ground control
PC, but do not need to constantly communicate with the drones. We achieve this by
constructing entire trajectories which sent in one data package to the drones to evaluate
and follow them. We use time-dependent shortest path algorithm [3] in search for a time
minimal path from start to goal positions between static obstacles. We formulate the
problem of avoid the moving obstacles with movements known a-priori as a mixed-integer
quadratic optimization problem (MIQP) [10], which constructs a velocity profile for the
found path. We handle the unknown obstacles by generating various path candidates that
diverge from the original path to find the most optimal from them for an evasive maneuver.
This solution was inspired by methods created for ground vehicles where optional paths
were generated between the sides of the road for obstacle avoidance tasks [13]. However,
drones are not limited in this respect, so a more flexible solution was needed in order to
take advantage of this freedom.
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2 Problem formulation
A 3D navigation problem is considered, where multiple drones is required to navigate
safely and time efficiently in a partially known environment E ⊂ R3 defined as a three-
dimensional Euclidean space. The E environment contains a set of n obstacles, these
obstacles can either be static with known position Os (defined in Section 3.2), dynamic
with a-priori known motion trajectory (e.g. the other drones) Ok(defined in Section 3.1),
or dynamic with unknown motion Ou (defined in Section 3.4).

The main objective is to safely guide Nd number of drones from their starting positions
which can be in any points of the environment unoccupied by an obstacle in t = 0 time:
pstart = {pstart1 , pstart2 , · · · , pstartNd

} ⊂ E \ {Os,Ok(0),Ou(0)}, pstarti ⊂ R3, i ∈ INd
1 = {b ∈

Z | 1 ≤ b ≤ Nd}, to their goal positions which points only limited by the static obstacles:
pgoal = {pgoal1 , pgoal2 , · · · , pgoalNd

} ⊂ E \ Os, pgoali ⊂ R3, i ∈ INd
1 . To safely navigate between

these points the drones are executing trajectories τ : R→ R3, where the trajectory of the
i-th drone is τi = [xi(si(t)), yi(si(t)), zi(si(t))]

T , i ∈ INd
1 , 0 ≤ t ≤ Ti which are expressed

in Cartesian coordinates where si(t) ∈ R+ is the covered distance along the i-th path at
t time and Ti ∈ R+ is the flight time of the i-th drone. These trajectories have to start in
pstart and end in pgoal which means:

τi(0) = pstarti , i ∈ INd
1 (1)

τi(Ti) = pgoali , i ∈ INd
1 (2)

Further requirements for τi are that Ti has to be minimal while τi has to avoid Os and
Ok in respect of (5). Every τi trajectory is constructed as an arch length parameterized
spline Si = [xi(s), yi(s), zi(s)]

T and an arch length - time function si(t), 0 ≤ t ≤ Ti [12].
We assume that the drones have onboard tracking controller, so they can follow their

τ(t) trajectory if the following constrains are met:

0 ≤ ṡ(t) ≤ vmax (3)
−amax ≤ s̈(t) ≤ amax (4)

where ṡ(t) ∈ R is the velocity and s̈(t) ∈ R is the acceleration of a drone. Note that the
drones can only fly forward along their paths as (3) shows.

The shortest distance between the i-th drone and the j-th obstacle at time t is given
by d(i, j, t), i ∈ INd

1 , j ∈ INo
1 = {b ∈ Z | 1 ≤ b ≤ No} where No is the number of all

the obstacles. A safety requirement for the drones is defined as keeping a safe distance
dsafe > 0 from all obstacles according to the following equation:

d(i, j, t) ≥ dsafe ∀t ∈ R, i ∈ INd
1 , j ∈ INo

1 (5)

From this point we will refer the violation of (5) as collision.
While the drones fly, they generate a large, fast-moving volume of air underneath their

rotors called downwash [7]. The downwash force is large enough to cause a catastrophic
loss of stability when one drone flies underneath another. We model downwash constraints
as inter-robot collision constraints by treating each robot as a vertical capsule with radius
r ∈ R+ and height h ∈ R+ where the drone is at the center as it can be seen in Figure 1.
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Figure 1: Convex capsule around the drone to help avoiding downwash during trajectory
design

This way when the algorithm makes τi(t) it can handle the i-th drone as a sphere
and avoid the other drones in respect to the downwash force while does not reduce its
capability to fly close to O \ Ok.
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3 Proposed solution

3.1 Main concept

The algorithm has an initial map of the environment containing information about the
positions, shapes and sizes of Os. At first the algorithm constructs a graph G = {V,E}
where the Nv number of vertex is defined as Vi = {pv,i, tv,i, cc,i, bi}, pv,i ∈ E , tv,i ∈ t, cc ∈
R+, a ∈ R+, i ∈ INv

1 = {a ∈ Z | 1 ≤ a ≤ Nv} (explained in detail in Section 3.3.1)
and the Ei,j edge defined as line segment between the Vi, Vj vertices. The G graph is
constructed in the E environment and avoids the Os static obstacles as it can be seen in
Figure 2. It is done by randomly generating Nv number of vertices in the in the flying
area. We connect the elements of V with edges E using Delaunay triangulation. This
ensures that the edges connect just the neighboring vertices and does not cross each other.
After that we remove the elements of E those are in intersection with any Os. We explain
this method in more detail in Section 3.2.

In the next step which is covered in Section 3.3 we create a τ for each drone sequentially.
For the i-th drone we create a base path P ⊂ G between pstarti and pgoali with a graph
search using a time-dependent shortest path algorithm [3]. We modify the algorithm to
enable it to handle moving obstacles assuming they movement is known. To reduce the
complexity of the graph search we assume that the velocity of the drones is constant,
while we search for a time minimal path with no collisions with the moving obstacles.
However, with a constant velocity the existence of a collision free path is not guaranteed
therefore we perform the search with multiple velocities and do not forbid the collisions
yet just penalize them. After the graph search creates P we need to simplify it as it shown
in Figure 5 to create a faster and more direct path Pf ⊂ P between pstarti and pgoali . With
this method the algorithm can create Pf even if a collision free path does not exist with a
constant velocity. We fit a B-spline to the vertices of Pf which parameterized by the arc
length of the spline. Finally, we use MIQP to calculate a velocity profile along the spline
which guaranties the avoidance of Ok. After τi is constructed for the i-th drone, it is added
along with r and h to define Ok

(i) = {τi(t), r, h}. In case of n number of known dynamic
obstacle apart from the drones the Ok set can be defined as Ok = {Ok

1 , · · · ,Ok
n, · · · ,Ok

n+i}
after the construction of τi.

While the drones are flying, we assume to have information only about the positions
and dimensions of Ou, therefore we must predict their future positions to predict the
possibility of a future collision. If a collision is predicted in the future we construct a
number of possible evasive path candidates (see in Figure 13). These paths start ahead of
the drone to allow enough time for the calculation and the communication and return to
the original path after the obstacle is avoided. The most optimal path is selected based
on the chance of future collisions, interference with other drones, and the time required
to fly.

Our algorithm has three main parts: (i) the scene construction, responsible for the
description of the static environment where the drones fly and the graph which the trajec-
tory planner uses for the path search; (ii) the trajectory planner that designs the motion
trajectories for the drones (iii) the path checker that predict possible collision with Ou

and provides modification of the motion trajectories to avoid them.
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Algorithm 1 main
1: construct G with scene construction based on Os ▷ see in Algorithm: 2
2: for i ∈ INd

1 do
3: construct Pi with modified A* graph search ▷ see in Algorithm: 3
4: fit B-spline to Pi to obtain Si
5: construct τi with trajectory planner based on Si in respect of Ok ▷ see in

Algorithm: 4
6: Ok

i ← {τi(t), r, h}
7: add Ok

i to Ok

8: end for
9: Start executing trajectories

10: repeat
11: measure current positions of the obstacles in Ou to obtain pc
12: predict future positions of the obstacles in Ou to obtain pf
13: for i ∈ INd

1 do
14: predict collision between i-th drone and Ou based on pf ▷ see in Algorithm: 5
15: if collision predicted then
16: update τi with path checker in respect of Ou and Ok

17: update the trajectory in Ok
i with τi

18: end if
19: end for
20: until Trajectories are executed

3.2 Scene construction

The set of n static obstacle is given by Os = {Os
1, · · · ,Os

n} and every obstacle is assumed
to be a square pole described by Os

i = {xs,i, ys,i, as,i, bs,i, hs,i}, i ∈ {1, · · · , n} where x and
y are the coordinates of the middle of the base, and a, b, h ∈ R+ are the length, width
and height of the obstacle increased by the dsafe safety distance and the r radius of the
drones as:

as,i = a′s,i + 2 · (dsafe + r) (6)
bs,i = b′s,i + 2 · (dsafe + r) (7)

hs,i = h′
s,i + dsafe + r (8)

where a′s,i, b
′
s,i, h

′
s,i are the true dimensions of the i-th obstacle. With this size expansion

we ensure that the V vertices and E edges are constructed in a sufficient distance from
the Os static obstacles.

We randomly generate V = {V1, · · · , VNv} vertices within E environment, where Vi =
[x, y, z]T , i ∈ INv

1 are expressed in Cartesian coordinates. For V vertices we define two
criteria, the vertices needs to be outside of the static obstacles:

V ⊂ E \ Os (9)

and there has to be a minimal distance between them, because the short distances are just
unnecessarily increase the complexity of the graph (e.g. in a drone arena with dimensions
of 3m x 3m x 3m there is no need for the vertices to be within millimeters of each other):

dT ≤ ||Vi − Vj||, i ∈ INv
1 , j ∈ INv

i (10)
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where the || · || is the standard Euclidean norm of a vector in R3. We expand V with fix
vertices V0 which represent e.g. charging pads or target destinations. Because we assume
all of the V0 fix vertices are purposely placed at certain points only the criterion defined
by (9) applies to them.

We connect the V vertices by E edges using Delaunay triangulation. This way only
the neighboring vertices are connected with edges that do not cross each other. After the
triangulation there will be edges witch, we need to leave because they goes through the
Os static obstacles.

Algorithm 2 scene construction
1: input: Number of vertices to be generated Nv

2: Threshold dT
3: Fix vertices V0

4: Static obstacles Os

5: Environment E
6: output: A G graph for the planning algorithm which does not intersect with the

static obstacles
7: V ′ ← RandVertices(Nv, dT, E \ Os)
8: V ← V0 ∪ V ′

9: E ← DelaunayGraph(V )
10: i← 1
11: repeat
12: if Intersect(Ei,Os) = True then
13: E ← E \ Ei

14: end if
15: i← i+ 1
16: until i > #E
17: G ← {V,E}

We define the RandVertices(Nv, dT, E \Os) function to generate Nv number of vertices
that satisfy (9-10). The DelaunayGraph(V ) function connects the V vertices based on
Delanuay triangulation to construct the E edges of the graph. We define the Intersect()
function to give a True value if an edge intersects with Os static obstacles to locate the
intersecting E edges.

6



Figure 2: Generated graph.

3.3 Trajectory planner

In this section we show how to generate collision-free trajectories for the drones assum-
ing we have information about the trajectories of the moving obstacles. We design the
trajectory of the drones sequentially in a predefined order where each drone handles the
previous ones as part of the Ok moving obstacles. The generation of one trajectory has
two phases: path planning, velocity planning.

3.3.1 Path planning

The path planning based on a time dependent A* graph search [15] which we modified
in a way that it can take into account Ok moving obstacles when calculating costs. This
modification is based on that the algorithm has information about the trajectories, and
r, h dimensions of Ok moving obstacles. When performing the path finding we assume
the drones fly with a vc constant velocity, which reduce the computational complexity,
but there is a risk that a collision free path cannot be found. We increase the chance
of finding a collision free path by performing multiple searches in parallel with different
velocity values. Also, in this step we allow collisions during the search step, but penalize
them by a suitably chosen cost function, to ensure the success of the path finding even in
cases when a collision is unavoidable with constant velocities. In the algorithm the cost
value of a Vj vertex which is neighboring to the Vi vertex is calculated as:

cj = ci + te,j + tg,j + cc,j (11)

where ci ∈ R+ is the cost assigned to the Vi vertex, te,j ∈ R+ the time needed for the drone
to fly from Vi vertex to Vj vertex, tg,j ∈ R+ is the time needed for the drone to fly to the
goal position assigned to it in a straight line from the Vj vertex and cc,j ∈ R+ a penalty
which based on the possible collisions with Ok on the Ei,j edge. The vertices contain
information about their position pv, which assigned to the during the scene construction;
the tv time needed for the drone to reach them from the start position, following the path

7



with a given constant velocity; their cc cost value which needed for determining the most
optimal path between the goal and start positions; the b index of the vertex before them
in the found path. After the algorithm calculates the tv,i and cc,j values of Vj from Vi, if
the new cc,j is less than the current cost of Vj, the values get updated.

Now we show how to calculate the cost values of the Vj vertices that are neighbouring
to Vi vertex. In the algorithm te flight time cost of a Vj adjacent vertex of Vi vertex can
be calculated as:

te,j =
||pv,j − pv,i||

vr
, i ∈ INv

1 , j ∈ Ai (12)

where vr is the constant velocity and Ai denotes the set of index values of the adjacent
vertices of the i-th vertex. The tg time to fly from the neighbouring vertex to the pgoalk

goal position of the k-th drone can be calculated as:

tg,j =
||pv,i − pgoalk ||

vr
, j ∈ INv

1 (13)

We assign each vertex a tv reaching time which represent the flight time to the vertex
from the pstartk start position with vr constant velocity:

tv,j = tv,i + te,j, i ∈ INv
1 , j ∈ Ai (14)

note that ct,1 = 0 and tv,1 = 0. The cc,j collision cost based on the extent to which an
edge leading to the j-th vertex from the i-th vertex cuts into the Ok obstacles, hence how
difficult will be to avoid the obstacles with altering the velocity in the velocity planning
step. We evaluate the trajectories of Ok in the tv,i ≤ t ≤ tv,j time interval to get their
positions in the given time window. When calculating the distances, the centers of the
Ok obstacles defined by vertical line segments as:

pt,k + α · h̄, tv,i ≤ t ≤ tv,j, 0 ≤ α ≤ 1, k ∈ {1, · · · ,#Ok} (15)

where pt points are at 0.5 · h bellow of the positions of the obstacle and h̄ = [0, 0, h] is a
vertical vector pointing upwards with a h length shown in Figure 3.

h

pt

Figure 3: Center of an obstacle with the h̄ vector
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This h length is the height of the cylinder which we used to define the downwash
effect (see Figure 1). The edges connecting the i-th vertex to the adjacent vertices can be
defined by a line segments as:

pv,i + β · ēj, i ∈ INv
1 , j ∈ Ai, 0 ≤ β ≤ 1 (16)

where ēj = pv,i − pv,j is a vector that points from the i-th vertex to the j-th adjacent
vertex. We calculate the minimal distance dm ∈ R+ shown in Figure 4 between the k-th
Ok obstacle and the edge which connects the Vi and Vj vertices in a given time grid as:

dm = min
0≤α≤1
0≤β≤1

tv,i≤t≤tv,j

||(pt + α · h̄)− (pv,i + β · ēj)|| (17)

dm

Vi

Vj

Obstacle

r

Figure 4: 2D representation of the minimal distance between the Ei,j edge and an obstacle

If the dm minimal distance is larger than the sum value of the radii of the drone
ro ∈ R+ and the l-th Ok obstacle ro ∈ R+ plus the dsafe safety distance, then there is no
collision and the l-th collision cost assigned to the j-th vertex is zero:

dm > (rd + ro + dsafe)⇒ cc,j,k = 0 (18)

However if it is less or equal, then the cost value is defined based on how deeply the edge
connecting Vi and Vj vertices cuts into the safe zone of the l-th Ok obstacle:

dm ≤ (rd + ro + dsafe)⇒ cc,j,l = cc,min + (1− dm
ro + dsafe

) · (cc,max − cc,min) (19)

where cc,min ∈ R+ and cc,max ∈ R+ are heuristic values which define the minimal and
maximal cost of a collision. The cmin tells the seriousness of the fact of the collision, while
cmax tells the weight of the degree of the collision. The full cost of the collision assigned
to the j-th vertex is the sum value that calculated for each moving obstacle:

cc,j =

#Ok∑
l=1

cc,j,l (20)

Now we know how the algorithm calculates the cost values of the vertices, the Algorithm
3 shows the process of finding the time minimal path. The Algorithm 3 is performed
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multiple times in parallel with different velocity values to increase the probability of
finding a collision free path. At the end of the first phase, we will have a base path for
the k-th drone as P = {P1, · · · ,Pn} ⊂ G with n ≥ 2 number of vertices where P1 = pstartk

and Pn = pgoalk .

Algorithm 3 modified A*

1: input: planning graph G; start and goal positions of the k-th drone pstartk , pgoalk ;
constant velocity vc; moving obstacles with known trajectories Ok; collision cost hyper
parameters cc,min and cc,max

2: output: a time minimal path P
3: for i ∈ {1, · · · ,#V } do
4: cc,i ← inf
5: tv,i ← inf
6: bi ← undefined
7: end for
8: cc,start ← 0
9: tv,start ← 0

10: Q← V
11: repeat
12: q ← vertex in Q with smallest cc
13: Q← Q \ q
14: for u adjacent to q do
15: i← index of q vertex
16: j ← index of u vertex
17: solve (12) with vc; pv,i; pv,j to obtain te,new
18: solve (13) with vc; pv,j; pgoalk to obtain tg,new
19: solve (14) with te,new; tv,i to obtain tv,new
20: solve (15-20) with pv,i; tv,i; pv,j; tv,new; Ok; cmin; cmax to obtain cc,new
21: solve (11) with te,new; tg,new; cc,new; cj to obtain cnew
22: if cnew < cj then
23: update cj with cnew
24: update tv,j with tv,new
25: update bj with i
26: end if
27: end for
28: until q = Vgoal

29: P ← GetPath(V )

where the start and goal are the indexes of the vertices in the position of pstartk , pgoalk ,
and the GetPath function is computes the path based on the b previous vertex indexes
assigned to the vertices V . An example for the result of a path finding can be seen in
Figure 8a.

Remark (Path simplification). We can further optimize the found path by exchanging the
unnecessarily tortuous edge chains with single edges as shown in Figure 5. In the path
simplification at first we construct a mini-graph Gm = {P , Es} where the vertices are the
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elements of P base path and Es edges are constructed as:

Es = {[P1,P2], · · · , [Pi,Pj], · · · , [Pn−1,Pn]}, i ∈ {1, · · · , n− 1}, j ∈ {i+ 1, · · · , n}
(21)

which means Pr
i vertex have common edges with Pi+1, · · · ,Pn vertices. We perform the

previously introduced, modified A* graph search again in Gm mini-graph to find a more
efficient, final path Pf .

Figure 5: a. Base-graph with highlighted start and end points b. The path on the base-
graph c. Generation of the mini-graph d. The simplified path

3.3.2 velocity profile generation

Before start the velocity profile generation we fit a B-spline S = [x(s), y(s), z(s)] parame-
terized by its arc length to the elements of Pf . To reduces the deviation of S spline from
the edges of the path we expand Pf with evenly distributed points along each edge as it
shown in Figure 6.

(a) zero extra point (b) one extra point (c) two extra points (d) three extra points

Figure 6: Spline fitting with increasing extra point number

At this point we have a spline which avoids the Os static obstacles and a vc constant
velocity. But the drones cannot follow the S spline only with the vr reference velocity
because: they need to accelerate and decelerate at the start and goal positions, further-
more with a constant velocity a collision free flight is not guaranteed. The goal of the
velocity planning is to design a collision free velocity profile (see Figure 8b) with feasi-
ble accelerations. Since the path planning uses vc while searching for the best path and
calculating the possible collisions, if the velocity profile considerably differ from vc, it is
possible that collisions which not taken into account, has to be dealt with. Therefore, we
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have to minimize the difference between the v ∈ R velocities and vc as follows:

minimize :

tH∑
i=0

(v(i)− vc)
2 (22)

where tH ∈ R+ is the time horizon under the k-th drone must reach pgoalk position. A
sufficient value for tH can be calculated as:

tH =
L

vc
(23)

where L is the arch length of the 3D trajectory defined by S. Because a acceleration is
constrained and the drones start and end their movement in a hovering state tH has a
minimum value, which can be calculated as:

tH ≥
√

L

amax

(24)

A moving obstacle can occupy the path of a drone for a significant amount of time, and
this can result that the optimization software cannot find a feasible velocity profile. To
handle this problem the velocity planning has to be repeatable with increasing tH value.
The optimization is done for a finite number of time instants tgrid = {0, · · · , tH} and for
a finite number of arch lengths sgrid = {0, · · · , L} and the movements are determined
by discrete integration. The first variable of the optimization is the covered path length
s(i) ∈ sgrid, i ∈ {0, · · · , tH, tH+Ts} where Ts is the sampling time. The s(i) is constrained
by:

s(0) = 0 (25)
s(tH + Ts) = L (26)
s(i+ 1) = s(i) + ṡ(i) · Ts + 0.5 · Ts

2 · s̈(i), i ∈ tgrid (27)
0 ≤ s(i) ≤ L, i ∈ {0, · · · , tH, tH + TH} (28)

The second variable is the velocity v(i), i ∈ {0, · · · , tH, tH + Ts}, which constrained by:

v(0) = 0 (29)
v(tH + Ts) = 0 (30)
v(i+ 1) = ṡ(i) + Ts · s̈(i), i ∈ tgrid (31)
0 ≤ v(i) ≤ vmax, i ∈ {0, · · · , tH, tH + TH} (32)

The third variable is the acceleration a(i), i ∈ tgrid acceleration which constrained by:

−amax ≤ a(i) ≤ amax, i ∈ tgrid (33)

Finally we need a binary decision variable b ∈ {0, 1} to help to formulate the constrains
which used to declare how an obstacle should be avoided. To illustrate the meaning of b,
let’s take an example where one obstacle cross the path once in a tc = {tc,start, · · · , tc,end} ⊂
tgrid time interval as it can be seen in the Figure 7. In this case we can define the decision
for the avoidance direction using big-M formulation [2] as follows:

s(i)− b ·M ≤ smin(i), i ∈ tc (34)
s(i) + (1− b) ·M ≥ smax(i), i ∈ tc (35)
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where smin(i), smax(i),∈ sgrid, i ∈ tc give the minimum and maximum values of the occu-
pied part of the path in a given time expressed in arch length and M ∈ R+ is a sufficiently
big number for the big-M formulation. As it seen in (34) if b = 0 then the drone have
to wait for the obstacle to cross the path, which means the arch length traveled by the
drone s(i), i ∈ tc has to be less than the minimal value of the occupied part of the path
smin(i), i ∈ tc in the time interval tc. Furthermore if b = 0 the (35) can only be true
because of the sufficiently big value of M . The same thought process can be applied in
the case of b = 1 when the drone have to rush through the part of the path that will be
occupied.

 
s(0)

s(T)s(k) '

Obstacle

s(k) ''
smin(k) smax(k)

 

 
 
 
 
 
 
 
 

dsafe 
rd 
 

ro 
 
 
 
 
 
 
 
 
 
 
 
 
 

Drone

Drone

Figure 7: Example for a path crossing during k ∈ tc time where the drone has to decide
to wait for the obstacle or rush trough before it

Since parts of the path can be occupied multiple times during the flight the (34-35)
has to be expanded to handle b, tc, smin and smax with multiple elements. First the cases
of route occupations must be calculated before optimization in the tgrid time interval, in
the process we obtain tc,j, smin,j, smax,j, j ∈ INb

1 = {b ∈ Z | 1 ≤ b ≤ Nb} where Nb is the
number of occupations cases. The extended constrains can be defined as follows:

s(i)− bj ·M ≤ smin,j(i), i ∈ tc,j, j ∈ INb
1 (36)

s(i) + (1− bj) ·M ≥ smax(i), i ∈ tc,j, j ∈ INb
1 (37)

The optimization calculates the covered path length-time function s(tgrid) by solving (22)
within (25-33), (36-37) constrains, this optimization problem can be formulated as:

minimize: 22

subject to: (25− 33), (36− 37) (38)

The s(tgrid) is used with S spline to construct the τk(t) = [x(s(t)), y(s(t)), z(s(t))] trajec-
tory for the k-th drone. The optimization can be formulated as a mixed-integer quadratic
optimization problem which can be solved e.g. with Gurobi software [6].
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Algorithm 4 trajectory generation
1: inputs: arch length parameterized spline S; moving obstacles with known trajectories
Ok

2: output: trajectory for the k-th drone τk
3: solve (23) to obtain tH
4: if (24) = False then
5: increase tH until (24) = True
6: end if
7: repeat
8: tgrid ← {0, · · · , tH}
9: calculate Nb, tc,j, smin,j, smax,j, j ∈ INb

1 from Ok, S, tgrid
10: set variables s(i), i ∈ {0, · · ·TH, TH+Ts}; ṡ(i), i ∈ {0, · · ·TH, TH+Ts}; s̈(i), i ∈
{0, · · ·TH}; bj, j ∈ INb

1

11: set constrains as (25-33), (36-37)
12: set objective as (22)
13: optimize (38) to obtain s
14: increase tH
15: until solution is feasible
16: construct τk from s, S

(a) Result of the path finding (b) Generated velocity profiles for the drones

Figure 8: Trajectory generation

3.4 Avoiding unknown moving objects

At this point the drones can safely navigate in an E environment filled with obstacles
that either static or moving in an a-priori known trajectory. Unfortunately, in the E
environment there could be Nu number of dynamic obstacles with unknown motion Ou =
{Ou

1 , · · · ,Ou
Nu
} (e.g. human workers or other robots) which also have to be avoided. We

assume that these unknown obstacles can be enclosed in a capsule (see Figure 9) so each
obstacle can be represented by three parameters Ou

k = {pu,k(t), ru,k, hu,k}, k ∈ INu
1 = {b ∈

Z | 1 ≤ b ≤ Nu}.
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Robot

h

h

Actor

r

r

Figure 9: Robot and Human (Actor) enclosed in a convex capsule

Since we do not know the trajectories of the objects, we can only predict their move-
ment based on their past positions. We measure the current positions pp,k ∈ R3, k ∈ INu

1

of Ou
k , k ∈ INu

1 obstacles and based on their positions in the previous measurement
pp,k ∈ R3, k ∈ INu

1 we calculate their future positions assuming a constant velocity mo-
tion. The v̄k ∈ R3, k ∈ INu

1 velocity vector of the k-th Ou obstacle is given by:

v̄k =
pc,k − pp,k
tc − tp

, k ∈ INu
1 (39)

where tp ∈ R+ is the measurement time of the previous position and tc ∈ R+ is the
measurement time of the pc,k current position of the k-th Ou obstacle. We predict the
future positions pf,k(t) ∈ R3, tc ≤ t ≤ (tc + tH), k ∈ INu

1 in a suitably short time horizon,
where the assumption of constant velocity can be valid. Assuming constant velocity in over
a larger horizon would possibly cause invalid collision warning. The prediction for the pf(t)
future positions of the obstacle in a finite number of time instants tgrid = {tc, · · · , tc+ tH}
is done by:

pf,k(t) = v̄k · (t− tc) + pc,k, t ∈ tgrid, k ∈ INu
1 (40)

With the increasing value of t the accuracy of the prediction deteriorates, therefore we
have to compensate for the uncertainty of the future position. When the future collisions
are calculated the dimensions of the obstacles are "increased" based on how far to the
future we predict their positions (see in Figure: 10). Therefore the ro(t) ∈ R+, k ∈ INu

1

radii and ho,k(t) ∈ R+, k ∈ INu
1 heights of the Ou

k , k ∈ INu
1 obstacles are time dependents

as:

ro,k(t) = ro,k(tc) + γ · (t− tc), t ∈ tgrid, k ∈ INu
1 (41)

ho,k(t) = ho,k(tc) + γ · (t− tc), t ∈ tgrid, k ∈ INu
1 (42)

where the γ is a tuning hyper parameter chosen a-prior to define the "growth" of the
obstacle.
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2dtf

dtfdtp tc

Figure 10: Prediction for the future positions of an obstacle

Now we have predicted positions for the Ou(t) from the tc time moment, we can
calculate the minimal distances between the drone and the obstacles in the tc ≤ t ≤
(tc + tH) time interval:

dm(t) = min
0≤α≤1

||(pf,k(t) + α · h̄o,k(t))− (pd(t))||, t ∈ tgrid, k ∈ INu
1 (43)

Based on the result of dm(t) there is three cases that have to be distinguished: (i) the
obstacles are a safe distance away so there are no need to modify the trajectory of the
drone; (ii) there will be a collision in a tc ≤ t ≤ (tc + tm) time window where tm < tH is
a critically low time window which under an evasive maneuver is not possible due to the
physical limitations of the quadcopter and the computational time of the algorithm; (iii)
there will be a collision in a (tc + tm) << t ≤ (tc + tH) time window therefore an evasive
maneuver is possible.

In the first case there is nothing to do so the drone can continue its flight. The second
case occurs, because even with the most efficient implementation there will be an idle
time window for the calculations, the communication between the drone and the PC, and
the physical reaction. So there is a critical time minimum during which an evasion is
not possible, because the drone cannot react in time. Therefore, we have to define an
emergency command for this event, which can be executed fast and safely (e.g. a stop
moving or turn off command).

In the following we will explain our solution for the the third case by constructing
an evasive trajectory for the drone by locally modifying its original path. From dm(t)
minimal time distance we can see when the path will be occupied as:

dm(t) < (rd + ro(t) + dsafe), to,min ≤ t ≤ to,max (44)

where to,min and to,max are the minimal and maximal time values when the dm(t) minimal
distance is less than the sum value of the rd radius of the drone, ro the radius of the
obstacle and the dsafe safety distance. With these time values the occupied section of the
path is between s(to,min) and s(to,max). There are two more important point on the path
which we have to declare: the point which from the new path start to deviate from and the
point where the new path reconnects with the original path. We want to start the evasive
maneuver as soon as possible therefore s(tc+ ta) is depends only from the ta average value
of the computation plus communication time. For a safe return to the original path, we
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need a point in a sufficient distance from the obstacle. This dreturn returning distance is
calculated from the radius of the obstacle as:

dreturn = µ · ro (45)

where µ = R+ is a hyper parameter which we use to tune the dreturn returning distance.
These four points of the original path can be seen in Figure 11.

 

s(0)

s(T)s(tc+ta)

Drone

Evasive path

s(tr)
s(to,min) s(to,max)

dreturn

 

 
 
 
 
 
 
 
 

dsafe 
rd 
 

ro 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Important points of the original path in the process of evasive path generation

Now we know all the important point on the original path we can start to construct
evading path candidates with different evading directions and deviations from the original
path. For this we define two planes which are perpendicular to the line that connects the
s(to,min) and s(to,max) points and also include one-one said point. The P1 = {p1, n̄} ⊂ R3

and P2 = {p2, n̄} ⊂ R3 planes can be defined with one of their points and their normal
vector as:

p1 = {x(s(t0,min)), y(s(t0,min)), z(s(t0,min))} (46)
p2 = {x(s(t0,max)), y(s(t0,max)), z(s(t0,max))} (47)

n̄ =
p2 − p1
||p2 − p1||

(48)

In these planes we generate Nc number of circle pairs C1,i = {p1, rc,i, n̄} ⊂ R3, i ∈
{1, · · · , Nc} and C2,i = {p2, rc,i, n̄} ⊂ R3, i ∈ {1, · · · , Nc} which rc,i ∈ R+, i ∈ {1, · · · , Nc}
radii are different for each pair and their centers are p1 and p2 (see Figure 12). Now we
choose randomly or in a given pattern Np point pairs pc,1,i ⊂ C1, i ∈ INp

1 = {b ∈ Z | 1 ≤
b ≤ Np} and pc,2,i ⊂ C2, i ∈ INp

1 on the circles, one pair is defined as follows:

pc,2,i = pc,1,i + (p2− p1), i ∈ INp

1 (49)

Finally we define the Np number of path candidates which start at ps = {x(s(tc +
ta)), y(s(tc + ta)), z(s(tc + ta))}, go through a point pair pc,1,i, pc,2,i and return in pr =
{x(s(tr)), y(s(tr)), z(s(tr))}.
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Figure 12: Construction of the evasive paths in one circle

To choose the best candidate we build a graph from the ps, pc,1,i, pc,1,i, i ∈ INp

1

and pr points and run a similar graph search and velocity planning as in Section 3.3. The
Ge = V e, Ee graph (see Figure 13) is constructed for the search, it’s vertices are containing
the points defined above as:

V e = {ps, pc,1,i, pc,2,i, · · · , pr}, i ∈ INp

1 (50)

and the Ee edges are connecting ps to pc,1,i, i ∈ INp

1 , the pc,2,i, i ∈ INp

1 to pr and the
pc,1,i, pc,2,i, i ∈ {1, · · · , Np} pairs to each other in a way that every point pair with same
index i is connected as:

Ee = {ps, pc,1,i} ∪ {pc,1,i, pc,2,i} ∪ {pc,2,i, pr}, i ∈ INp

1 (51)

Now we must check the edges of each path candidate whether it intersects with a static
obstacle. Note that when we delete the edges intersecting with the Os static obstacles, we
need to remove all the edges that belongs they path candidate. So if any edge from the
[ps, pc,1,i], [pc,1,i, pc,2,i], [pc,2,i, ps], i ∈ INp

1 edge triplet is intersecting with a static obstacle,
the whole triplet is removed.
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Figure 13: Graph made from the path candidates

The graph search is the same as it was in Section 3.3 with the extension of the predicted
movement for the Ou obstacles, which for we assume a constant velocity motion v̄k. We fit
a B-spline to the selected new path and connect it to the remaining part of the original path
in the pr returning point. The evasive trajectory is τe(t) = [xe(se(t)), ye(se(t)), ze(se(t))]
where se(t) = R+ is the arch length of the evasive path in a given time. Note that the
evasive path will start at ps so:

τe(0) = ps (52)

The velocity planning is performed similarly as before with the following modifications:
the alteration of the starting velocity constrain to mach the actual velocity of the drone
in time tc + ta, since the execution of the evading trajectory will start during the flight:

ṡe(0) = ṡ(tc + ta) (53)

The original trajectory is replaced by the modified one. After the drone starts to follow
the evasive trajectory τe it will be handled like the original trajectory of that drone in
case of a new evasive trajectory generation is needed. This is true even if more than
one collision would be predicted in the original trajectory, because multiple obstacles are
handled separately. The order of checking the Ok

i , k ∈ INu
1 obstacles is defined a-priori,

and the evasive candidates are constructed to avoid the first detected obstacle. However,
when we choose from the candidates, we take into account all of them to reduce the
possibility for a future collision with them, i.e. the need for a new evasive maneuver.
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Algorithm 5 path checker

1: inputs: Os static obstacles; Ok moving obstacles; τ drone trajectories; γ hyper pa-
rameter for size increase; ta average computation time; µ hyper parameter of returning

2: output: τe evasive trajectory
3: pp ← pos(Ou(t0))
4: loop
5: tc ← current time
6: pc ← pos(Ou(tc))
7: construct prediction pf(t) from pp and pc via (39 - 40)
8: solve (41-42) with dim(Ou) to obtain ro, ho

9: for i ∈ INd
1 do

10: for j ∈ {1, · · · ,#Ou} do
11: solve (43) with pf,j(t), ro,j, ho,j to obtain dm(t)
12: evaluate (44) with dm(t) to check collision
13: if collision = True then
14: s(to,min), s(to,max)← OccupiedPart(τi, pf,j, ro,j, ho,j)
15: solve (46-49) with s(to.min), s(to.min, ) to obtain pc,1, pc,2
16: ps ← τi(tc + ta)
17: solve (45) to obtain dreturn
18: pr ← GetReturnPoint(τi, dreturn)
19: construct V e based on (50) with ps, pc,1, pc,2, pr
20: construct Ee based on (51) with ps, pc,1, pc,2, pr
21: Ge = {V e, Ee}
22: run Alg: 3 with Ge to obtain Pe

23: Se ← FitSpline(Pe, τi)
24: run Alg: 4 with Se, ps, τi(tc + ta) according to (52-53) to obtain τ e

25: update τi with τ e

26: end if
27: end for
28: end for
29: update pp with pc
30: end loop

In the algorithm the dim() and pos() gives the dimensions and positions of the ob-
stacles. The OccupiedPart function calculates the distances between the future positions
of an obstacle and the path of the trajectory, then gives the minimal and maximal arch
lengths of the occupied path segment. The GetReturnPoint function selects the returning
point to the original path which is dreturn distance away from s(to,max). The FitSpline func-
tion fits a B-spline to the selected evasive path and connects it with τi(t), t ∈ {tr, · · · , Ti}.
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4 Simulation based analysis
The tests for the path planning and for the unknown obstacle avoidance are done sepa-
rately with one-one question for each. As for the path planning, we want to know how the
computation time increases with the number of static and moving obstacles. As for the
evasive path generation, we want to test it for various scenarios to discover its efficiency
and potential weaknesses.

They were carried out using an ASUS ROG Strix G513IH laptop with a 2.90 GHz AMD
Ryzen 7 4800H CPU. The algorithm is implemented in Python and analyzed first using
matplotlib [8] simulation and further examined in the MuJoCo simulation environment
[14].

The two analyses use the same type of drones with the same capabilities and same
dimensions. We assume the drones can achieve a maximum velocity of vmax = 1m/s, a
maximum acceleration of amax = 0.4m/s and can be enclosed in a capsule with radius of
r = 0.1m and height of h = 0.6m.

4.1 Analysis of the trajectory planning algorithm

To test the computational time of more and more complicated tasks, we tested the Algo-
rithms 3-4 in three different environment with increasing amount (0,4,13) of static obstacle
Os and in each cases we planned trajectories for ten drones. The placement of the static
obstacles and the found paths can be seen in Figure 14.

The floor area of the test environment is 3.5m x 3.5m with a minimum and maximum
flying height of 0.3m and 1.3m. The dimensions of the static obstacles are 0.2m x 0.2m x
1.4m, note that the obstacles are taller than the maximal flying height to force the drones
to fly between them. As for the hyper parameters, the simulations were done with:
Nv = 100, dT = 0.1, cmin = 2, cmax = 20, vr = 0.4m/s; 0.5m/s; 0.6m/s, dsafe = 0.05m.

Since the goal of the analysis is the determination of the calculation time, we made an
easily scalable pattern for the pstart and pgoal positions which can be seen in Figure 14a.
We predict that the computational time for constructing a trajectory will increase with
the number of the obstacles present in the environment. We used matplotlib [8] to show
the trajectories of the drones (red lines) and the base paths before the simplification (thin
blue lines), the videos showing the results of the MuJoCo simulations can be accessed
with the links below Figures 15a-15c.
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(a) Start and goal positions with drone order

(b) Found paths in an empty environment
MujoCo simulation at https://youtu.be/
VSlGnK8FVrc

(c) Found path between four static obstacle
MujoCo simulation at https://youtu.be/
rpfzpxGNfa8

(d) Found path between thirteen static obstacle
MujoCo simulation at https://youtu.be/
ujIkgJTjnDM

Figure 14: Trajectories between different number of static obstacles generated with Algo-
rithm 3
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(a) Velocity profile among zero static obstacles
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(b) Velocity profile among four static obstacles
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(c) Velocity profile among thirteen static obsta-
cles

Figure 15: Velocity profiles generated with Algorithm 4

The chosen velocity was the available maximum 0.6m/s in all cases expect one case
were among thirteen static obstacle, with two dynamic obstacle where the chosen velocity
was vc = 0.5m/s. From this we can assume that in sparse environments, the variety of
velocity choices are less important than in dense environments. This need for a variety of
velocities is clearer in the optimized velocity profiles seen in Figure 15, which shows the
velocity of the drones compared to the distance traveled in their path.

The Table 1 shows how much time the drones needs to fly from their start positions to
their goal position on the paths found with the Algorithm 3 with constant velocity and the
impact of the path simplification (discussed in Section: 3.3.1) that results in these flight
times. The minimum flight time between the goal and end positions with the highest
available constant velocity vc = 6m/s is 5sec, it can be seen in the first case when there
are no obstacles blocking a straight passage with the first drone which do not have to
deal with any obstacle. This time value is present in several places in the table, referring
to a straight, undisturbed way between the obstacles It shows that with the increasing
value of static obstacles the paths are got more complicated, which was to be expected.
This increasing partner is not present in respect of the moving obstacles because the
different drones did not plan their paths among the same moving obstacles relative to
their local coordinate system. The second half of the table shows the importance of the
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path simplification. It shows the percentage by which the duration of the path has been
shortened. The average is a 16.815% reduction, but it can reach even a 72.904%.

#Ok Time of flight [sec] Saved time [%]

[pc] #Os = 0 #Os = 4 #Os = 13 #Os = 0 #Os = 4 #Os = 13

0 5 5 8.748 16.912 10.413 8.867

1 5.1156558 5.029 7.865 6.526 50.282 12.496

2 5.0805 5.176 5.255 10.846 13.794 66.345

3 5.792 6.168 6.259 33.847 3.893 72.904

4 5.102 5.600 8.088 13.677 12.550 52.769

5 5.849 6.692 7.956 10.434 9.589 21.146

6 5.111 6.985 6.985 43.992 9.055 9.055

7 7.545 7.545 7.545 8.719 14.506 0.440

8 5.115 6.385 6.560 7.917 22.641 25.442

9 6.681 7.256 7.859 15.281 13.612 26.347

Table 1: Path lengths and time saving with path simplification

The results of the simulations just half met with our expectations. At first there is
an expected overall increase in the computational time of Algorithm 3 as it can be seen
in Figure 16a with the increasing dynamic obstacle numbers, but with the static obstacle
number the results are the opposite. A possible explanation is with more obstacles there
are less edges, hence less possible choices. Since we use relatively thin columns as obstacles
(not e.g. wide walls) the Algorithm 3 do not have search for complex paths which would
result in longer path finding. The Algorithm 3 should be further tested in maze like
environments with increasing difficulty. The Figure 16b shows that the computational
time of the Algorithm 4, which wildly varies but in average is much more faster than the
path search.
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Figure 16: Computational time of trajectories in different environments, where each point
represents the computational time needed for one drone

4.2 Analysis of the collision avoidance algorithm

In this section, we examine the limitations of the Algorithm 5 through different tasks.
Since we could compose infinite number of different situations our focus was to exam-
ine how the algorithm handles simple problems. The hyper parameters of the path
checker were the followings:tH = 0.75sec, ta = 0.1sec, γ = 1.4, µ = 0.5, Nc = 4,
rc = {0.05m, 0.2m, 0.4m, 0.7m}, Np = 32 and the points for the candidate construction
were equally distributed between and on the circles. During the tests the computational
times for the path generation varied between 0.04 − 0.1sec and the average computa-
tional time was 0.0714sec. The time the algorithm needs for a collision check is less than
0.001sec.

4.2.1 Avoiding frontal and rear collision

In the first two cases, we examined the response of the algorithm when a column-shaped
obstacle with a radius of ro = 0.25m would have collided with the drone from the front
or the back. During the tests the drone and the obstacle moved in a common straight
line.

In the frontal tests the only limiting factor was the distance which from we started the
obstacle. If the obstacle was started a sufficient distance the algorithm had designed a
trajectory for a well-timed side motion which can be seen in the Figure 17a. The instant
when the new trajectory was started can be seen around 3sec in Figure 17b since there is
a little jump in the distance between the drone and the obstacle. For further developing
the algorithm, we want to minimize this jump since it is a sign of a wrongly timed switch
between the trajectories.
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(a) The evasive path
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(b) Distance between the drone and the obstacle

Figure 17: Frontal collision avoidance

In cases when the drone and the obstacle moved in the same direction and the velocity
of the obstacles was near to the velocity of the drone (which in this tests were ±0.05m/s),
a phenomenon occurred when the drone moved side by side to the obstacle. One such
precedent can be seen in Figure 18a, which show that the drone kept trying to return to
its original path.

(a) Constantly updated paths
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(b) Distance between the drone and the obstacle

Figure 18: Walk the dog effect

Since the algorithm first generates and evaluates the path candidates with constant
velocity and just after that design the velocity profile the following could and did happen.
When the drone started from behind the obstacle which was slightly slower than the drone
(around 0.1m/s) the drone did not overtake or the obstacle or just slowed down, instead
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hence it did an evasive maneuver which resulted in a reduced velocity in the direction of
the movement of the obstacle therefor it stayed behind it.

4.2.2 Avoiding an obstacles with multiple drones

In this case the task was to avoid an column-shaped obstacle with a radius of ro = 0.25m
with multiple drones which was starting positions were 0.5m distance from each other.
The drones started at the same time and moved to the obstacle which came in their
direction resulting a frontal collision.

At the first few tests the middle drone frequently stuck between a drone at the side
and the obstacle, because the circle with the biggest radius did not ensure a path that
would be steep enough to avoid the drone at the side in the same direction as the obstacle.
However after the introduction of a new circle with bigger radius (1m) this problem was
solved.

(a) Constantly updated paths
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Figure 19: Problems with the assumption of constant velocity motion

4.2.3 Avoiding obstacle moving in a circular arc

The most common problem of the algorithm is caused by the assumption of a constant
velocity for the obstacles. Although increasing the size of the obstacles during the predic-
tion of their future positions meant to compensate for it, the larger we choose the γ value,
the more amount of false collision warning will accrue, hence more evasive trajectory will
be generated unnecessarily. However by not increasing the size of the obstacle when pre-
dicting its future position can result in a similar false collision warning see Figure 20a.
Furthermore it can cause a more severe problem when there is collision in the future but
the algorithm does not respond, see Figure 20b.
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Figure 20: Problems with the assumption of constant velocity motion
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5 Real flight experiments

5.1 Hardware and software setup

The experimental setup consists of the Crazyflie drones, the Optitrack motion capture
system (Optitrack image processing server and infrared cameras), and a ground control
PC. The block diagram presenting the interconnection of the components is shown in
Figure 21. The quadcopter is equipped with an IMU containing a 3D accelerometer,
gyroscope, magnetometer and barometer, and it has two micro-controllers: a STM32F405
for running the light controller, and a nRF51822 for radio communication and power
management. The quadcopter runs the original Bitcraze firmware, while on the server
the Crazyswarm software platform is used to ease the implementation and configuration of
high-level control components [11]. The onboard tracking controller of the Crazyflie drones
which guarantees the precise tracking of the trajectories is a Cascaded PID controller1.
Optitrack is a high precision motion capture system with sub-millimeter resolution. We
use it to obtain precise pose measurement of the drones and unknown obstacles in real
time.

Optitrack
server

Ground
control PC

Flight
controller

On-board
sensors
(IMU)

State
estimator

Optitrack
camera systemMarker 

pointcloud

Drone
pose

Commands

State Motor cmd

120 Hz

120 Hz

Async

1 kHz 500 Hz

Inertial data

1 kHz

Drone pose

120 Hz

Figure 21: Block diagram of the experimental setup: indoor quadcopter navigation with
internal and external measurement system [1].

5.2 Flight tests and results

The tests took place in a drone arena (see Figure 23) which floor area was 3m x 3m, and
the drones were limited to a minimal and maximal flying height of 0.2m and 1.3m. The
floor area and the maximal flying height was set to keep the drones in the area that the
Optitrack system can see. The minimal flying height was set considering the pedestal of
some obstacles and the safety distance which was dsafe = 0.1m during the tests. We used

1Cascaded PID controller https://www.bitcraze.io/documentation/repository/
crazyflie-firmware/master/functional-areas/sensor-to-control/controllers/
#cascaded-pid-controller
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four drone during the test, six static obstacle and a F1TENTH (see in Figure 22) car with
a rod served as an obstacle with unknown movement.

Figure 22: F1TENTH with a rod

In the implementation the scene construction runs a-priori to the rest of the algorithm.
With this method the markers which used to measure the positions of the obstacles can
collected before flight.

Figure 23: Drone arena

A video illustrating the simulation results is available at https://youtu.be/5vepASKlTwg
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The drones path following accuracy during the real life experiment are shown in Figure
25 and the minimal distance between the drones during the flight can be seen in Figure
24. The drones kept a safe distance from each other during their flight.
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Figure 24: Minimum distance between the drones during the real flight experiment

31



Figure 25: Expected (red) trajectories compared to the real (black) trajectories
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6 Conclusions
We present a trajectory planning method for a group of drones, combining the advantages
of the fast, graph-search based path planner and velocity profile optimization. We also
complement the procedure by being able to modify the original trajectories to avoid
unknown moving obstacles that are predicted to collide with the drones.

With the trajectory planning algorithm (Section 3.3) the drones can safely fly in
dense environments among static and dynamic obstacles. This method is scales well with
increasing number of drones and obstacles. The trajectory plan outputs have been tested
and executed safely in numerous times on a team of 4 drones, as well as in simulations of
up to 10 drones. Future improvements for the algorithm could be: replacing the A* with
jump point search algorithm (JPS) which further optimize the process of the A* algorithm
through the neighbour purging rule and the forced-neighbour judgement method, hence
reducing the time and space costs of the algorithm [9]; in the velocity profile optimization
step the constrains for the velocity and acceleration could be reformulated and expanded
to a general 3D nonholonomic kinematic model [4], which helps to design a trajectory
with more traceable velocity profile in case of sharp turns.

The algorithm for avoidance of obstacles with unknown movement 3.4 turned out to
be expressly hyper parameter dependent. In an industrial, indoor environment this is
not a problem because it can be fine-tuned for the obstacles that may occur during its
operation, but in case of a fully unknown environment it would not be the best choice.
To further improve the algorithm as it was mentioned in Section 4.2.3 a better movement
prediction method should be developed [5].

In future work, we plan to apply the majority of the proposed enhancements and want
to develop a method for the optimal setting of hyper parameters.
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