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Abstract: The research work aims to overcome the limitations of current
traffic light control systems by introducing an innovative and flexible PLC-based
traffic light control platform adapted to automotive proving ground environment.
The ZalaZONE Proving Ground is the focus of the presented system, which will op-
erate centrally managed traffic lights in the near future while allowing full control
at different intersections by a local PLC (Programmable Logic Controller). Ex-
isting industrial traffic light control systems have been developed for traditional,
human-driven vehicles, therefore they are insufficient to meet the requirements of
testing automated driving systems. The project objective is to address these lim-
itations by developing a flexible platform supporting the testing and development
processes and the safe integration of automated or autonomous vehicles into the
existing road infrastructure. The main focus is on guaranteeing the safe operation
of the system while ensuring compliance with international standards, and opti-
mizing the real-time operation of the system. Users of the system will be mainly
automotive professionals who will carry out measurements on test tracks and thus
need an easy-to-use, flexible, and reliable system. The proposed system allows the
testing of different traffic scenarios that conventional systems cannot fully support.

Absztrakt: A dolgozat célja a jelenlegi közúti forgalomirányító (jelzőlám-
pás) berendezések képességeinek kiterjesztése egy rugalmas PLC-alapú irányító
platform fejlesztésével, amely az automatizált járművek tesztelési igényeihez is iga-
zodik. A ZalaZONE Járműipari Tesztpálya áll a bemutatott rendszer fókuszában,
ahol a közeljövőben központilag felügyelt, PLC (programozható logikai vezérlő)
alapú közlekedési lámpák fognak üzemelni a Smart City zónában tesztelési fe-
ladatok kiszolgálása céljából. A iparban elterjedt jelzőlámpa-irányító rendszereket
hagyományos járművek számára fejlesztették ki, így nem alkalmasak az automa-
tizált vezetéstámogató rendszerek vagy akár teljesen autonóm járművek által tá-
masztott követelmények kielégítésére. A projekt célja, hogy ezeket a korlátokat
egy olyan nyílt és adaptálható platform kifejlesztésével orvosolja, amely elősegíti
az automatizált járművek további fejlődését és biztonságos integrációját a meglévő
közúti infrastruktúrába. A fő hangsúly a rendszer biztonságos működésének garan-
tálásán, a nemzetközi szabványoknak való megfelelés biztosításán és a rendszer
valós idejű működésének optimalizálásán van. A rendszer felhasználói elsősorban
olyan szakemberek lesznek, akik tesztpályákon végeznek méréseket és fejlesztéseket,
és akiknek ilyenformán rugalmasan használható és megbízható rendszerre van szük-
ségük. Az új rendszer olyan forgalmi szcenáriók tesztelését teszi lehetővé, ame-
lyeket a hagyományos rendszerek nem képesek teljesen kiszolgálni.

Keywords: PLC, Automotive Proving Ground, Traffic Light Controller,
HiL Test, V2X, Automated Vehicles
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Chapter 1

Introduction

1.1 Scope
The main aim of this project is to design a flexible traffic light control system for
use across various proving grounds. The primary objective of this control system
is to address the needs of proving grounds where self-driving vehicles and their
associated functions are tested, such as the ZalaZONE proving ground.

As part of this, project a system that involves connecting and controlling mul-
tiple groups of traffic lights in varying manners will be developed. This traffic
management system will be made up of two major components: a central control
system and programmable logic controller (PLC) units placed at intersections to
manage traffic lights. The development of the PLC subsystem is the main focus
of our current work, discussed in this thesis.

The main advantages of our system include its ability to implement phase
plans that would be impossible with traditional traffic control devices, as well as
its ability to handle conflicting green signals. Another important benefit of this
system is that it requires no special training to use.

Our goal is to develop this kind of system by gradually implementing and
testing all components. As a first step of this project a local control system has
been developed and tested, which is discussed in detail in this work. It is essential
to comply with international safety and security standards, while at the same time
ensuring proper communication with other systems.

The system implementation places a strong emphasis on utilizing commercially
available hardware components. However, the software design offers functionality
that is not present in conventional traffic management systems.

Professionals conducting measurements on proving grounds will be the primary
users, requiring an easy-to-use, flexible and reliable system. Thanks to its design,
the system is operational on almost all automotive proving grounds equipped with
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PLC-controlled signal heads and other basic hardware such as reliable network
devices.

1.2 Motivation
The project aims to demonstrate the necessity of an advanced system for test-
ing autonomous vehicles in today’s world. It primarily focuses on the dynamic
requirements of the modern world, which traditional traffic management systems
are failing to satisfy. Although current systems have been verified as safe and
reliable, they cannot cope with the complexity and dynamics of modern traffic
systems, especially with autonomous vehicles.

In the current technological era, ’smart’ test tracks are gaining recognition
for their ability to validate the advanced functionalities of autonomous vehicles
[1]. The latest driver assistance systems like parking assistance, lane keeping and
Anti-lock Braking System (ABS) have considerably improved vehicular safety and
driving comfort. These systems have fulfilled their functions with no communica-
tion with other vehicles or infrastructure [2]. The automotive test tracks currently
in widespread use are designed primarily to test these functions with the physical
properties of vehicles.

Recent advancements in information and communication technologies have re-
sulted in the development of various innovative features, including accident warn-
ing systems, Green Light Optimal Speed Advisory (GLOSA), and slow vehicle
warning systems [3]. These technical marvels have paved the way for truly au-
tonomous vehicles to emerge [4].

Despite recent advancements, the progress of traffic light control systems has
conspicuously lagged. Our reliance on systems developed several decades ago has
limited our ability to adapt. We can classify traditional traffic lights into two cat-
egories: fixed-time and adaptive. Adaptive traffic light controls are more versatile
because they collect information and make decisions based on the data collected.
However, most traffic lights can only estimate the number of vehicles at an inter-
section and their throughput demand locally [5, 6, 7]. A common alternative is to
set up traffic management centers where traffic lights can be directly controlled,
or phase plans can be configured [8].

The present traffic light control systems lack the necessary equipment to handle
the crucial edge cases that are vital in the tests of self-driving cars. For instance,
when traffic lights fail entirely, a situation that seldom arises or, in any event, arises
only infrequently. Another example is when the system enables two opposing green
signals at the intersection concurrently [3, 9]. To effectively conduct malfunctions
for testing purposes, it is necessary to have complete control over the systems.

Additionally, the business-focused approach taken by manufacturers of traffic
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light control systems often involves the creation of their communication protocols.
This further complicates matters, necessitating the acquisition of a license for the
traffic light controllers to interact with equipment developed by various manufac-
turers. These closed-system devices do not offer the flexibility and open-source
applications needed to test highly customized scenarios effectively.

Considering these challenges, our main objective is to create and execute a mod-
ern, flexible traffic light control system using PLCs. This will provide the critical
opportunity to facilitate comprehensive testing scenarios for self-driving vehicles
that are essential for the rapidly changing technological landscape. Moreover, es-
tablishing an open and flexible system would promote progress in the autonomous
vehicle industry and improve the safe integration of autonomous vehicles into the
existing transport infrastructure.

The implementation of PLCs to manage traffic lights is emerging as a potential
solution to these challenges. The proposal entails the deployment of a dedicated
PLC at each intersection to manage the traffic lights, while enabling different
modes of operation and enhanced functionalities. Although the proposed control
system is designed to integrate several modes of operation, such as fail-safe stop,
local fixed program and remote control, only the local fixed program mode is
currently at a stage of development where it can be productively presented.

To ensure the successful completion of this project, great emphasis must be
placed on accurate testing of the control system to ensure its safe operation. Opti-
mization of the system is also essential to ensure its ability to operate in real-time,
and thus provide a robust response to the complex and dynamic requirements of
new transport systems.
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Chapter 2

Methodology and Tools Used

2.1 PLC Programming: Basics of PLCs
PLCs are primarily embedded computers that are specifically designed to control
and automate processes in manufacturing, production and other industrial envi-
ronments. They have become extremely popular devices due to their robustness,
reliability, and programming flexibility. Some of the more important features of
PLCs are presented below, which will make it easy to see why this particular device
family was chosen to control traffic lights [10, 11].

2.1.1 Design
The design of the PLCs is fundamentally modular. PLCs are composed of, among
other things: backplane, power supply, central process unit (CPU), Input/Output
(I/O) modules, communication modules.

The primary function of the backplane is to provide power and to transfer
signals between modules [12]. It is primarily used in older systems because of the
directly connected modules. Each manufacturer has its own proprietary solutions,
which are often incompatible with each other.

The power supply is responsible for providing the appropriate voltage levels
required for the operation of the PLC. Most PLCs can run on different voltage
levels, including 3.3VDC, 5VDC, 12VDC, and 24VDC. However, the input voltage
level of the power supply varies depending on the region and the site’s type of
electrical network. For instance, a factory might have a 24VDC busbar, but it
may need to be supplied from a 3-phase network. Common input voltages are
120/240VAC and 24VDC [10, 11].

The central element in a PLC is the CPU, which executes the programmed
code. The PLC CPU differs from the processors found in ordinary PCs in that it
has integrated operating memory and storage. Recently, it has become prevalent to
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use 32-bit processors in modern PLCs, which were once solely reserved for mobile
devices, while older models often were limited to 16-bit operations.

PLCs with pre-installed I/O modules are available, which enable communica-
tion between the PLCs and a range of sensors and actuators. These modules may
be either analog or digital; however, often there are no such modules on the PLCs,
in which case additional I/O cards must be used. It is important to note that
PLCs are typically designed to operate within a specified range of voltage levels
and signal speeds for their inputs and outputs. If the voltage levels are incompati-
ble or external devices are unreliable, it may be necessary to use galvanic isolation
[13]. However, most modern PLCs are designed to protect the CPU.

Another key feature of PLCs is their communication modules. PLCs used
to be primarily programmed through a serial port (RS232/485) in the past, but
newer models predominantly use Ethernet ports. Nevertheless, serial ports are
still present in some PLCs and are manufacturer-specific, serving mainly for di-
agnostic purposes. Additionally, some PLCs feature optical connectors that can
significantly reduce communication latency [11].

2.1.2 PLC Types
PLCs are available in different designs to meet all kinds of requirements [10]:

• Nano PLC: Another name for these devices is Programmable Relay Con-
troller. They have up to 15 I/O ports. They cannot be expanded with
modules. It is possible to program some types without any extra devices.

• Micro PLC: These PLCs also have I/O ports (usually 12-32), and also com-
munication interfaces. It is possible to further extend with modules.

• Standard PLC: These PLCs have a purely modular design and the number
of I/O ports can be up to 512.

• Brick PLC: The largest size PLCs on the market. The maximum number of
I/O ports is 4096. These systems are no longer used today.

• Special PLC: This includes PLCs of the Ex type, which are designed to
withstand extreme conditions such as potentially explosive environments.
The other type of special PLCs are the Fail-Safe PLCs, which are designed
with redundant hardware elements to prevent failure.

• Soft PLC: SoftPLCs, or software programmable logic controllers, are PLC ap-
plications that run on general operating systems such as Linux or Windows.
They offer the flexibility of running alongside other complex applications,
enabling parallel execution of tasks like image processing or graphical user
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interfaces. SoftPLCs can be deployed on a range of general-purpose hard-
ware, including industrial PCs based on x86 architecture or even smaller
platforms like Raspberry Pi.

2.1.3 Safety
In environments where the safety of people and equipment is a priority, the criti-
cality of PLC to operate safely is particularly important. Consequently, a range of
protective features have been incorporated into PLCs. Among these, redundancy
takes a prominent place. This characteristic enables the installation of backup
components in PLCs so that in case of a component failure, the backup takes over
and prevents systemic failure. PLCs are also engineered to enter into a secure
mode in the event of system failure, thereby reducing the potential risk of injuries
to personnel [10, 11].

Additionally, with PLCs having monitoring and diagnostic features integrated,
maintenance staff can receive timely notifications of any faults and undertake
appropriate repair actions. The PLCs we used also have such functions, and the
manufacturer of the PLC has even added a special monitoring option to the I/O
modules, which can detect possible damage to the connected cables.

The role of cybersecurity is becoming increasingly important in our days given
the frequency of hacking attacks, with attackers often targeting entire factories.
Many traditional PLCs are easily hackable; therefore, it is important to operate
them in an isolated network. However, the latest generation of PLCs now supports
the use of asynchronous keys during login, which significantly reduces security risk.

2.1.4 Program Structure
PLC programs are typically written in one of the IEC 61131-3 [14] standard pro-
gramming languages:

• Ladder Logic: This graphical language represents control circuits using sym-
bols that resemble relay logic diagrams.

• Structured Text: This is a high-level, text-based language and allows for
complex programming structures, such as loops and conditional statements.

• Function Block Diagram: This graphical language uses blocks to represent
functions, such as timers, counters, and mathematical operations. The blocks
are connected by lines, which represent data flow between the functions.

• Instruction List: This low-level, text-based language is similar to assembly
language and consists of a series of instructions executed sequentially.
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• Sequential Function Chart: This graphical language represents control pro-
grams as a series of interconnected steps and transitions, allowing for the
clear representation of sequential and parallel processes.

These languages allow for a structured approach to programming, making it easier
to develop, maintain, and troubleshoot the control program.

2.1.5 Special Features of PLCs
PLCs have special features that distinguish them from other computers and micro-
controllers. These features make them ideal for industrial automation and control
systems [10, 11, 15].

One of these key features is the real-time operation. PLCs are designed to
process inputs and respond to them quickly and consistently at the outputs. This
is critical in industrial applications, where accurate and timely control is essential
to maintain efficiency and safety.

Another important feature is deterministic behavior, which means that PLCs
perform tasks in a predictable and repeatable manner. This behavior ensures
the consistent and reliable operation of the control system, even in complex and
dynamic environments.

PLCs can also operate in harsh industrial environments with extreme temper-
atures, dusty and humid environments, and vibrations. This makes them ideal for
a wide range of applications from the manufacturing industry to the oil and gas
industry.

However, PLCs can be easily integrated with other industrial devices, such
as human-machine interfaces (HMIs), variable frequency drives (VFDs), and re-
mote I/O modules. This allows seamless communication and control between the
different elements of an industrial automation system.

Modular and scalable designs are also an important feature of PLCs. This al-
lows easy expansion and customization of the control system, as required, without
the need for major reprogramming or hardware changes.

Finally, PLCs have robust communication capabilities, supporting a wide range
of communication protocols, such as Ethernet, Modbus, and Profibus. This allows
communication with other devices and systems in the industrial environment, en-
abling the centralized control and monitoring of multiple processes and equipment.

In summary, PLCs have unique features such as real-time operation, determin-
istic behavior, operation in harsh industrial environments, easy integration with
other industrial devices, modular and scalable design, and robust communication
capabilities, which make them an ideal choice for industrial automation and con-
trol systems. These features ensure that PLCs provide reliable, efficient, and safe
control solutions for various applications.
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2.1.6 I/O Cards
I/O cards or input/output modules are the basic components of PLC systems.
They provide an interface between the PLC and the sensors and actuators involved
in the process, enabling communication and control between devices [10, 11].

There are several types of I/O cards, such as:

• Digital input cards: These cards are used to read the signal of digital devices
such as switches, push buttons, and proximity sensors. They typically detect
ON/OFF states, which are represented as binary values (0 or 1).

• Digital output cards: These cards control digital devices such as solenoid
valves, relays, and indicator lights. They send binary signals (0 or 1) to turn
the devices ON or OFF, respectively.

• Analog input cards: These cards read continuous signals from analog devices
such as temperature sensors, pressure transducers, and flow meters. The
analog signals are converted into digital values that can be processed by the
PLC.

• Analog output cards: These cards control analog devices, such as variable-
speed drives, control valves, and analog meters. They generate continuous
output signals based on the digital values provided by the PLC.

I/O cards can be built into the PLC or added as separate modules, allowing
for system customization and expandability. This modular design allows users to
configure the PLC system according to their needs and easily add or remove I/O
cards as required.

In conclusion, I/O cards play an important role in PLC systems by providing
an interface between the sensors and actuators of the PLC. Different types of
I/O cards, including digital and analog input/output modules, allow the PLC to
communicate with and control a wide variety of devices, thus ensuring the efficient
and reliable operation of the control system.

2.2 Open Platform Communications Unified Ar-
chitecture (OPC UA)

This protocol is based on the former OPC standard, which uses Microsoft’s own
COM/DCOM technology. However, the OPC Foundation has recognized that the
increasing complexity and diversity of industrial automation systems require a
more flexible, secure, and platform-independent communication standard. As a
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result, the OPC UA was developed to address the limitations of OPC Classic and
better meet the requirements of modern industrial control systems [16].

The main reasons for developing OPC UA were to

• Platform Independence: The OPC UA was designed to work on any plat-
form, including Windows, Linux, and embedded systems, unlike OPC Clas-
sic, which relies on Microsoft COM/DCOM technology. This enabled the
OPC UA to support a wide range of industrial applications.

• Enhanced security: The OPC UA has built-in security features, such as en-
cryption, authentication, and access control, that guarantee data protection
and the integrity of communication between devices and systems.

• Scalability: The OPC UA is highly scalable, capable of supporting systems
of all sizes and complexities, from simple single-device applications to dis-
tributed control systems involving thousands of devices.

• Information modeling. This enables more efficient and valuable communica-
tion between the devices and systems.

• Interoperability: The OPC UA is designed to be compatible with a wide va-
riety of devices and systems, regardless of the vendor or underlying technol-
ogy. This allows seamless integration and communication between different
devices and systems in an industrial environment.

2.2.1 How to Collect Data From OPC UA Nodes?
The OPC UA offers three basic operations in communication between the server
and client: standard data reading, subscription function, and item monitoring.[16,
17]

During standard data reading, clients periodically poll the server to update the
value of each item. This method requires the client to send regular requests to the
server regardless of whether the values of the items have changed.

The subscription feature allows clients to receive notifications of changes in the
values of monitored items. Here, the client subscribes to certain items and the
server sends a notification only when their values change. This reduces network
traffic and improves communication efficiency.

Item monitoring involves monitoring the values of individual items on the OPC
UA server. Clients can specify the items that they want to monitor and the
conditions under which they want to be notified. This could be a change in value,
status, or a specific event.

Comparison of subscription, item monitoring, and standard value reading
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• Efficiency: Subscription and item tracking are more efficient than standard
value reading because they reduce the need for continuous queries. Standard
scanning requires a client to send regular requests to the server, which can
generate unnecessary network traffic. Conversely, with subscription and item
monitoring, the server sends updates only when the values of the monitored
items change, thereby reducing network traffic and improving communication
efficiency.

• Timeliness: Subscription and item monitoring provide more timely updates
than standard value reading. The server immediately sends notifications
when the values of the monitored items change, allowing customers to react
faster to changes.

• Flexibility: Clients can define the items they want to monitor and the con-
ditions under which they receive notifications, so they can focus on the data
that matters most to them.

In short, the OPC UA subscription and item monitoring features allow more
efficient, timely, and flexible data communication between clients and servers com-
pared to the standard value reading. This reduces network traffic and allows clients
to focus on the data that matters most, thereby improving the performance of in-
dustrial automation and control systems.

2.2.2 Encryption and Authentication
OPC UA’s security model relies on the "Security Policy" to establish encryption
and integrity mechanisms that devices utilize for securing data [18]. Several prede-
fined security policies are available in OPC UA, offering various levels of protection.
Examples of these policies are as follows:

• None: No security

• Basic128Rsa15: RSA 128-based encryption and RSA-15 signature

• Basic256: RSA/SHA-256-based encryption

• Basic256Sha256: RSA/SHA-256-based encryption and SHA-256 hash

• Aes128-Sha256-RsaOaep: AES-128 encryption, SHA-256 hash and RSA-
OAEP

The OPC UA authentication scheme verifies the legitimacy of clients and
servers. This mechanism is a fundamental aspect of the security architecture, as
it maintains the confidentiality and integrity of the client-server communication.

OPC UA offers several ways for clients to identify themselves to the server:
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• Anonymous authentication. This method is rarely used and is recommended
only in specific cases as it is less secure.

• Username/password based authentication: OPC UA also supports username
and password based authentication, which is commonly used to control user
level access. However, this method is less secure than certificate-based au-
thentication, so it is important to use it appropriately and to create strong
passwords.

• Certificate-based authentication: OPC UA makes extensive use of X.509
certificates for mutual authentication between client and server. Each party
has its certificate issued by a trusted certificate authority (or it can be self-
signed). When a client tries to connect to a server, the server requests the
client’s certificate and checks its validity. The same is true in reverse. If
either certificate is invalid or untrusted, the connection is refused.

2.3 In-the-Loop Tests
In-the-loop tests are techniques that help to test and improve a system (for ex-
ample, a car’s electronics) without actually having to carry out risky or expensive
experiments. This is achieved by simulating different parts of the system (such
as software or hardware) in a computer to test their operation and interactions.
In-the-loop testing methods are important in the process of testing and developing
systems. The use of these methods ensures that the system functions correctly in
actual use and minimizes the risk of potential errors [19, 20].

Model-in-the-loop (MiL) testing is the initial phase in which a mathematical
model of the system’s operation is created. This phase occurs before the actual
hardware or software development and allows for preliminary testing and opti-
mization of the system’s operation.

Software-in-the-loop (SiL) and processor-in-the-loop (PiL) testing are used
later in the development process. In these phases, the system software is run-
ning on a simulated hardware (SiL) or an actual hardware processor (PiL), but
the external inputs and hardware environment are simulated. This allows testing
of the software operation and interaction with the hardware without the need to
use physical hardware, thus reducing costs and risks.

Finally, hardware-in-the-loop (HiL) testing is the most complex, as it combines
the actual hardware with a computer model of the system. HiL testing allows for a
complete examination of the system, including interactions between the hardware
and software.

The HiL test is the best method for the final testing because it can accurately
simulate the operation of a real system. Because HiL testing uses real hardware,
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it is the most expensive and time-consuming method; however, it is the most val-
idated because it can simulate real system behavior, including hardware/software
interactions, as accurately as possible. Therefore, HiL testing is the phase that is
most capable of demonstrating the reliability and performance of a system under
real-world conditions.

2.4 Intergreen Matrix
In traffic engineering, the so-called intergreen time or intergreen period is funda-
mentally important. It refers to the time span between the end of the green phase
for a certain traffic flow and the beginning of the green phase for the following po-
tentially conflicting traffic flow or permitted turning traffic flow. Intergreen time
often includes the yellow and all-red phases of a traffic signal control system. Its
primary objective is to clear the intersection of vehicles in the first phase before
the vehicles in the next phase are set in motion. This period is critical for avoiding
potential conflicts and collisions at intersections [21, 22].

The length of intergreen time is typically determined based on several factors,
including the size and layout of the intersection, vehicle speeds, and traffic condi-
tions. By optimizing intergreen time, traffic engineers strive to achieve a balance
between safety needs and traffic flow efficiency.

The intergreen matrix is a concept used in traffic signal control to represent the
different intergreen times between different phases of traffic signal control. Each
cell in the matrix represents the intergreen time between two specific phases, with
the rows and columns of the matrix representing the origin and destination phases,
respectively. This matrix is a useful tool for traffic engineers to plan and optimize
the sequencing of traffic signals to ensure efficient traffic flow while maximizing
road user safety. The exact design of the intergreen matrix must be adapted to
the specific conditions of each intersection and can therefore vary greatly from
intersection to intersection.
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Chapter 3

Realization

This section describes the structure of the light control software, its built-in safety
features and the implementation of the hardware-in-the-loop test.

3.1 System Architecture
As shown in Figure 3.1, the entire traffic signal control system consists of 2 primary
subsystems. The first subsystem, elaborated further in this paper, is the local traf-
fic light control program that runs autonomously on the PLCs and controls signal
lights through its outputs without any dependency on the other elements of the
system elements. The PLCs communicate with the second subsystem, the central
system, via the OPC UA protocol. Through the central system, information about
the traffic lights is accessible by multiple external devices. This feature presents an
opportunity for developers to integrate different V2X systems using the system’s
API [3].

Figure 3.1: System elements
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Figure 3.2: State Machine of the Main Program

3.2 PLC Program
The implemented PLC program that controls the traffic lights is overwhelmingly
complex. In order to make the mechanism easy to understand for the reader, I
will explain the structure with the help of the Figure 3.3.

The main program of the PLC is a Program Organization Unit (POU) that
is written in Structured Text. The PLC task manager cyclically calls this program
every 10 milliseconds. The main purpose of the primary program is to manage the
outputs via a state machine, as shown in Figure 3.2.

In the IDLE state of the system, the lights are in a condition known as yellow
flashing. The START state, which is only accessible from the IDLE state, initiates
the starting phase plan. Upon completion of this phase plan, the system automat-
ically transitions into the RUN state. The RUN state is the most intricate state
of the system. During this state, several POUs are called, including the Light
Control program, Intergreen Matrix Checker program, and the Connected Cable
Checking program.

A notable constraint of the main program is that it can only transition from
the RUN state to the ERROR state. This was a deliberate development decision
because there are failures that can be resolved by rebooting the system, and the
system is capable of rebooting automatically.

The system can only enter the STOP state from the RUN state, and this
can only occur when an external stop signal is received, either from the Ethernet
interface or from the I/O modules.

The ERROR state is the last state to mention. This state is responsible for
alerting the system when an operational error occurs, for instance, a cable break
or an intergreen violation. From the ERROR state, the system will automatically
attempt to exit and reboot itself a predefined number of times. If rebooting does
not resolve the issue, manual intervention is necessary.

The light control program POU is also written in structured text and is
called directly in the RUN state of the main program. Its task is to control all the
lights present at the intersection by calling the traffic light function block (FB).
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Figure 3.3: PLC Program Structure
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Each traffic light head was assigned a separate traffic light FB entity. The traffic
light FB is a simple structure in the structured text language, which contains a
total of four timer elements and iterates through the different phases using the
given time values. Similarly, traffic light blinker FB is a simple ladder diagram
with two timer elements and controls only the amber light output.

The intergreen matrix checker and connected cable checking programs
are responsible for signaling the system when a failure occurs. Both programs were
written in structured text, and the outputs of the main program were monitored.
The intergreen matrix checker is a redundancy element that improves security.
This element works with predefined time constants that cannot be modified by
the user, only by the programmer. It measures whether sufficient time has elapsed
between green phases. The connected cable checking program detects if anything
has happened to the connected cables through the internal feedback of the I/O
modules. Both programs indicate global variables in the PLC if a fault has oc-
curred, so that all POUs can detect the fault immediately.

The error-handling program is also called periodically, independent of the
main program, and checks the global variables to determine if an error has oc-
curred. If an error is detected, it checks the type of error (cable or intergreen
matrix) and starts a reboot accordingly or signals the error to the central program
(this program is still under development). If the system exceeds the allowed re-
boot attempt, it switches permanently to the error mode and signals the type and
severity of the error to the administration and central programs. This POU was
also written in structured text.

3.2.1 Webvisualization
In addition, it is important to note that the PLC has a web visualization interface
where the PLC outputs, inputs and error variables can be monitored via a human
machine interface (HMI). This interface is easily accessible from any web browser.
The implemented HMI is shown in Figure 3.4.

3.2.2 PLC Output Logger
The PLC program contains another important POU, called Datalogger POU.
This runs completely independently of all the PLC programs. One of its tasks
is to synchronize the internal clock of the PLC with the world clock using the
Network Time Protocol (NTP). This function is of particular importance because
in the event that the PLC’s internal clock is shifted when the device is powered
off, the clock must be set to the correct time. Another function of the POU is to
continuously log changes in PLC outputs to a CSV file to facilitate testing and
debugging.
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Figure 3.4: Human Machine Interface of The PLC Program

3.3 Hardware-in-the-Loop Test
The most challenging aspect of HiL testing is implementing the test environment.
Connecting traffic lights to each PLC output is the simplest solution. However,
this option is impractical due to its space requirements and would make the PLC
highly immobile. Additionally, simulating a cable break between the PLC and
traffic light heads would be difficult with this solution. Therefore, a test was
needed that would allow the PLC to remain portable, simulate the cable break,
provide a way to test the PLC outputs with instrumentation and keep the cost
down.

Given these constraints, I designed a dedicated testing circuit utilizing sim-
ple electronic components such as transistors, LEDs, and a microcontroller to
accurately measure the output signal level. However, there were two obstacles:
simulating a cable break and reducing the voltage of the PLC outputs (24V DC)
to a level that most microcontrollers could handle (3.3V DC).

3.3.1 Measurement Circuit
The main objective of this design task was to simulate a cable break. The simplest
solution would be to use a bipolar transistor common emitter configuration, see
figure 3.5. The purpose of this connection would be to use the output of the
Arduino to saturate the transistor. However, our experiments have shown that
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Figure 3.5: Common Emitter Transistor Configuration

this connection is not suitable in this case. The output card of the PLC constantly
checks with a negligible current whether a short circuit or cable break has formed
on the output. In this configuration, the transistors do not close fully and sufficient
current is passed to the load, in this case an LED, which causes the PLC to not
detect a cable break when the Arduino’s output is deactivated.

For these reasons, a modified Sziklai pair circuit was chosen due to its high
current gain and exceptional stability. Sziklai pair is also widely used in different
audio equipments thanks to its excellent stability. Its stability is mainly due to
the fact that its saturation voltage is about 0.6V DC, which makes it less sensitive
to load impedance. Another advantage of its low base saturation voltage is that
it can be effortlessly operated by any microcontroller.

The second problem, related to the input voltage limitation of the microcon-
troller, can be easily solved. To address this, a basic solution would involve a
resistance-based voltage divider and a zener diode.

During the design process, the following aspects should be taken into account
and the circuit should be developed accordingly:

• Only use off-the-shelf parts - This is to reduce costs and to make it easy to
repair the test panel in case of failure.

• All components must be able to withstand 24V DC.

• Power dissipation should be kept to a minimum - In order to avoid overheat-
ing during testing, which could lead to dangerous situations.

• Use as few components as possible and keep the size of the final circuit as
small as possible.

• Provide visual feedback to the tester that allows him to see the current status
of the simulated traffic lights, e.g., LEDs.
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Figure 3.6: Classical Sziklai Pair

Figure 3.7: Individual Sziklai Pair Based Sub-Circuit

3.3.1.1 Designed Circuit

The designed circuit, shown in Figure 3.8, consists of several subcircuits, shown
in Figure 3.7. Each output has a separate subcircuit, but these subcircuits are
identical in all respects. Unlike the traditional Sziklai pair circuit, displayed in
Figure 3.6, the circuit I have designed differs in several ways. In the classical
Sziklai pair circuit, the collector of Q2 is connected to the emitter of the transistor
Q1. In this scenario, the collector voltage of transistor Q2 is equivalent to the
base voltage of transistor Q1 minus the opening voltage of transistor Q1. If this
circuit had been implemented, the collector voltage of transistor Q2 would have
been below 5V DC. It is crucial to note that we intend to attach an LED to the
output. An average LED requires approximately 20mADC of current to light up,
so there is a limit to how much resistance we can put into the circuit as a maximum
load.

Rmax = UQ2,C

ILED

= 5V

20mA
= 250Ω
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Figure 3.8: Designed Measurement Circuit

The resistance value is significantly small considering the low-cost circuit el-
ements employed in the implementation of the circuit. Hence, the nominal re-
sistance value of the resistors can deviate easily from their actual value. Conse-
quently, a 10Ω alteration in resistance will lead to an approximately 0.8m ADC
variation. It’s possible to experience a 4% resistance value variation in reality since
the resistors utilized possess a tolerance of 5%. It is also important to note that
we had a larger inventory of higher value resistors available.

The initial stage of our design process was to determine the appropriate tran-
sistor types, as their parameters impact all other circuit elements, which must
be fine-tuned accordingly. We chose the P2N2222A NPN transistor model, which
offers an extensive voltage range [23]. Please refer to Table 3.1 for further details.
The only issue regarding this transistor is the emitter-base voltage, as the other
voltage limits are higher than the maximum voltage present in the circuit. Upon
further examination, it becomes clear that this transistor will be replacing the Q1
transistor, meaning that only a maximum of 5V DC will be applied to its base,
which does not exceed the maximum emitter-base voltage levels.

For the PNP transistor Q2, the 2N3906 model was selected [24]. The properties
of this model are displayed in Table 3.2. It can be seen that both the collector-
emitter and the collector-base voltages of this transistor exceed the maximum limit
voltage level of 24V DC, but the emitter-base voltage is lower than this. Since the
base voltage is set internally in the circuit and not by an external voltage generator,
it will not pose a problem.

Since the emitter of transistor Q1 is connected to the ground, a resistor such as
R5 in Figure 3.7 is useful for limiting the emitter current. To minimize unnecessary
power consumption, selecting a high-value resistor is recommended to minimize the
emitter current of Q1.
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Characteristic Symbol Value
Collector-Emitter Voltage VCE 40V DC

Collector-Base Voltage VCB 75V DC
Emitter-Base Voltage VEB 6V DC

Collector Current (Continuous) IC 600mADC

Table 3.1: P2N2222A Transistor Maximum Ratings

Characteristic Symbol Value
Collector-Emitter Voltage VCE 40V DC

Collector-Base Voltage VCB 40V DC
Emitter-Base Voltage VEB 5V DC

Collector Current (Continuous) IC 200mADC

Table 3.2: 2N3906 Transistor Maximum Ratings

IQ1,E = UQ1,E

R5
≃ UArduinoOutput − UQ1,BE

R5
≃ 5V − 0.7V

10kΩ = 430µA

The current gain (β) of the PNP transistor we use is approximately 150[24].
Using this information, the current of the collector and base currents can be cal-
culated.

IQ1,B = IQ1,E

βQ1 + 1 ≃ 430µA

151 = 2.85µA

IQ1,C = βQ1

βQ1 + 1 × IQ1,E = 150
151 × 430µA ≃ 427.15µA

In this scenario, it is evident that the base current’s value is negligible, so the
value of the resistor R1 is almost insignificant. A 10kΩ resistor was used in our
case.

The primary function of the R2 resistor is to stabilize the circuit. If transistor
Q1 is in the cutoff state, then R2 functions as a pull-up resistance and lifts the
base of transistor Q2 to the output voltage of the PLC. Typically, pull-up resistors
are expected to have a high resistance. Therefore, a 10kΩ resistor is used.

Base current IQ2,B can be calculated by using current IQ1,C and resistance
of R2. From the data sheet of 2N3906 PNP transistor, it is inferred that the
saturation voltage UQ2,EB is roughly 0.8V DC [24]. We can formulate the following
equation using Kirchoff’s current law:

IQ2,B = IQ1,C − IR2 = IQ1,C − UQ2,EB

R2
= 427.15µA − 0.8V

10kΩ = 347.15µA
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Finally, it is necessary to calculate only the current IQ2,E in order to determine
how much current the system requires from the PLC. To determine IQQ2,E

, the
value of IQQ2,C

current is necessary. To determine IQ2,C , we can take into account
the collector-emitter saturation voltage of the PNP transistor, which is about
200mV DC[24].

IQ2,C = UP LCOutput − UQ2,CE − ULED

R3 + R4

It was mentioned earlier that for LEDs it is advisable to limit the current to
20mADC. Another consideration to keep in mind when designing the circuit is
that the Arduino input should be set to a maximum voltage of 3.3V DC. With
this information, the maximum value of R4 can be calculated:

R4,Max = UArcuinoInputMax

IQ2,C,Max

= 3.3V

20mA
= 165Ω

Taking into account the calculations and available circuit elements, a resistor
of 150Ω was chosen to replace the R4 resistor. The next step was to calculate R3:

R3 = UP LCOutput − UQ2,CE − ULED

IQ2,CMax

− R4 = 24V − 0.2V − 2V

20mA
− 150Ω = 940Ω

The value of the R3 resistor has been set to 1kΩ due to the limited resistance
options. Lastly, the value of IQ2,C

, IQ2,E
and the PLC output current can be

calculated:

IQ2,C = UP LCOutput − UQ2,CE − ULED

R3 + R4
= 24V − 0.2V − 2V

150Ω + 1000Ω = 18.96mA

IQ2,E = IQ2,B + IQ2,C = 0.35mA + 18.96mA = 19.31mA

IP LCOutput = IQ2,E + IR2 = IQ2,E + UEB

R2
= 19.31mA + 0.8V

10kΩ = 19.39mA

Based on the performed calculations, the total current consumption of the
circuit does not exceed 20mADC, which is a very low current consumption and
guarantees the safe operation of the 2W resistors we use. Moreover, an additional
Zener diode is inserted in the circuit to ensure that the measurement microcon-
troller will not be damaged.

3.3.1.2 Simulating the Circuit Design

After successfully designing the circuit, it was crucial to validate the design before
conducting real-life tests. Consequently, the circuit design underwent a simula-
tion, with the results presented in Figure 3.9. It is evident from the results that
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Figure 3.9: Circuit Simulation: Transistors in Saturated State

the voltage and current values match the earlier computations in Section 3.3.1.1.
Therefore, the designed circuit is ready for assembly. It is noteworthy that the
voltage level at the Arduino input satisfies the transistor-transistor logic (TTL)
level condition. This condition indicates that a transistor-based digital input is
considered true when the voltage value reaches a minimum of 2V DC. According
to the simulation, it reaches 2.85V DC in our case.

3.3.2 Measurement
To conduct the measurement, we utilized multiple devices to simulate the real-life
system. The measurement setup is shown in Figure 3.10. The following models
were utilized during the testing:

• PLC: PFC200, 2nd gen, Ex. (450-8211/040-000)

• I/O cards: 2x 8-channel digital output card, 24VDC, 0.5A with diagnostics,
Ex. (750-537/040-000)

• Microcontroler: 2x Arduino Nano

• Measurement control device: Raspberry Pi 4
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Figure 3.10: Devices and Modules in the HIL Test

The entire measurement was controlled using a Raspberry Pi 4 (RPi4) single-
board computer. There are two versions of the measurement program run by RPi4:
one written in Rust and one written in C. The reason is that the central system is
written in Rust and this allows not only to test the correct operation of the PLC
programs, but also to test the OPC UA implementation of the central system,
which uses the C library open62541 [17]. For these reasons, the C version of the
measuring program does not include all OPC UA functions, see Table 3.3.

Read Write Subscription Encryption authentication
C ✓ ✓ ✓ ✗ ✗

Rust ✓ ✓ ✓ ✓ ✓

Table 3.3: Tested Functions in Open62541 Library

The measurements evaluated both the correct operation of the PLC programs
and the capabilities of the OPC UA protocol. Additionally, we checked whether
the PLC processor was able to execute its embedded programs and the OPC UA
communication tasks in parallel.

3.3.2.1 Network Wide Testing

The purpose of this test was to measure the latency between two system endpoints
- the PLC and the RPi4. Latency was defined as the time lapse between the signal
change in the PLC and its detection by the RPi4 through the OPC UA protocol.
All devices must retrieve the current time from the same NTP server to ensure the
accurate evaluation of the measurement log files.
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Furthermore, we analyzed the amount of data transmitted between network
nodes as we aimed to determine the optimal network data traffic capacity. To
quantify the data traffic, we utilized Wireshark, which is a software tool that
captures and sorts network traffic for further examination [25].

3.3.2.2 CPU Load Testing

If the PLC’s processor is overloaded, it can cause serious system failures. This
occurs because the PLC task manager, which oversees system processes, lacks al-
located resources. In an unoptimized program, the developer may overlook the
added burden of communication protocols on the processor while writing the pro-
gram, which can lead to potentially dangerous outcomes. Firstly, during high CPU
loads, system timings may drift due to the task manager’s inability to keep up with
the pre-defined cycle times. A simple solution is to leave a computing buffer for
the CPU with at least 20% extra capacity. Continuous monitoring of the CPU
load by means of HiL tests during the execution of PLC programs and OPC UA
communication is recommended. Optimal results were achieved if the CPU load
remained below 80%.

3.3.2.3 Test Cases

It was previously noted in Section 3.3.2 and in Table 3.3 that multiple versions of
the control software for the HiL test are operating on RPi4. This section aims to
provide a more detailed explanation of these versions to highlight the differences
between them.

The initial version of the HiL test control software utilized the C programming
language. One reason for this decision was that the open612541 library, on which
the software was based, was also written in C. Additionally, as the RPi4 interacts
with the microcontrollers via I2C communication [26], creating the software in C
minimized potential compatibility issues.

However, as development progressed, it was discovered that the I2C library
was poorly optimized, which resulted in an unreliable connection. Thus, the test
controller program was rewritten, and our own implementation of the open62541
C library was tested using Rust. The initial version of the Rust program did not
include encryption and authentication functions, as the primary objective was to
test the basic OPC UA functions described in Section 2.2.1.

Surprisingly, the Rust implementation of I2C was significantly better quality
than the C implementation, so we decided to test all the OPC UA features we
wanted to implement in the system in Rust and not in C.

Data collection was done consistently in all three test cases. The PLC recorded
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Average Network Max Network Average Network
Latency Latency Load

C 115.3311ms 171.00ms 857bytes/s
Rust 193.1405ms 301.00ms 768bytes/s

Rust with Encryption 276.2109ms 362.00ms 954bytes/s
and Authentication

Table 3.4: Network Test Results, 1-Hour Long Measurements

all output changes in real-time in an internal log file 1. In addition, a Wireshark
capture process has been started on the RPi4 to monitor the incoming and outgoing
traffic. Finally, the I2C communication with the microcontrollers and the OPC
UA communication with the PLC are started in parallel, whose results are also
saved to log files for later analysis.

The I2C is used to continuously check the signals on the PLC outputs and
to trigger a simulated cable break, but this function has not been used not yet.
Each microcontroller runs a simple, custom-made program whose overall task is
to manage the I2C communication via interrupts and execute the instructions
contained in I2C messages. The detailed program codes for the microcontrollers
can be found in Appendix A, B.

3.3.3 Results
All test cases were successfully executed, and the results are presented in Tables
3.4 and 3.5. The results show that the lowest network latency was obtained by
using the control program written in C. This finding is not unexpected, as Rust’s
performance, although nearly equivalent to that of C, still lags behind [27]. It
was expected that encryption would increase the computational demand since the
program must run the encryption algorithms. The Rust program’s performance is
also impacted by its reliance on an internal C linker to use the open62541 library
instead of utilizing pre-existing C libraries. To enhance the runtime of the Rust
program, employing a specialized OPC UA library written in or optimized for Rust
is recommended.

Unfortunately, these results indicate that this implementation requires further
optimization. The latency can be minimized by utilizing appropriate networking
hardware, including optical networking, industrial-grade networking equipment,
and high-quality network chipsets on the measurement computers.

1Note: This timestamp may be different from the timestamp when the signal change actually
appeared on the output. This is because the PLC changes the outputs after the entire program
cycle has run.

26



Max CPU Average CPU
Load Load

C 30 % 20.09 %
Rust 29 % 20.01 %

Rust with Encryption 29 % 20.36 %
and Authentication

Table 3.5: CPU Test Results, 1-Hour Long Measurements

The average traffic load of the network shows that the OPC UA protocol does
not transmit and receive a large number of network packets. This aligns with
our expectations, as OPC UA is primarily intended for industrial environments,
where communication occurs among hundreds of devices rather than just two, as
in our particular scenario. These traffic results indicate that the network’s primary
design focus should prioritize response times over high bandwidth.

The measured results indicate that the PLC processor has significant compu-
tational capacity reserves. During all three tests, the processor experienced an
average load of about 20%, and the maximum load never exceeded 30%. The
measured results indicate that the PLC processor has significant computational
capacity reserves. Therefore, the target computational capacity reserves have been
achieved.

During the testing, we analyzed the performance of the PLC programs pre-
sented in Section 3.2 but mostly manually and not in an automated way. Initial
results indicated that all programs performed satisfactorily, although further ex-
amination of the HiL test findings revealed some areas for improvement. Here, I
observed that each minute, the traffic light phases were extended by an additional
cycle time. At first, I was puzzled by this, but after running additional tests and
disabling several of the PLC programs, I was able to determine that the prob-
lem was caused by the "light function block". Originally, this block was written
in ladder diagram language, but this language was ill-equipped to handle state
machines with time-bound state change conditions, as our results showed. As a
result, I rewrote the block in a structured text programming language, and the
error was eliminated. Although a cycle time error may appear insignificant, when
you consider that it can cause a delay of up to 14 seconds in a day, the seriousness
of the error becomes more apparent.

However, upon later examination of the test results, an additional error was
noticed. In this case, the phase plans were slipping by one cycle time every ten
minutes. The error’s source was not the PLC programs but the operating system
of the PLC. Today’s PLCs use an embedded Linux operating system and emulate
various runtime systems. This simplifies the development process by using one
operating system for different types of PLCs. A bug has recently been detected,
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with the NTP updater feature of the operating system identified as the root cause.
Specifically, the NTP updater interferes with the execution of PLC programs dur-
ing every ten-minute cycle. To solve the problem, I disabled NTP during PLC
program execution and created a PLC script that synchronizes the internal clock
with the NTP server every time the PLC is restarted after a shutdown.
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Chapter 4

Conclusions and Future Work

This thesis presents a modern, flexible, and reliable traffic control system ideal
for use in various automotive proving grounds, especially where self-driving fea-
tures are being tested and traditional traffic light control systems cannot meet the
requirements.

One of the system’s primary goals was to have as many safety features as
possible in the system, but these were implemented in such a way that there
would be no restrictions on the introduction of new features. To evaluate the
system, a hardware-in-the-loop test was performed using an innovative Sziklai pair
based measurement circuit to maintain system portability and allow advanced fault
simulation.

Unfortunately, the test results were mixed. The PLC program performed as
expected, but the OPC UA data reading functions underperformed, resulting in
higher than desired latency. Future efforts should aim to optimize this aspect
by improving communication protocols. Nonetheless, thanks to the careful testing
process, the system in its current form is already fully capable of controlling various
traffic light intersections.

Furthermore, its implementation in larger systems is hassle-free due to the use
of widely available and easy-to-understand technologies. The system’s communi-
cation protocols are perfectly compatible with different V2X technologies, making
it simple to implement various V2X communication protocols into the system.

When a central control system for the system is fully developed in the future,
and the interactive mode is successfully implemented with sufficiently low latency,
this system will be a highly functional tool for automotive test facilities.
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Appendix A
Arduino Input Measurement Code

1 # include <Wire.h>
2

3 # define SLAVE_ADDRESS 0x40
4

5 // Digital pins to be read ( including A0)
6 const byte digitalPins [] = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, A0 };
7 const byte numDigitalPins = sizeof ( digitalPins ) / sizeof (

digitalPins [0]);
8

9 // Function to handle I2C requests
10 void receiveEvent (int howMany );
11

12 void setup () {
13 // Configure digital pins as input
14 for (byte i = 0; i < numDigitalPins ; i++) {
15 pinMode ( digitalPins [i], INPUT);
16 }
17

18 // Initialize I2C as slave
19 Wire.begin( SLAVE_ADDRESS );
20 Wire. onRequest ( receiveEvent );
21 Serial .begin (9600) ;
22 }
23

24 void loop () {
25 // Main loop is empty as the device only responds to I2C

requests
26 for (byte i = 0; i < numDigitalPins ; i++) {
27 Serial .print( digitalRead ( digitalPins [i]));
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28 }
29 Serial . println ("!");
30 delay (50);
31 }
32

33 void receiveEvent (int howMany ) {
34 byte pinStatus [ numDigitalPins ];
35

36 // Read digital pin states
37 for (byte i = 0; i < numDigitalPins ; i++) {
38 pinStatus [i] = digitalRead ( digitalPins [i]) ;
39 }
40

41 // Send digital pin states via I2C
42 Wire.write(pinStatus , numDigitalPins );
43 }
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Appendix B
Arduino Cable Break Simulation Control Code

1 # include <Wire.h>
2

3 # define SLAVE_ADDRESS 0x20
4

5 // Digital pins to be controlled ( including A0)
6 const byte digitalPins [] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, A0};
7 const byte numDigitalPins = sizeof ( digitalPins ) / sizeof (

digitalPins [0]);
8

9 // Function to handle I2C requests
10 void receiveEvent (int howMany );
11

12 void setup () {
13 // Configure digital pins as output
14 for (byte i = 0; i < numDigitalPins ; i++) {
15 pinMode ( digitalPins [i], OUTPUT );
16 }
17

18 // Initialize I2C as slave
19 Wire.begin( SLAVE_ADDRESS );
20 Wire. onReceive ( receiveEvent );
21

22 // Set up serial monitor
23 Serial .begin (9600) ;
24

25 }
26

27 void loop () {
28 // Main loop is empty as the device only responds to I2C
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requests
29 }
30

31 void receiveEvent (int howMany ) {
32 // print received data to serial monitor
33 Serial . println (" Received data:");
34 Serial . println ( howMany );
35

36

37 if ( howMany != numDigitalPins ) {
38 return ; // Ensure that the received data matches the

expected length
39 }
40

41 byte pinValues [ numDigitalPins ];
42

43 for (byte i = 0; i < numDigitalPins ; i++) {
44 pinValues [i] = Wire.read ();
45

46 }
47

48 // Set digital pin states based on received values
49 for (byte i = 0; i < numDigitalPins ; i++) {
50 digitalWrite ( digitalPins [i], pinValues [i] == 0 ? LOW :

HIGH);
51 }
52 }
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