

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM

GÉPÉSZMÉRNÖKI KAR

POLIMERTECHNIKA TANSZÉK

# GYŐRY TAMÁS

# TUDOMÁNYOS DIÁKKÖRI KONFERENCIA

# POLIAMIDOK ÉS POLIAMID MÁTRIXÚ KOMPOZITOK ULTRAHANGOS HEGESZTÉSE

Témavezető:

Dr. Suplicz András

egyetemi docens

Konzulens:

Széplaki Péter

doktorandusz

BUDAPEST, 2023

## KÖSZÖNETNYILVÁNÍTÁS

Ezúton szeretnék köszönetet mondani témavezetőmnek Dr. Suplicz Andrásnak és konzulensemnek, Széplaki Péternek, hogy segítettek a kutatásomban. Bartók Dávidnak a lapka próbatestek fröccsöntéséért. Pinke Balázs Gábornak a DSC mérésben való segítségéért.

Köszönöttel tartozom a családomnak is, amiért támogattak engem az elmúlt 5 év folyamán. Köszönöm a mennyasszonyomnak, Emesének is, aki a bátorítás mellett szakmai tanácsokkal is ellátott. Végül, de nem utolsó sorban köszönöm Istennek.

## TARTALOMJEGYZÉK

| Köszönetnyilvánításii                             |
|---------------------------------------------------|
| Jelölések jegyzékev                               |
| 1. Bevezetés                                      |
| 2. Szakirodalmi áttekintés                        |
| 2.1. Polimerek hegeszthetősége                    |
| 2.1.1. Technológiák bemutatása                    |
| 2.1.2. Ultrahangos hegesztés                      |
| 2.1.3. Poliamid 6 kompozit ultrahangos hegesztése |
| 2.2. Poliamid polimerizációja11                   |
| 2.3. T-RTM technológia13                          |
| 2.3.1. Gyártási paraméterek15                     |
| 2.3.2. T-RTM technológiával készített kompozitok  |
| 2.4. Irodalmi összefoglaló, kritikai elemzés      |
| 3. Felhasznált anyagok, alkalmazott berendezések  |
| 3.1. Felhasznált alapanyagok21                    |
| 3.1.1. Kaprolaktám21                              |
| 3.1.2. Erősítőanyag21                             |
| 3.1.3. Aktivátor és iniciátor21                   |

|    | 3.2.  | Alkalmazott berendezések                                    |          |
|----|-------|-------------------------------------------------------------|----------|
|    | 3.3.  | Vizsgálati módszerek                                        | 24       |
| 4. | Kíséı | erleti/fejlesztési rész                                     |          |
|    | 4.1.  | Próbatestek gyártása                                        | 26       |
|    | 4.2.  | Hegesztési paraméterek meghatározása                        |          |
|    | 4.    | 2.1. Fröccsöntött próbatestek hegesztése                    |          |
|    | 4.    | 2.2. Összehegesztett fröccsöntött próbatestek szakítóvizsgo | álata 30 |
|    | 4.3.  | T-RTM-mel gyártott próbatestek vizsgálata                   |          |
|    | 4.    | .3.1. Próbatestek hegesztése                                |          |
|    | 4.    | .3.2. Nyíróvizsgálat                                        |          |
|    | 4.    | .3.3. Optikai mikroszkóp                                    |          |
|    | 4.    | .3.4. Pásztázó elektronmikroszkópi vozsgálat                |          |
|    | 4.    | .3.5. Differenciál pásztázó kalorimetria                    |          |
| 5. | ÖSSZ  | ZEFOGLALÁS                                                  | 47       |
|    | 5.1.  | További megoldásra váró feladatok                           |          |
| 6. | Felha | asznált források                                            | 49       |
| 7. | Melle | lékletek                                                    | 54       |

# JELÖLÉSEK JEGYZÉKE

## Latin betűk

| Jelölés    | Megnevezés, megjegyzés, érték                      | Mértékegység |
|------------|----------------------------------------------------|--------------|
| Ta         | Üvegesedési átmenet hőmérséklete (glass transition | °C           |
| <b>I</b> g | temperature)                                       | C            |
| $T_{m}$    | Olvadási hőmérséklet (melting temperature)         | °C           |

## Rövidítések

| Rövidítés | Megnevezés                                                             |
|-----------|------------------------------------------------------------------------|
| СТ        | Komputertomográfia                                                     |
| DSC       | Differenciál Pásztázó Kalorimetria (Differential Scanning Calorimetry) |
| IMC       | In-Mold Coating                                                        |
| PA        | Poliamid                                                               |
| PA6       | Poliamid 6                                                             |
| PA66      | Poliamid 66                                                            |
| PBT       | Polibutilén teraftalát                                                 |
| PCL       | Polikaprolakton                                                        |
| PE        | Polietilén                                                             |
| PLA       | Politejsav                                                             |
| PLLA      | Poli(-1-tejsav)                                                        |
| PP        | Polipropilén                                                           |
| PPS       | Polifenilén szulfid                                                    |
| PVC       | Polivinil-klorid                                                       |
| RTM       | Resin Transfer Molding                                                 |
| TGA       | Termogravimetriás Analízis                                             |
| T-RTM     | Thermoplastic Resin Transfer Molding                                   |

## 1. BEVEZETÉS

A hőre lágyuló kompozitok, szemben a térhálós mátrixú társaikkal, gyártásuk után is megolvaszthatóak és tovább formálhatóak, valamint egymással hegesztési eljárással összecsatlakoztathatóak. Ezen tulajdonságuk miatt előszeretettel alkalmazzák őket különböző iparágakban, mint például autó-, repülőgép-, valamint tengerészeti iparban. Kompozitok hegesztésére több technológia is alkalmazható, ilyenek például a kavaró dörzshegesztés vagy a lézerhegesztés. Kutatásomban az ultrahangos hegesztési technológia számos előnnyel jár, mint például a kedvező ár, kis ciklusidő és az energiahatékony működés. A technológia 20-40 kHz-es frekvenciájú ultrahanggal gerjeszt kis amplitúdójú (20-60 µm) mechanikai rezgéseket. A rezgések hatására megolvad a hegesztendő polimerek határfelülete, amely a molekulaláncok diffúzióját okozza [1, 2].

RTM (Resin Transfer Molding) módszerrel korábban nem volt lehetséges a termoplasztikus polimer mátrixú kompozitok gyártása a nagy viszkozitásuk miatt. Ezt azonban a technológiák folyamatos fejlődésének köszönhetően a 2010-es évek közepére sikerült kiküszöbölni és megjelent az RTM termoplasztikus változata, a T-RTM (Thermoplastic Resin Transfer Molding) technológia. Az eljárás során, miután a szerszámba helyezik az előkészített erősítő struktúrát, alacsony viszkozitású reaktív monomerből és oligomerből, illetve katalizátorból és aktivátorból álló keveréket fecskendeznek be a zárt szerszámba. A monomer poliamid 6 (PA6) esetében az ε-kaprolaktám. Az aktivátor segít a reakció elindításában, a katalizátor pedig a folyamathoz szükséges energiaigényt biztosítja. A szerszámban ezután emelt hőmérsékleten (150-180 °C) a monomer anionos gyűrűfelnyitásos polimerizációjával polimerizálódik és insitu módon létrejön a termoplasztikus polimer mátrixú kompozit termék. A technológiával hosszúszálas kompozit alkatrészek hozhatóak létre, amelyek száltartalma a 60 %-ot is elérheti [3, 4].

Kutatásom során T-RTM eljárással készült kompozitok hegeszthetőségét vizsgálom. Ehhez T-RTM eljárással készítek négy- és kétrétegű kompozitokat, valamint PA6 próbatesteket. Emellett fröccsöntéssel is készítek PA6 mintákat. Ezeket több hegesztési paraméteren is megvizsgálom és keresem melyik beállítással tudom a legnagyobb szilárdságú kötéseket létrehozni.

## 2. SZAKIRODALMI ÁTTEKINTÉS

A szakirodalomi áttekintésben bemutatom az ultrahangos hegesztés technológiát és a poliamid mátrixú kompozitok ultrahangos hegeszthetőségét. Ezután rövid áttekintést teszek a poliamid polimerizációjáról is. Végezetül ismertetem a T-RTM gyártástechnológiát, ezen belül kitérek a gyártási paraméterek terméktulajdonságra kifejtett hatására és bemutatok néhány megvalósított példát is.

## 2.1. Polimerek hegeszthetősége

A termoplasztikus kompozitok, szemben a hőre nem lágyulókkal, a gyártásuk után megolvaszthatóak és tovább formálhatóak, valamint egymással hegesztéssel összecsatlakoztathatóak. Ezen tulajdonságuk miatt előszeretettel alkalmazzák őket különböző iparágakban, mint például autó-, repülőgép-, valamint tengerészeti iparban [1]. Polimerek hegesztése során az egyik polimerben a láncok kellően mozgékonnyá válnak ahhoz, hogy a másik anyag láncaival összegabalyodjanak. Ehhez azonban kellően magas hőmérséklet szükséges, ami amorf polimereknél az üvegesedési hőmérsékletet (T<sub>g</sub>), részben kristályos polimereknél pedig az olvadási hőmérsékletet (T<sub>m</sub>) jelenti [5]. A jó minőségű varrat létrejöttéhez ezen kívül megfelelő nyomás és idő szükséges [6].

### 2.1.1. Technológiák bemutatása

A polimerekhez használt hegesztési technológiákat a hőtáadásuk módja szerint három kategóriába sorolhatjuk: hővezetéses, sugárzásos és a mechanikai súrlódásos. A hővezetéses technológiák közé tartozik a forrógázos hegesztés, a tükörhegesztés és a forrógázos extrúziós hegesztés [7]. A forrógázos hegesztés egy olcsó és könnyen használható technológia. Termoplasztikus polimerek javítására és összekapcsolására használják, mint például a polipropilén (PP), polivinil-klorid (PVC) és a polietilén (PE). Az eljárás során a hozaganyagot és az összehegesztendő területet forró gázzal melegítik fel. Hátránya, hogy a gáz nem oszlik el egyenletesen és ez oxidációt, illetve degradációt okoz a magasabb hőmérsékletű területeken, az alacsonyabbakon pedig nem jön létre megfelelő minőségű varrat [8].

A tükörhegesztés vagy másnéven fűtőelemes tompahegesztés során az összehegeszteni kívánt darabokat a fűtött szerszámmal (hegesztőtükör) összeérintve tartják nyomás alatt.

Gyakran használják műanyag csövek vagy járművek hátsó lámpájának hegesztésére. A technológia nagy előnye, hogy bonyolult geometriákhoz is jól alkalmazható [9].

A forrógázos extrúziós hegesztést előszeretettel alkalmazzák membránok vízszigetelésére és műanyag alkatrészek készítésére. A hegesztés során először a hegesztendő felületeket felhevítik, majd hozaganyagot extrudálnak a kívánt felületre (1. ábra) [10].



1. ábra: Forrógázos extrúziós hegesztés sematikus ábrája [11]

A sugárzásos hegesztés során az energiaforrásból kibocsátott sugárzás a hegesztendő felületre jutva elnyelődik és megolvasztja az ott lévő anyagot. A sugárzásos hegesztési technológiák közül a legelterjedtebb módszer műanyagok és kompozitok hegesztésére a lézerhegesztés [7]. A lézersugaras hegesztési módszereket már az 1970-es évek óta használják, ezek közül a lézersugaras transzmissziós hegesztés a legelterjedtebb. Lézersugaras transzmissziós hegesztés során az egymást fedő polimer alkatrészeket erővel nyomják össze és lézersugarat irányítanak rájuk. A felső átlátszó darab a lézersugarat továbbítja, az alsó pedig elnyeli. Az átengedett lézer mennyisége az alkatrész anyagának átlátszóságától is függ. Az elnyelt lézersugár az alsó polimerben a polimerláncok vibrációját okozza, ami az anyag felhevüléséhez vezet. Az így létrejött hő ezután az áttetsző elemre is átterjed és ennek következtében mind a kettő tágulni kezd (2. ábra). A technológia használatával csak a kívánt helyen jön létre polimer ömledék, ezzel a használt energia minimalizálható. Az eljárással nagyméretű, könnyen reprodukálható, esztétikus megjelenésű, légmentes varratok hozhatóak létre. Hátránya, hogy a hegesztéshez használt berendezés igen költséges. A hegesztési eljárást többek között csomagoló-, textil-, elektronikai- és az autóiparban, valamint az egészségügyben alkalmazzák [12].



2. ábra: A lézersugaras transzmissziós hegesztés sematikus ábrája [12]

A mechanikai súrlódáson alapuló technológiák nem igényelnek külső hőforrást. A hegesztéshez szükséges energiát az egymáson súrlódó felületek hőjéből nyerik [7]. Az ultrahangos hegesztés mellett súrlódáson alapuló hegesztési technológiák közé tartozik a lineáris dörzshegesztés. A módszert már az 1990 években is használták alumíniumok, polimerek, erősített polimerek stb. hegesztésére. Hegesztés során az összehegesztendő darabokat befogják, majd a hegesztőszerszámot az alkatrészekhez nyomják, ami forgómozgásával a súrlódásnak köszönhetően a hegesztéshez kívánt hőmérsékletet teremti meg. A hegesztés az olvadási hőmérséklet alatt, lágy állapotban megy végbe. A technológiával jó minőségű varratok készíthetőek minimális hegesztési hibával, hozaganyag hozzáadása nélkül. Az eljárást gyakran alkalmazzák autóiparban, hajóépítéshez vagy repülőgépgyártásban [13]. A gép sematikus ábrája a 3. ábrán tekinthető meg.



3. ábra: A lineáris dörzshegesztés sematikus ábrája [13]

#### 2.1.2. Ultrahangos hegesztés

Az ultrahangos hegesztést a kedvező ára, energia hatékony működése és kis ciklusideje miatt előszeretettel használják többek között termoplasztikus polimer kompozitok hegesztésére [2]. Mindezek mellett a kötés létrejöttéhez nem szükséges hozaganyagot használni, felületi károsító hatása is minimális. Az eljárás legfőbb hátránya, hogy körülbelül 3 mm-nél vastagabb varratok készítésére nem alkalmas [14]. A technológia 20-40 kHz-es frekvenciájú ultrahanggal gerjeszt kis amplitúdójú (20-60 µm) mechanikai rezgéseket. A rezgések hatására megolvad a polimer, amely a felületen a láncok diffúzióját okozza. A hegesztés nyomás (1-5 MPa) alatt történik [2, 15]. A hegesztési idő 0,1 és 2,0 másodperc között szokott alakulni. A hegesztett varrat minőségét a felsorolt paraméterek mellett a szonotróda geometriája is befolyásolja [15]. Az ultrahangos hegesztőgép részei a 4. ábrán láthatóak.



4. ábra: Az ultrahangos hegesztő sematikus ábrája [14]

Az ultrahangos rezgéseket a generátor hozza létre a hálózati 50-60 Hz-es feszültség segítségével. A konverterben (rezgés átalakító) elhelyezkedő piezoelektromos anyagok periodikusan kitágulnak és összehúzódnak, ennek hatására mechanikai rezgés jön létre. A rezgéseket a booster erősíti fel, azaz növeli vagy csökkenti a rezgés amplitúdóját. A szonotróda közli a vibrációt a munkadarabokkal, valamint összeszorító erőt gyakorol rájuk. A szonotróda geometriája nagy szerepet játszik a rezgések átadásában. Anyaga általában alumínium vagy titán szokott lenni. A hegesztő asztal (üllő) fogja fel a rezgéseket és tartja a hegesztendő

alkatrészeket. A technológiát leginkább polimer fóliák és lemezek hegesztésére használják [14, 16].

#### 2.1.3. Poliamid 6 kompozit ultrahangos hegesztése

A kutatásomban poliamid 6 kompozitok ultrahangos hegesztését fogom vizsgálni. A következőkben más kutatók által használt hegesztési paramétereket és az ezekhez tartozó eredményeket fogom bemutatni.

Zhi és társai [17] 4 mm vastagságú szénszálas PA66 (poliamid 66) kompozitok ultrahangos hegesztését vizsgálták. Az előgyártmányokat fröccsöntéssel készítették el, amihez 2 mm hosszúságú szénszálakat használtak. A száltartalom 30 m% volt. A hegesztés során az amplitúdó 25 µm, a frekvencia 20 kHz, a hegesztési erő 300 N volt, a hegesztési energiát pedig 3000 és 8000 J között változtatták (5. ábra).



5. ábra: A hegesztési energia hatása a különböző tulajdonságokra [17]

Látható, hogy a varrat mérete 5000 J hegesztési energia felett nem nő jelentősen. A varrat szilárdsága pedig 5000-6000 J környékén éri el a maximumot, ezután csökkenés figyelhető meg. Zhi és társai [18] egy másik kutatás során a hegesztés során jelenlévő nedvesség hatását vizsgálták. Ehhez 30 m% száltartalmú szénszálas PA66 mátrixú kompozitot fröccsöntöttek, amit ultrahangos módszerrel hegesztettek össze. Ehhez 138x38x2,3 mm-es próbatesteket fröccsöntöttek 2 mm hosszú szálakkal. A próbatestek egymást 25 mm hosszan fedték. A hegesztéshez beállított amplitúdó 25 µm, a frekvencia 20 kHz, a hegesztési erő 300 N, a hegesztési energia 3000 J volt. A varrat erőssége, valamint a varrat mérete jelentősen csökkent 1 tf% víz felett (6. ábra).



6. ábra: A víz mennyiségének hatása a különböző tulajdonságokra [18]

Zhi és kutatótársai [19] vizsgálták az előmelegítés hatásait ultrahangos kompozit hegesztésénél. Az előgyártmányok hasonlóan az eddigiekhez, 2 mm hosszú szénszállal töltött PA66 fröccsöntésével készültek. A próbatestek mérete 132x38x4 mm volt, ezek 25 mm hosszan fedték egymást. A hegesztéshez a következő paramétereket használták: az amplitúdó 25 μm, a frekvencia 20 kHz, a maximális hegesztési nyomás 37 MPa volt. Eredményeik azt mutatták, hogy az előmelegítés hatása a húzószilárdság esetén minimális volt, míg a fáradási szilárdságot jelentősen növelte 80 °C előmelegítési hőmérsékletig, ezután csökkenés figyelhető meg. Míg a tárolási modulus a hőmérséklet növelésével csökkent (7. ábra).



7. ábra: Tárolási és veszteségi modulus az előmelegítés függvényében [19]

Wang és kollégái [20] az ultrahangos hegesztés előtti előmelegítés hatásait tanulmányozta különböző hőmérsékleteken. Az előgyártmányok fröccsöntéssel készültek 250 µm hosszú szénszál és PA6 használatával. A próbatestek mérete 38x127x3 mm volt. A hegesztési erő 200 N-ra, az amplitúdó 35 µm-re és a frekvencia 20 kHz-re lett beállítva. 5 hegesztési energiát

hasonlítottak össze (400 J, 600 J, 800 J, 1000 J, 1200 J), 4 hőmérsékleten (50 °C, 100 °C, 150 °C, 200 °C). A hegesztési töretfelületek a 8. ábrán tekinthetőek meg.



8. ábra: Varratok különböző hegesztési energia és előmelegítés mellett [20]

A legnagyobb varrat méretet 800 J hegesztési energia és 200 °C mellett sikerült elérni. A legnagyobb nyíróterhelést az 1000 J hegesztési energiával hegesztett darabok bírták ki.



9. ábra: A nyíróigénybevétel a hegesztési energia függvényében [20]

Az 1200 J-on hegesztettek már valamivel rosszabb mechanikai tulajdonsággal rendelkeznek. Ennek okát nem taglalták. Gao és társai [21] 4 mm vastag szénszálas poliamid 66 mátrixú kompozit ultrahangos hegesztését vizsgálták. A fröccsöntött próbatestekhez 2 mm hosszúságú szénszálat használtak. A fröccsöntés előtt a kompozit mindkét komponensét 3 órán keresztül 80 °C-on szárítószekrényben szárították. A hegesztési idő 1,3 – 3,3 s közé esett, a hegesztési feszültség 0,13 – 0,18 MPa között volt, az amplitúdó 25  $\mu$ m-re, a frekvencia pedig 20 kHz-re lett beállítva. A legerősebb kötést 2,1 és 2,5 s hegesztési idő és 0,17 MPa hegesztési erőnél sikerült elérniük, amik 5,8 kN terhelésnél szakadtak el. Goto és kutatótársai [22] szénszálas PA6 mátrixú prepregek ultrahangos hegesztését vizsgálták. A rétegek keresztirányú elrendezésben [0<sub>2</sub>/90<sub>2</sub>/0<sub>2</sub>/90<sub>2</sub>]<sub>s</sub> voltak lerakva. A hegesztéshez egy 10x10 mm keresztmetszetű szonotródát használtak (10. ábra), valamint vizsgálták milyen hatásai vannak a lapos energia direktor használatának a varrat területére és a maximális nyírófeszültségre (11. ábra). A hegesztési energia 200-800 J, a hegesztési erő 400 N, az amplitúdó 90  $\mu$ m és a frekvencia 15 kHz volt.



10. ábra: A hegesztési elrendezés [22]



11. ábra: Varrat mérete (bal) és nyíróvizsgálat (jobb) eredménye keresztirányú elrendezésnél [22]

A legnagyobb varrat felületet és a legnagyobb nyírófeszültséget 800 J-os hegesztési energián sikerült elérni. Itt már a hegesztésnél füst is megjelent, ami a túlmelegedés miatt a próbatest kilágyulását okozta. Ez általában rosszabb hajlító merevségű varratot eredményez, mert a próbatest nem nyeli el teljesen a hegesztésnél fellépő energiát.

## 2.2. Poliamid polimerizációja

A szintetikus poliamidok már több évtizede jelen vannak a mindennapi életünkben, mégis jelennek meg újabb és újabb használati módjaik [23]. Alkalmazzák őket az élet több területén, többek között elektronikai vagy autóiparban rövid üvegszál erősítésű kompozit fröccsöntéséhez. Az elmúlt években többek között a T-RTM technológiával történő gyártás területén készültek jelentős kutatások. A poliamid 6-ot leginkább az  $\varepsilon$ -kaprolaktám (C<sub>6</sub>H<sub>11</sub>ON) monomer (12. ábra) anionos gyűrűfelnyitásos polimerizációjával hozzák létre [24, 25]. A gyűrűfelnyitásos polimerizáció előnye, hogy nagy molekulatömegű termák hozható létre [4].

Az ε-kaprolaktámot már a 19. században ismerték, azonban csak 1938-ban fedezték fel, hogy PA6 gyártására is használható. Azóta a kaprolaktám az iparban az egyik legfontosabb laktámmá vált. Sűrűsége 1,014 g/cm<sup>3</sup>, olvadási hőmérséklete 69 °C, forrási hőmérséklete pedig 268 °C [24].



12. ábra: ɛ-kaprolaktám monomer felépítése [26]

Ezekhez különböző katalizátorokat és aktivátorokat adnak, amelyek a reakció beindításához és szabályozásához szükségesek [23, 24]. A katalizátor leggyakrabban a kaprolaktám egy magnézium-, vagy nátrium sója szokott lenni, de lehet még alkálifémet vagy fémhidridet is használni [24, 4] (13. ábra). Ezek emelt hőmérsékleten disszociálnak és anionos laktámot hoznak létre [4].



13. ábra: A kaprolaktám nátrium sójának szerkezete [26]

Aktivátorként leggyakrabban savkloridot vagy olyan molekulát alkalmaznak, ami képes imid csoportot létrehozni laktám monomerrel [4]. Ilyen lehet például a kaprolaktámmal blokkolt diizocianát (14. ábra) [24].



14. ábra: A hexametilén-1,6-diizocianát (HDI) struktúrája [26]

A reakció véghezvihető melléktermékek keletkezése nélkül. A monomer megújuló erőforrások segítségével is előállítható és maga a poliamid 6 mechanikus és kémiai úton is újrahasznosítható. Utóbbival visszanyerhetjük az eredeti monomert [27]. Az elkészült PA6 ismétlődő egységének felépítése a 15. ábrán tekinthető meg.



15. ábra: PA6 ismétlődő egyége [4]

Az ε-kaprolaktám polimerizációja érzékeny a vízre, mivel a nedvesség inhibitorként viselkedik a polimerizáció során [24, 26]. Az inhibitorok beavatkoznak a kémiai reakcióba és lassítják a folyamatot. A polimerizáció közben fellépő problémák megelőzése érdekében a mátrixszal kapcsolatba kerülő anyagokat szárazon kell tartani, ez 200 ppm alatti víztartalmat jelent [26, 28]. A víz jelenléte a polimerizáció során a monomer átalakulási hányad és a molekulatömeg csökkenéséhez vezet [29]. Gyártás során a formaüregben lévő nyomás csökkenését a zsugorodás idézi elő, ami a krisztallizáció és a polimerizáció során lép fel. Az üregben lévő nyomásból a polimerizáció idejére lehet következtetni. A reaktív ömledékben lévő víz nagy mértékben befolyásolja az üregben lévő nyomáslefutást is. A víz mennyiségének 0,02 %-ra növelésével a polimerizáció ideje közel megkétszereződik 1 % aktivátor és 2 %

katalizátor esetén. Hasonló folyamat figyelhető meg 2,5 % aktivátor és 5 % katalizátor hozzáadásával is (16. ábra) [28].



16. ábra: Formaüreg nyomása az idő függvényében 2 % aktivátor és 4 % katalizátor (a), illetve2,5 % aktivátor és 5 % katalizátor esetén [28]

A T-RTM-mel gyártott poliamid mátrixú termoplasztikus kompozitok mellett megjelentek a biopolimer alapú kompozitok is. Ilyen gyakran használt mátrix anyagok közé tartozik a PCL (polikaprolakton), PLA (politejsav) és PBT (polibutilén tereftalát) anyagok, az én dolgozatomban azonban kizárólag a poliamid alapú kompozitok viselkedését és gyárthatóságát vizsgálom [30].

## 2.3. T-RTM technológia

Az RTM (Resin Transfer Molding) technológia a folyékony kompozit öntő technológiák családjába tartozik [3]. A gyártás során alacsony viszkozitású hőre keményedő gyantát fecskendeznek bele egy zárt szerszámba, amibe erősítőanyagot helyeztek. A gyanta térhálósodik, majd létrejön a kész termék. Ezzel a technológiával jó felületi minőséget lehet elérni, kis hőmérsékleten és kis nyomáson [31]. Az RTM gyártáshoz általában alumínium szerszámot használnak. A gyártás az erősítőanyag szerszámba való behelyezésével kezdődik. Majd a szerszám záródik, megkezdődik a hőközlés és vákuum alá helyezik a szerszámot. A vákuum hatására a gyanta átitatja az erősítőanyagot. Végezetül a gyanta térhálósodása után a kész termék eltávolítható szerszámról [32]. Ezt a technológiát gyakran alkalmazzák kompozit termékek sorozatgyártásában, mert az alacsony viszkozitású gyanta gyorsan térhálósodik. Hátránya azonban ennek a gyártási módszernek, hogy a térhálós mátrix tulajdonságai miatt a

kész termék alacsony keménységgel és rugalmassággal rendelkezik, valamint az újrahasznosítás is nehezen megoldható [33]. A technológia egy korábbi formáját már a '40-es években is használták üvegszálas kompozit hajók gyártására. Majd egészen a '80-as évekig nem volt megfigyelhető jelentős előrelépés, amikor azonban köszönhetően az újabb fejlesztéseknek a gyártástechnológiában a katonai alkalmazás mellett megjelentek az autóipari és repülőgép ipari felhasználások is [30].

A folyékony kompozit öntő technológiák fejlődésével megjelent a 2010-es évek közepén az RTM technológiának egy termoplasztikus változata, a T-RTM (Thermoplastic Resin Transfer Molding) [3, 30]. Korábban a termoplasztikus polimerek nagy viszkozitása miatt nem volt lehetséges RTM technológiával kompozitokat gyártani belőlük. Ezt a problémát azonban sikerült kiküszöbölni [34]. A gyártás során alacsony viszkozitású (<10 mPas) reaktív monomerből és oligomerből álló keveréket, illetve aktivátort és katalizátort fecskendeznek a szerszámba [3, 4, 33]. A szerszámban polimerizálódik az anyag és létrejön egy termoplasztikus polimer kompozit termék [3]. A száltartalom akár a 60 %-ot is elérheti [35]. A feldolgozó berendezés felépítése a 17. ábrán látható.



17. ábra: Az T-RTM gép felépítése: A: fűtési rendszer, B: kaprolaktám és katalizátor, C: adagoló, D: megolvasztó egység, E: adagoló pumpa, F: szerszám, G: keverőfej, H: termék, I: záróegység, K: aktivátor [36]

A gyártási folyamat 4 fő lépésre osztható fel. Az első lépésben az előre kivágott erősítőstruktúrát behelyezik a szerszámba. A második lépés során kellően kis viszkozitású

monomert/oligomert fecskendeznek be a szerszámba. Az aktivátor segít a reakció elindításában, a katalizátor pedig csökkenti a reakció aktiválási energiáját. A harmadik lépésben megkezdődik a polimerizáció. Az utolsó lépésben az elkészült terméket eltávolítják a szerszámból és esetlegesen utómunkálatokat végeznek rajta [37]. A szerszámzáró prés részeit a 18. ábra mutatja be.



18. ábra: A záróegység és a szerszám sematikus ábrája: 1: felső keret, 2: felső lap, 3: T-RTM szerszám felső része, 4: a T-RTM szerszám alsó fele, 5: alsó lap, 6: alsó keret [34]

A T-RTM technológiával készített termoplasztikus kompozitok a nagy szilárdságuk, újrahasznosíthatóságuk és az alacsony sűrűségük miatt alternatívát jelenthetnek az autóiparban használt egyes fém alkatrészek és kompozitipar térhálós termékei helyett [38].

#### 2.3.1. Gyártási paraméterek

A polimerizáció hőmérséklete nagy mértékben befolyásolja a kialakult molekulatömeget, a kristályos részarányt, az átalakulást (konverziót), valamint indirekt módon a kész termék termomechanikai jellemzőit. A laktámok polimerizációja végrehajtható az anyag olvadási hőmérséklete (T<sub>m</sub>) alatt és felett is. Az olvadási hőmérséklet alatti polimerizációnak több előnye is van: rövidebb a gyártási ciklus, a felhasznált energia kevesebb, illetve nagy kristályos részarány (40-50 %) és nagy átalakulási hányad (96-99 %) érhető el [39]. Semperger és társai [39] többek között a kristályos részarány és a szerszám hőmérséklete közötti összefüggést is vizsgálták. A 19. ábrán jól látszik, hogy a szerszámhőmérséklet növelésével a kristályos részarány csökken.



19. ábra: Kristályos részarány és a T-RTM szerszám hőmérsékletének összefüggése [39]

Ezenkívül megvizsgálták a hajlító szilárdságot is a szerszám hőmérsékletének függvényében. A szerszám hőmérsékletének növelésével a hajlítószilárdság csökken (20. ábra), ami a kialakult kristályos részaránynak köszönhető.



20. ábra: Hajlító szilárdság és a T-RTM szerszám hőmérsékletének összefüggése [39]

A monomer átalakulási hányadot TGA-val (Termogravimetrikus analízis) vizsgálták. A legmagasabb átalakulási hányadot 150 °C-on sikerült elérniük, ami körülbelül 97 %, ami az eddigi tapasztalatokhoz hasonlóan a szerszám hőmérsékletének növelésével csökkent (21. ábra).



21. ábra: Monomer átalakulási hányad – T-RTM szerszám hőmérséklet [39]

Lee és kutatótársai [40] egy felületkezelési módszert dolgoztak ki T-RTM technológiához, amely során a rugalmassági modulus és a szerszámhőmérséklet közötti összefüggést is vizsgálták. A mérések alapján a rugalmassági modulus 160 °C-os szerszám hőmérsékleten volt a legnagyobb, megközelítőleg 1,5 GPa, ami 180 és 200 °C-os szerszámnál már jelentősen csökkent (22. ábra).



22. ábra: Rugalmassági modulus a szerszám hőmérsékletének összefüggésében [40]

Choi és társai [37] a T-RTM gyártás különböző paramétereinek függvényében vizsgálták a szakítószilárdság és a polimerizációs fok változását. A próbatestek gyártása során az injektálási sebességet, az aktivátor és a katalizátor arányát változtatták. Eredményül pedig a következőket kapták: a mátrix anyag injektálási sebessége nem befolyásolta a szakítószilárdságot, azonban a polimerizációs fok növekedett a sebesség növelésével. Az aktivátor növelésével csökkent a szakítószilárdság, a polimerizációs fok pedig 2 m% esetében volt a legnagyobb. A katalizátor mennyiségének növelésével pedig mind a szakítószilárdság, mind a polimerizációs fok növekedett.

### 2.3.2. T-RTM technológiával készített kompozitok

Ebben a fejezetben különböző T-RTM technológiákkal készített kompozitokat ismertetek. Ezzel a technológia sokszínűségét és az elkészült kompozitok mechanikai tulajdonságait mutatom be. Így a várható eredményekről is képet kapunk.

Kovács és társainak [24] munkájában az égésgátolt T-RTM technológiával készített kompozitokat hasonlították össze. A PA6 égésgátlása különösen fontos lehet bizonyos alkalmazásokban, a jó éghetősége miatt. T-RTM technológiával készítettek szénszálas PA6 kompozitokat. Kimutatták, hogy az adalékolás többek között a polimerizáció folyamatát is befolyásolta. Ezenkívül az adalékanyag homogén eloszlatása is problémát jelentett a kis viszkozitású mátrixban. A problémát égésgátló folyadék hozzáadásával küszöbölték ki. A legjobb eredményeket hexafenoxiciklotrifoszfazénnel sikerült elérni. A UL-94 vizsgálattal már 10 m% adalékanyag hozzáadása mellett sikerült a V-0-ás besorolást elérni. Semperger és társai [41] is a T-RTM-mel gyártott termék adalékolásával foglalkoztak, amely során szánszálas PA6 mátrixú kompozitot gyártottak. Ők az IMC (in-mold coating) eljárással hoztak létre adalékanyaggal módosított felületi réteget. Megfelelő adhéziót a szerszám részleges nyitásával, majd a termékre való ráinjektálással sikerült elérniük. A legjobb leszakító-szilárdságot (4 MPa) 180 s-os reakció idővel érték el. Mindezek mellett amikor a felület injektálására 5 perc holtidőt állítottak be, a húzószilárdság 4,5 MPa-ra növekedett. Murray és kutatótársai [3] üvegszálas poliamid 6 mátrixú kompozitot készítettek T-RTM technológiával. Céljuk a kompozitgyártás során fellépő légbuborékok minimalizálása volt. Ez a jó mechanikai tulajdonságok elérése miatt fontos. A légbuborékokat komputertomográfiával (CT) vizsgálták meg. Kimutatták, hogy a makro- és a mikroméretű légbuborékok a kész kompozit térfogatának 1 %-át tették ki. Ezek mellett a minták kristályos részaránya 45 %, a hajlítószilárdsága pedig 691 MPa lett. Gomez és társai [42] nagyméretű (1,5 x 1,6 m) autóipari kompozit alkatrészek sorozatgyártásához fejlesztettek ki egy gyártási módszert. Ehhez kis viszkozitású (30 Pas, 280 °C-on) előre polimerizált poliamid 6-ot és üvegszálat használtak. A szerszámban 3D nyomtatott PPS (polifenilén szulfid) távtartókat helyeztek el, csatornákat hozva létre (23. ábra).



G-Weave szövet PPS távtartó

23. ábra: Az szerszámban elhelyezett PPS távtartók [42]

A távtartókat úgy tervezték meg, hogy nagy áteresztőképességgel rendelkezzenek és kibírják a nagy nyomást az impregnálási hőmérsékleten. A gyártás megismételhetősége ezzel növekedett, valamint a kontrolálhatóbb lett. A befecskendezési nyomást 3,6 bar-ra állították be. A legjobb hajlítószilárdságot (439 MPa) és hajlító modulust (19,4 MPa) 260 °C-os befröccsöntési hőmérsékleten érték el. Német kutatók egy csoportja [41] T-RTM gyártáshoz készítettek szenzorokat. Négyfajta szenzor típust használtak: hőmérsékletmérő, nyomásmérő, dielektrikum és ultrahangos. Ezek kombinációjával vizsgálták a polimerizációt és az áramlási frontot, amelyek segítségével a folyadékból való átalakulásról kaptak képet. A kísérlet végén 38 darab szenzor segítségével sikerült meghatározni az ömledékfrontot. Lee és társai [40] egy idő- és költséghatékony felületkezelési módszert dolgoztak ki polimer kompozitok gyártásához. Ezzel a módszerrel a kompozit tűzállóságát növelték, amelynek következtében a határközi adhézió is növekedett. Ezután a T-RTM technológia segítségével szénszállal erősített kompozitot készítettek és vizsgálták a mechanikai tulajdonságait (24. ábra).



24. ábra: A felületkezelésen átesett és kezeletlen polimer kompozitok mechanikai tulajdonságai [40]

A felületkezeléssel a húzómodulus esetében 18,5 %-os, míg a húzószilárdságnál 15 %-os növekedés figyelhető meg. Ezeket az értékeket 160 °C-os polimerizációs hőmérsékleten sikerült elérni. Louisy és kutatótársai [43] L-laktid polimerizálásával hoztak létre T-RTM technológia segítségével PLLA (poli(-l-tejsav)) mátrixú üvegszálas kompozitot. Katalizátorként ón(ll)-2-etil-hexanoátot használtak. Így 99 %-os átalakulást és 78000 gmol<sup>-1</sup> molekulatömeget sikerült elérniük. Az anyag emellett 47 %-os kristályos részaránnyal és 173 °C olvadási hőmérséklettel rendelkezett. Lee és társai [29] zeolit részecskéket adtak a ε-kaprolaktámhoz. A zeolit részecskék rendkívül jó vízmegkötő képességgel rendelkeznek. Segítségükkel a polimerizáció során a víz megléte miatti negatív hatásokat sikerült kiküszöbölni. Vízmentes esetben az átalakulási hányad 84 % volt, míg a zeolitot tartalmazó vizes PA6 esetén 82 %. Az átlagos molekulatömeg a vízmentes PA6 esetében 52000 g/molt, míg a zeolittal adalékolt vizes PA6 esetében 43000 g/mol-t sikerült elérni. Ezenkívül a zeolit hozzáadásával a rétegközi nyírószilárdság is növekedett 56,6 MPa-ról 57,8 MPa-ra.

## 2.4. Irodalmi összefoglaló, kritikai elemzés

Egyre többen foglalkoznak azzal, hogy milyen tulajdonságú kompozitok hozhatók létre T-RTM technológiával. Irodalomkutatásom tanulsága szerint a T-RTM eljárás egy jó minőséget biztosító technológia lehet, azonban további vizsgálatokra van szükség. Emellett többen kutatták már korábban PA6 szénszálas kompozitok ultrahangos hegesztését. Azonban ezek a kompozitok rövidszálas kompozitok voltak. Kutatásomban T-RTM technológiával gyártott hosszúszálas kompozitok hegeszthetőségét vizsgálom. Ehhez a fröccsöntött PA6, a T-RTM-mel gyártott PA6, valamint 2 rétegű és 4 rétegű kompozitokat fogok ultrahangos hegesztéssel összehegeszteni és összehasonlítani. Az irodalomkutatásom alapján minimum 15 MPa nyírófeszültséget tartok ideálisnak a hegesztett varratoknál.

## 3. FELHASZNÁLT ANYAGOK, ALKALMAZOTT BERENDEZÉSEK

A kutatásomhoz felhasznált anyagokat és berendezéseket mutatom be ebben a fejezetben.

## 3.1. Felhasznált alapanyagok

A kompozitok gyártáshoz felhasznált alapanyagokat mutatom be a következőkben.

### 3.1.1. Kaprolaktám

Kaprolaktám alapanyagként AP-Nylon ε-kaprolaktámot (CL) használtam. Gyártója a német Brüggemann GmbH & Co. KG. Az anyag sűrűsége 1,02 g/cm<sup>3</sup>, olvadáspontja 69 °C. Olvadék állapotban az anyag viszkozitása vízhez közeli, 3-5 mPas.

### 3.1.2. Erősítőanyag

Az alkalmazott erősítő szövet a Zoltek Zrt. által gyártott PX35 szénszálaiból készült. Ebből a Saertex cég készítette el az X-C-305 típusú biaxiális elrendezésű (+45°/-45°), poliamidhoz írezett szövetet (1. táblázat).

| Tulajdonság               | Jellemző                 |
|---------------------------|--------------------------|
| Anyaga                    | Zoltek Panex 35-61 A 50K |
| Elemi szálak átmérője     | 7,2 μm                   |
| Rétegek területi sűrűsége | 150 g/m <sup>2</sup>     |
| Szövet területi sűrűsége  | 305 g/m <sup>2</sup>     |

1. táblázat: Az erősítőstruktúra tulajdonságai

### 3.1.3. Aktivátor és iniciátor

Aktivátorként hexametilén-1,6-dikarbamoil kaprolaktámot (Brüggolen C20P) alkalmaztam. Az aktivátor gyártója az L. Brüggemann GmbH & Co. KG cég (2. táblázat). A gyártáshoz 4 m% aktivátort raktam a keverékbe.

#### 2. táblázat: Aktivátor jellemzői

| Tulajdonság               | Jellemző   |
|---------------------------|------------|
| NCO tartalom              | 17 %       |
| Olvadáspont               | 70 °C      |
| Sűrűség olvadékállapotban | 1,02 g/cm3 |
| Térfogatsűrűség           | 800 g/l    |

A használt iniciátor nátrium-kaprolaktám (Brüggolen C10) volt. Gyártója az L. Brüggemann GmbH & Co. KG, Németországból (3. táblázat). A kompozit gyártáshoz 6 m% iniciátort kevertem a kaprolaktám és aktivátor mellé.

## 3. táblázat: Iniciátor adatai

| Tulajdonság               | Jellemző               |
|---------------------------|------------------------|
| Olvadáspont               | 62,2 °C                |
| pH                        | 13,3                   |
| Sűrűség olvadékállapotban | 1,02 g/cm <sup>3</sup> |
| Térfogatsűrűség           | 450-550 g/l            |

## 3.2. Alkalmazott berendezések

A kompozitok gyártásához az Engel Insert 200V/200H/80 fröccsöntőgépet használtam a D60-as in-situ egységgel. A gép 800 kN záróerővel, 2210-2400 bar maximális fröccsnyomással, 30/25 mm átmérőjű csigával és 99/69 cm<sup>3</sup> adagsúllyal rendelkezik (25. ábra).



25. ábra: T-RTM technológiához használt fröccsöntőgép [44] és szerszám

A hegesztéshez a próbatesteket Mutronic körfűrésszel vágtam ki. A próbatestek hegesztéséhez a Herrmann Ultraschalltechnik HiQ Evolution Speed Control típusú ultrahangos hegesztő berendezést használtam. A gép maximális hegesztési ereje 3000 N, maximális teljesítménye 5000 W és hegesztési frekvenciája 20 kHz (26. ábra).



26. ábra: Herrmann Ultraschalltechnik márkájú ultrahangos hegesztő berendezés [45]

A lapka próbatestek egy Arburg Allrounder Advance 270S 400-170 fröccsöntőgéppel lettek legyártva (27. ábra). A fröccsöntőgép maximális záróereje 400 kN, oszloptávolsága 270 mm, maximális fröccsnyomása 2000 bar, a csigatámérője pedig 30 mm.



27. ábra: Arburg Allrounder Advance 270S fröccsöntőgép [46]

## 3.3. Vizsgálati módszerek

A varratok nyíróvizsgálatát a Zwick gyártó által forgalmazott Z020 típusú univerzális terhelőgépen végeztem (28. ábra).



28. ábra: Zwick Z020 szakítógép [47]

A varratok hegedési felületét a JEOL JSM 6380LA pásztázó elektronmikroszkóppal (29. ábra) és a Keyence VHX-5000 optikai mikroszkóppal (30. ábra) vizsgáltam.



29. ábra: Jeol márkájú pásztázó elektronmikroszkóp [48]



30. ábra: Keyence gyártmányú optikai mikroszkóp [49]

A degradáció mértékét a TA Instruments által készített Q500 típusú TGA-val mértem (31. ábra).



31. ábra: Q500 TGA [50]

## 4. KÍSÉRLETI/FEJLESZTÉSI RÉSZ

Ebben a fejezetben ismertetem a kutatásom során elvégzett kísérleteket és azok eredményeit.

## 4.1. Próbatestek gyártása

A hegesztési előkísérletekhez 80x80x2 mm méretű lapkapróbatesteket fröccsöntöttem PA6 anyagból, amit 3 egyenlő darabra vágtam fel körfűrésszel.

A kompozitok gyártásának előkészítéséhez először szénszálas erősítőanyagból vágtam ki darabokat elektromos olló segítségével. A vágás közben ügyeltem arra, hogy a szerszám geometriája szempontjából megfelelő lekerekítéseket alakítsak ki (32. ábra).



32. ábra: Darabok kivágása az erősítőanyagból

A gyártás előtt a kivágott darabokat 3 napon keresztül 80 °C-on tároltam szárítószekrényben. Ezzel a levegőből a szénszálban, vagy a felületén megkötődő nedvesség tartalmat akartam minél alacsonyabb szinten tartani, hogy az a polimerizációs folyamatot ne befolyásolja.

A gyártás ezután az erősítőrétegek T-RTM szerszámba helyezésével történt. A kísérlethez 3 fajta gyártmányt készítettem el; 4 és 2 réteg erősítőanyaggal rendelkezőt, illetve erősítőanyag nélkülit (33. ábra).



#### 33. ábra: A készített lapok: 4 rétegű (bal), 2 rétegű (közép), erősítőanyag nélküli PA6 (jobb)

A gépen a gyártás során beállított különböző zónák hőmérsékletét a 4. táblázat mutatja be.

| Zónák elnevezése                       | Érték  |
|----------------------------------------|--------|
| Dugattyú hőmérséklet aktivátor oldal   | 120 °C |
| Dugattyú hőmérséklet katalizátor oldal | 120 °C |
| Keverőfej hőmérséklete                 | 170 °C |
| Szerszám hőmérséklete                  | 155 °C |

4. táblázat: Gyártáshoz használt hőmérséklet paraméterek

A fröccsöntési sebesség 7,5 cm<sup>3</sup>/s-ra lett meghatározva. A befröccsöntött térfogatot a 4 rétegű minta esetében 90 cm<sup>3</sup>-re, a 2 rétegű minta esetében 95 cm<sup>3</sup>-re és az erősítőanyag nélkülinél 100 cm<sup>3</sup>-re állítottuk be. A gép által használt szoftver segítségével a kompozitok gyártása során az aktivátor (A) és katalizátor (K) adagolási térfogatáramát, valamint anyagnyomásának alakulását is ábrázoltam az idő függvényében. A rendszer a térfogatáramot és a nyomást a dugattyúnál méri. A folyamat elején nyomás segítségével szivárgás ellenőrzés történik (leakage test). Ha a nyomás nem esik le, akkor elindul a folyamat. Ekkor az erősítőszövet átimpregnálódásával az adagoló egységben mért nyomás növekedik. A szakasz végén az adagolási térfogat újra növekszik mindkét anyag esetében, mert a gép a következő ciklushoz szükséges adagsúlyt veszi fel (34. ábra).



34. ábra: Adagolási térfogat – idő és anyagnyomás – idő változása a 2 rétegű kompozit gyártása során

A térfogatáram és az anyagnyomás alakulása 4 rétegű kompozit gyártásánál is hasonló volt. Ezután a lapokból körfűrész segítségével 80x25 mm-es próbatesteket vágtam ki a hegesztéshez, figyelve a szálorientációra, ahogy az a 35. ábrán is látható.



35. ábra: Hegesztési próbatestek kivágásnak módja

## 4.2. Hegesztési paraméterek meghatározása

Ebben a fejezetben a hegesztési paraméterek meghatározásának folyamtát mutatom be. Ezen folyamat során fröccsöntött PA6 próbatesteken végeztem kísérleteket és értékeltem az eredményeket.

#### 4.2.1. Fröccsöntött próbatestek hegesztése

A fröccsöntött próbatesteket különböző beállítások mellett kettesével összehegesztettem. Célom ezzel, hogy megtaláljam azt a beállítást, amelyen minimális energia mellett a varrat létrejön, illetve azt is, ami már a mátrix anyag nagyfokú megömlését és degradációját eredményezi. Ezek alapján határoztam meg a T-RTM-mel készített próbatestek hegesztési paramétereit is. A hegesztőgépet idővezérelt módban használtam. Hegesztettem próbatesteket 150 N hegesztési erővel, 0,3/0,4/0,5/0,6 s hegesztési idővel. Ezenkívül hegesztettem alkatrészeket 0,4 s hegesztési idővel 200/250/300 N hegesztési erő mellett (5. táblázat).

| 150 N hegesztési erőnél    |   |
|----------------------------|---|
| beállított hegesztési idők |   |
| 0,3 s                      |   |
| 0,4 s                      |   |
| 0,5 s                      |   |
| 0,6 s                      |   |
|                            | - |

| 5. táblázat: | A | hegesztéshez | használt | param | éterek |
|--------------|---|--------------|----------|-------|--------|
|--------------|---|--------------|----------|-------|--------|

| 0,4 s hegesztési időnél    |  |
|----------------------------|--|
| beállított hegesztési erők |  |
| 200 N                      |  |
| 250 N                      |  |
| 300 N                      |  |



Az ezekhez szükséges átlagos hegesztési energiát és teljesítményt foglalja össze a 36. ábra.

#### 36. ábra: A fröccsöntött próbatestek hegesztési energiája és teljesítménye különböző paramétereken

Megállapítható, hogy a hegesztési idő növelésével a hegesztési energia együtt növekedett, viszont a hegesztési erő változtatása nem befolyásolta az energiát. Amíg a hegesztési teljesítményre a hegesztési idő nem volt hatással, addig a hegesztési erő növelésével a hegesztési teljesítmény növekedett.

### 4.2.2. Összehegesztett fröccsöntött próbatestek szakítóvizsgálata

Az elkészült varratokat ezután nyíróvizsgálattal minősítettem. A befogási távolságot 80 mmre, a szakítósebességet pedig 2 mm/perc-re állítottam be. A befogópofákat 2 mm-re toltam el egymáshoz képest (37. ábra).



37. ábra: Fröccsöntött próbatest nyíróvizsgálata

A vizsgálat során három jellemző viselkedést tapasztaltam: a varrat és az anyag rideg törését (38. ábra), az alapanyag nyakképződését (39. ábra), valamint a nem megfelelő hegedésénél varrat repedést (40. ábra).





38. ábra: A próbatest a varratnál ridegen törik





39. ábra: A próbatesten nyakképződés figyelhető meg



40. ábra: A varrat reped

A hegesztett varratok nyíróvizsgálatára jellemző nagy szórás miatt a mérés eredményeit oszlopdiagramok formájában értékeltem ki (41. ábra és 42. ábra).



41. ábra: Fröccsöntött próbatestek átlagos maximális nyírófeszültsége



42. ábra: Fröccsöntött próbatestek relatív nyúlása

A 0,3 s-os hegesztési időnél a próbatestek hegedése nem volt megfelelő, ezért a deformáció és a maximális nyírófeszültség is jóval alacsonyabb volt. A testek ridegen, a hegedésnél törtek el, valamint egyes esetekben alacsonyabb nyírófeszültségnél varrat repedést figyeltem meg. Ezután a hegesztési idő növelésével egyre nagyobb deformációt és maximális nyírófeszültséget sikerült elérni. A 0,4 s-os hegesztési idővel hegesztett próbatestek között néhány esetben nyakképződést figyeltem meg, ami a hegesztési idő növelésével egyre gyakrabban történt. A varrat minősége 0,6 s-nál volt a legjobb, itt egyik esetben sem tapasztaltam varrat törést. Közel hasonló eredményeket a hegesztési erő növelésével 300 N-on sikerült elérni. Amíg a maximális nyírófeszültségben nem figyelhető meg nagy szórás, addig az alakváltozás esetében a különböző viselkedések miatt (varrat szakadás, varrat repedés, nyakképződés) jóval nagyobb szórást tapasztaltam.

## 4.3. T-RTM-mel gyártott próbatestek vizsgálata

Ebben a fejezetben a T-RTM-mel készített próbatestek ultrahangos hegesztését, nyíróvizsgálatát, optikai és pásztázó mikroszkópos vizsgálatát, valamint a differenciál pásztázó kalorimetria mérések eredményeit mutatom be.

#### 4.3.1. Próbatestek hegesztése

Az előkísérletek elvégzése után a T-RTM-mel gyártott próbatesteket összehegesztettem. A PA6, a 2 rétegű és a 4 rétegű kompozitokat az előkísérletek figyelembevételével rögzített hegesztési erő (150 N) mellett hegesztettem össze. A hegesztési időt 0,3 és 0,6 s között változtattam. A hegesztési energiát és a hegesztési teljesítményt az eddigiekhez hasonlóan értékelem ki (43. ábra).



#### 43. ábra: T-RTM-mel gyártott PA6 hegesztési energiája és teljesítménye különböző paramétereken

A hegesztési energiában nem figyelhetők meg jelentős különbségek a T-RTM-mel gyártott és a fröccsöntött próbatestek között. A hegesztési energia az idő növelésével megközelítőleg lineáris nő. A hegesztési teljesítmény T-RTM technológiával gyártott próbatestek esetén körülbelül 25 %-kal magasabb, mint a fröccsöntött próbatestek esetén. Ez valószínűleg a minták magasabb kristályos részarányának tudható be.

Ezután a 2 rétegű erősítőszövettel készített kompozitokat hegesztettem össze és az eddigiekhez hasonlóan vizsgáltam a hegesztéshez szükséges energiát és teljesítményt (44. ábra).



44. ábra: 2 rétegű kompozitok hegesztési energiája és teljesítménye különböző hegesztési paramétereken

A hegesztési idő növelésével növekszik az energia, míg a teljesítmény nem változik. A mátrix alapú próbatestekhez képest mind a hegesztési energiában, mind a hegesztési teljesítményben növekedés figyelhető meg. A 4 rétegű kompozitok hegesztési energiáját és teljesítményét a 45. ábrán mutatom be.



#### 45. ábra: 4 rétegű kompozitok hegesztési energiája és teljesítménye különböző beállítások mellett

Megfigyelhető, hogy az erősítőanyag mennyiségének növelésével a hegesztéshez szükséges energia és teljesítmény is növekedett. A hegesztési energia a hegesztési idő növelésével 0,5 s hegesztési időig növekedett, ahol elérte a maximumot. A hegesztési teljesítmény 0,6 s hegesztési időnél körülbelül 15 %-kal kevesebb a többi beállításhoz képest.

#### 4.3.2. Nyíróvizsgálat

A próbatesteken ugyanazon beállítások mellett nyíróvizsgálatot végeztem el. Először a polimerizációval készült PA6 próbatestek eredményeit mutatom be (46. ábra és 47. ábra).



46. ábra: T-RTM technológiával készített hegesztett PA6 próbatestek nyírófeszültsége



47. ábra: T-RTM-mel gyártott PA6 próbatestek relatív nyúlása

Itt is látszódik, hogy 150 N hegesztési erő és 0,3 s hegesztési idő mellett nem volt megfelelő a hegedés. Az elmozdulás és a nyírófeszültség is alacsonyabb a többi paraméterhez képest. A legnagyobb elmozdulást és nyírófeszültséget 0,5 s hegesztési időnél sikerült elérni. A T-RTM-mel gyártott PA6 próbatestek alakváltozása kisebb volt, mint a fröccsöntötteké, ez valószínűleg a nagyobb kristályos részaránynak köszönhető. A következőkben a 2 rétegű kompozitok nyíróvizsgálatának eredményeit mutatom be (48. ábra és 49. ábra).



48. ábra: T-RTM-mel készített 2 rétegű kompozitok nyírófeszültsége különböző hegesztési paraméterek esetén



49. ábra: T-RTM eljárással készített 2 rétegű hegesztett kompozitok elmozdulása

Az előzetes számítások alapján a legjobb eredményeket mind a tönkremenetelhez tartozó nyúlás, mind nyírófeszültség szempontjából 0,5 s-os hegesztési idő mellett sikerült elérni. 0,6 s-os hegesztési időnél jelentősebb sorja képződés volt megfigyelhető. Ezeket az eredményeket a későbbiekben mikroszkópos vizsgálattal is ellenőrzöm. Ezután a 4 rétegű kompozitok nyíróvizsgálatának eredményeit mutatom be (50. ábra és 51. ábra).



50. ábra: T-RTM készített 4 rétegű hegesztett kompozitok nyírófeszültsége



51. ábra: 4 rétegű hegesztett kompozit elmozdulása

Maximális nyírófeszültség szempontjából a 4 és a 2 rétegű kompozitok hasonló eredményeket hoztak, míg alakváltozás szempontjából a 2 rétegű T-RTM-mel készített kompozitok körülbelül kétszer akkora relatív nyúlásra képesek. Ezt arra lehet visszavezetni, hogy a 4 rétegű kompozit esetében nem volt elég mátrixanyag a jobb alakváltozási képességekkel rendelkező varrat létrejöttéhez. A készített kompozitok 2,5-3-szor nagyobb nyírófeszültséggel rendelkeznek, mint a T-RTM-mel gyártott, valamint a fröccsöntött PA6 próbatestek. Ezenkívül megállapítható, hogy a T-RTM-mel gyártott hosszúszálas kompozitok ultrahangos hegesztéssel hegeszthetőek. A legnagyobb nyírófeszültségeket a 150 N/0,5 s hegesztési paraméterrel sikerült elérnünk (52. ábra).



52. ábra: A különböző anyagok nyírófeszültsége 0,5 s hegesztési idő mellett

A fröccsöntött és a T-RTM-mel készített PA6 próbatestek között szóráson belüli különbség van. Maximális nyírófeszültségük 9 MPa. A 2 rétegű kompozittal 25 MPa és a 4 rétegű kompozittal 19 MPa maximális nyírófeszültséget sikerült elérni. A 2 rétegű T-RTM-mel gyártott kompozit szakítószilárdsága 161 MPa, míg a 4 rétegűé 406 MPa.

### 4.3.3. Optikai mikroszkóp

A mikroszkópos vizsgálatok során a hegesztett próbatestek töretfelületetét és a varratokat vizsgáltam. A töretfelületekről először egy több részből összeillesztett, nagyfelbontású képet készítettem 20-szoros nagyítás mellett (53. ábra).



53. ábra: 4 rétegű kompozit hegesztett kompozit töretfelületéről optikai mikroszkóppal készített kép

A hegesztett terület világos árnyalattal rendelkezik. Ezeket a részeket az optikai mikroszkóp által használt szoftver segítségével lemértem (54. ábra).



54. ábra: A varrat területének mérése

A varratok területének lemérése után fajlagosítottam a nyírófeszültségeket azok területével. Ezzel a varratok területének nyírófeszültségre gyakorolt hatását vizsgáltam meg, tehát milyen mértékben változnak a maximális nyírófeszültségek a különböző paraméterek mellett, hogyha a valós területtel számolom ki a feszültségeket (55. ábra és 56. ábra).



55. ábra: 2 rétegű kompozit maximális korrigált nyírófeszültsége



56. ábra: 4 rétegű kompozit maximális korrigált nyírófeszültsége

Összehasonlítva a korábban lemért és egyszerű területszámítással kiszámolt névleges felülettel kapott nyírófeszültség értékeket, és megállapítható, hogy a hegesztési paramétereket úgy kell megválasztani, hogy maximalizálni tudjuk a hegesztési felületet. Az optikai mikroszkóppal lemért varrat területeket táblázatokban is megmutatom (6. táblázat és 7. táblázat).

| Mérések | 0,3 s                 | 0,4 s                 | 0,5 s                 | 0,6 s                 |
|---------|-----------------------|-----------------------|-----------------------|-----------------------|
| 1       | -                     | 210,9 mm <sup>2</sup> | 279,4 mm <sup>2</sup> | $282,5 \text{ mm}^2$  |
| 2       | 160,7 mm <sup>2</sup> | 229,0 mm <sup>2</sup> | -                     | 274,2 mm <sup>2</sup> |
| 3       | -                     | $145,2 \text{ mm}^2$  | 298,1 mm <sup>2</sup> | -                     |
| Átlag   | -                     | 195,1 mm <sup>2</sup> | 288,7 mm <sup>2</sup> | 278,4 mm <sup>2</sup> |
| Szórás  | -                     | 44,08 mm <sup>2</sup> | 13,23 mm <sup>2</sup> | 5,88 mm <sup>2</sup>  |

#### 6. táblázat: 2 rétegű kompozit

#### 7. táblázat: 4 rétegű kompozit

| Mérések | 0,3 s                 | 0,4 s                 | 0,5 s                 | 0,6 s                 |  |
|---------|-----------------------|-----------------------|-----------------------|-----------------------|--|
| 1       | -                     | -                     | $241,5 \text{ mm}^2$  | -                     |  |
| 2       | 98,13 mm <sup>2</sup> | 189,4 mm <sup>2</sup> | 324,8 mm <sup>2</sup> | 284,2 mm <sup>2</sup> |  |
| 3       | 97,00 mm <sup>2</sup> | 127,5 mm <sup>2</sup> | 198,1 mm <sup>2</sup> | $272,2 \text{ mm}^2$  |  |
| 4       | 110,4 mm <sup>2</sup> | 134,4 mm <sup>2</sup> | 139,3 mm <sup>2</sup> | 196,5 mm <sup>2</sup> |  |
| Átlag   | 101,9 mm <sup>2</sup> | $150,4 \text{ mm}^2$  | $225,9 \text{ mm}^2$  | 251,0 mm <sup>2</sup> |  |
| Szórás  | 7,453 mm <sup>2</sup> | 33,93 mm <sup>2</sup> | 78,07 mm <sup>2</sup> | 47,57 mm <sup>2</sup> |  |

Ahol nem tudtam a varrat méretét lemérni, ott nem szakadt el a próbatest, mindössze elrepedt. A varratok vizsgálatához a hegesztett próbatestből kivágott részeket ágyaztam be epoxi gyantába. Majd csiszoltam és políroztam a felületüket (57. ábra).



57. ábra: A beágyazott minták gyanta öntés után (bal) és csiszolás, polírozás után (jobb)

Ezután optikai mikroszkóp segítségével képeket készítettem a kompozitok hegesztett kötéséről, ezzel a varratok minőségét vizsgáltam. Már 20x-os nagyításban jól észrevehető a határfelület mentén a mátrixanyag habosodása, ami a varrat két végén még jelentősebb (58. ábra).



58. ábra: 2 rétegű kompozit varrata 20-szoros nagyításban (bal), 100-szoros nagyításban (jobb)

A habosodás a töretfelületen is jól látható. A habosodás a varrat szélein jelentősebb. A hegesztés erősségére és minőségére ez a jelenség negatív hatással van, mivel rontja az adhéziót. A habosodás valószínűleg a minták nedvességtartalmából adódik. A világosabb részek a

nyíróterhelés miatt jöttek létre. Az adhézió mértéke a varrat középső részein jelentősebb. A képen a kétrétegű kompozitok aszimmetrikussága is látszódik, azaz az egyik oldalon jóval több mátrix anyag van, mint a másikon (59. ábra).



59. ábra: Mátrix anyag habosodása 2 rétegű kompozitnál

A 4 rétegű kompozitnál a varraton nem figyelhető meg habosodás, azonban itt is láthatóak üregek a határfelületen (60. ábra).



60. ábra: 4 rétegű kompozit varrat

A határfelületen itt is látható habosodás, azonban ez a 2 rétegű kompozithoz képest kisebb területen figyelhető meg, a kevesebb mátrix anyag miatt (61. ábra).



61. ábra: 4 rétegű kompozit töretfelülete

## 4.3.4. Pásztázó elektronmikroszkópos vizsgálat

Az epoxi gyantába ágyazott hegesztett kötésekről és a töretfelületekről pásztázó elektronmikroszkóppal is készítettem felvételeket (62. ábra). A habosodás jelensége itt is megfigyelhető mind a varratoknál, mind a töretfelületről készített képek esetében.



62. ábra: A habosodás jelensége a hegesztett kötéseknél (bal), a töretfelületfelületen (jobb)

Ezenkívül a 2 rétegű kompozit töretfelületén megfigyelhető, hogy az erősítőanyag megfelelő mértékben át lett itatva mátrix anyaggal, így jó határfelület jött létre (63. ábra).



63. ábra: Az erősítőanyag és a mátrix anyag kapcsolata

A 4 rétegű kompozitról készített elektronmikroszkópos képeken még inkább észrevehető, hogy a két összehegesztett minta között egy szakaszon közös fázis jött létre (64. ábra), azaz a hegesztés megfelelő volt.



64. ábra: 4 rétegű kompozit közös fázis

A 4 rétegű kompozitnál is megállapítható, hogy megfelelő adhézió jött létre a szénszál és a mátrix anyag között (65. ábra), az infiltráció megfelelő volt.



65. ábra: Erősítőanyag és a mátrix anyag közötti kapcsolat a 4 rétegű kompozitnál

### 4.3.5. Differenciál pásztázó kalorimetria

A DSC (Differenciál Pásztázó Kalorimetria) méréssel a különböző minták kristályos részarányát határozom meg. A mátrix anyagból mintákat vettem a fröccsöntött PA6-ból, T-RTM-mel készített PA6-ból, illetve a 2 rétegű kompozitból a hegesztett és nem hegesztett részekről. A 4 rétegű kompozitot nem tudtam vizsgálni a kevés mátrixanyag tartalom miatt. A próbatestekből átlagosan 5-6 mg tömegű mintákat vágtam ki. A mintákat 10 °C/perc-es sebességgel fűtöttem fel 25 °C és 250 °C között. A kristályos részarányt az első felfűtésből számoltam ki a következő képlet segítségével [51]:

$$x = \frac{\Delta H_m - \Delta H_{cc}}{\Delta H_{kr} \cdot (1 - \alpha)} \cdot 100 \, [\%] \tag{1}$$

ahol x [%] a kristályos részarány,  $\Delta H_m$  [J/g] a mért kristályolvadási entalpia,  $\Delta H_{cc}$  a hidegkrisztallizáció entalpiája,  $\Delta H_{kr}$  [J/g] az elméleti 100%-os kristályos részaránnyal rendelkező polimer entalpiája (ennek értéke 188 J/g [51]) és  $\alpha$  [m%] a töltőanyagtartalmat jelenti. Ezek alapján a kristályos részarányok a következőképpen alakultak (8. táblázat).

| Minto alpavazása                   | 1. felfűtés        | 1. felfűtés | 1. lehűtés         | 1. lehűtés |
|------------------------------------|--------------------|-------------|--------------------|------------|
| Minta emevezese                    | $\Delta H_m [J/g]$ | x [%]       | $\Delta H_m [J/g]$ | x [%]      |
| 2 rétegű T-RTM hegesztett rész     | 73,64              | 39,17       | 45,94              | 24,44      |
| 2 rétegű T-RTM nem hegesztett rész | 79,70              | 42,39       | 45,63              | 24,27      |
| PA6 T-RTM                          | 68,64              | 36,51       | 44,41              | 23,62      |
| PA6 fröccsöntött                   | 66,58              | 35,41       | 59,55              | 31,68      |

#### 8. táblázat: A minták kristályos részaránya

A kompozit próbatestek nagyobb kristályos részaránnyal rendelkeznek az első felfűtés során, mint az erősítetlen próbatestek. A T-RTM-mel történő gyártás esetén a polimerizáció miatt nagyobb kristályos részarányt lehet elérni, mint fröccsöntés esetében. Hegesztéssel csökken a kristályos részarány, mivel a minta felületét megolvasztjuk és újra lehűtve, kontrollált körülmények között kristályosítjuk azt. Így ez befolyásolhatja a hegesztési zóna tulajdonságait. Megolvasztás után a kristályos részarány értékében csökkenés figyelhető meg, a visszaesés mértéke a fröccsöntött minta esetében a legkisebb. A különböző minták első felfűtéses hőáram alakulását a 66. ábrán ábrázoltam.



66. ábra: Minták hőáram alakulása

A kristályolvadás közel azonos hőmérsékleten kezdődik el mindegyik minta esetében. A T-RTM-mel készített minták kristályolvadási csúcsa jóval intenzívebb és szűkebb, mint fröccsöntött esetben. Ez annak köszönhető, hogy a T-RTM-es minták jóval magasabb kristályos részaránnyal rendelkeznek és a kristályok lamellavastagsága is egyenletesebb. Míg a polimerizált mintáknál jellemzően  $\gamma$  kristálymódosulatok keletkeznek (213 °C környékén), addig a fröccsöntött minta esetében a  $\gamma$  mellett a jóval stabilabb  $\alpha$  is megjelenik. (221 °C környékén).

## 5. ÖSSZEFOGLALÁS

Az ultrahangos hegesztés a mechanikai súrlódáson alapú hegesztési technológiák csoportjába tartozik. A rezgéseket a konverterben elhelyezkedő piezoelektromos kristályok hozzák létre, amelyek a nagyfrekvenciájú váltóáram hatására periodikusan összehúzódnak és kitágulnak. Ezeket a rezgéseket a booster erősíti fel és szonotróda közli a munkadarabokkal.

A T-RTM gyártástechnológia a folyékony kompozit öntő technológiák fejlődésével jelent meg a 2010-es évek második felében. A gyártási eljárás az RTM eljárás termoplasztikus fajtája. A gyártás során alacsony viszkozitású oligomerből és monomerből álló keveréket juttattunk a szerszámba, ehhez aktivátort és katalizátort adunk. A T-RTM-ben használt poliamid 6-ot leggyakrabban az ε-kaprolaktám monomer gyűrűfelnyitásos polimerizációjával hozzák létre. A szerszámban a nagy nyomással (110-120 bar) beinjektált anyag emelt hőmérséklet (~160 °C) alatt polimerizálódik. Az így készült nagy szilárdságú termoplasztikus kompozitok alternatívát jelenthetnek az autóiparban egyes fém alkatrészek helyett.

A kutatásomban T-RTM-mel készített kompozitok ultrahangos hegesztését vizsgáltam. Készítettem 2 rétegű és 4 rétegű szénszálas kompozitokat és ezeket hasonlítottam össze T-RTM-mel gyártott PA6 és fröccsöntött PA6 műanyagok hegeszthetőségével. Az ultrahangos hegesztéshez 80x25 mm-es próbatesteket vágtam ki a gyártmányból a száliránynak megfelelően. Először a fröccsöntött próbatestek segítségével meghatároztam a megfelelő hegesztési paramétereket. A kompozitokat végül idővezérelt módban hegesztettem 150 N hegesztési erő mellett 0,3/0,4/0,5/0,6 s hegesztési idővel. A próbatesteken nyíróvizsgálatokat végeztem el. A legjobb paraméter az össze próbatest esetében a 0,5 s hegesztési idő volt. A PA6 műanyag próbatesteknél ezzel a beállítással 9 MPa maximális nyírófeszültséget értem el. A 2 rétegű kompozitnál közel 25 MPa lett a maximális nyírófeszültség. A 4 rétegű kompozitnál a kevesebb mátrix anyag miatt 20 MPa-os maximális nyírófeszültséget és kisebb relatív nyúlást (1,5 %) sikerült elérni, mint a 2 rétegű esetben. Optikai mikroszkópos képek segítségével kiszámítottam a varrat tényleges felületét és ez alapján meghatároztam a korrigált nyírófeszültséget. Ezzel a módszerrel már kisebb különbség volt a hegesztési paraméterek között, így megállapítottam, hogy a hegesztési paramétereket úgy kell beállítani, hogy a hegesztett felületet maximalizálni tudjam. DSC vizsgálattal igazoltam, hogy a T-RTM-mel készített próbatestek nagyobb kristályos részaránnyal rendelkeznek, valamint a hegesztett részeken csökkent a kristályos részarány.

## 5.1. További megoldásra váró feladatok

További célom fröccsöntéssel készült PA6 mátrixú rövid szénszálas kompozit gyártása és ultrahangos hegesztése. Ezt pedig összehasonlítani a T-RTM-mel gyártott hegesztett kompozitok tulajdonságaival. Valamint érdemes lenne azt is megvizsgálni, hogy milyen hatása van annak, ha a próbatesteket hegesztés előtt szárítószekrényben szárítom, ezzel vizsgálva a nedvességtartalom hatását. Végül tervezem még TGA (Termogravimetriás analízis) méréssel meghatározni a különböző minták bomlási hőmérsékletét.

## 6. FELHASZNÁLT FORRÁSOK

- Anahi Pereira da Costa, Edson Cocchieri Botelho, Michelle Leali Costa, Nilson Eiji Narita, José Ricardo Tarpani: A Review of Welding Technologies for Thermoplastic Composites in Aerospace Applications. Journal of Aerospace Technology and Management, 4, 255-265 (2012).
- Agni K. Biswal, Ankush Nandi, Hung Wang, Aniruddh Vashisth: Ultrasonic welding of fiber reinforced vitrimer composites. Composites Science and Technology, 242, (2023).
- James J. Murray, Colin Robert, Klaus Gleich, Edward D. McCarthy, Conchúr M. Ó Brádaigh: Manufacturing of unidirectional stitched glass fabric reinforced polyamide 6 by thermoplastic resin transfer moulding. Materials and Design, 189, (2020).
- James J. Murray: Thermoplastic Resin Transfer Moulding of Tough Recyclable Composites for High Volume Manufacturing. The University of Edinburgh (2020).
- Sina Ebnesajjad: Adhesives Technology Handbook. William Andrew, Norwich, NY (2009).
- I. Jones: 10 Laser welding of plastics. in 'Handbook of Laser Welding Technologies' (szerk.: Seiji Katayama) Woodhead Publishing, Sawston, Egyesült Királyság, 280-300 (2013).
- Jordan Rotheiser: Joining of plastics. Handbook for designers and engineers, Hanser Publishers, München (1999).
- Xu Cui, Lin Tian, Pu Zhao, Daosheng Wang, Yueyou Wang, Wei Wang: The morphology and mechanical property of hot gas implant welding joint of polypropylene. Materials Letters, 293, (2021).
- 9. Vijay K. Stokes: A phenomenological study of the hot-tool welding of thermoplastics. Part 1: Polycarbonate. Polymer, **40**, 6235-6263 (1999).
- P. Michel: An Analysis of the Extrusion Welding Process. Polymer Engineering and Science, 29, 1376-1381 (1989).
- 11. Michael J. Throughton: Extrusion Welding. in 'Handbook of Plastics Joining' (szerk.: Michael J. Throughton) Elsevier, Amszterdam, Hollandia, 73-79 (2008).

- Ghulam Anwer, Bappa Acherjee: Laser polymer welding process: Fundamentals and advancements. Materials Today: Proceedings, 61, 34-42 (2022).
- Ramesh Rudrapati: Effects of welding process conditions on friction stir welding of polymer composites: A review. Composites Part C: Open Access, 8, (2022).
- 14. Somen K. Bhudolia, Goram Gohel, Kah Fai Leong, Aminul Islam: Advances in Ultrasonic Welding of Thermoplastic Composites: A Review. Materials, 13, (2020).
- 15. Michael J. Troughton: Handbook of Plastics Joining. William Andrew, Norwich, NY (2008).
- 16. L. Quintino: 2- Introduction to joining methods in medical applications. in
  'Joining and Assembly of Medical Materials and Devices' (szerk.: Y. Zhou, Mark D. Breyen) Woodhead Publishing, Sawston, Egyesült Királyság, 28-46 (2013).
- 17. Qian Zhi, Xin-Rong Tan, Lei Lu, Long-Yang Chen, Jian-Cun Li, Zhong-Xia Liu: Decomposition of ultrasonically welded carbon fiber/polyamide 66 and its effect on weld quality. Weld World, **61**, 1017-1028 (2017).
- Qian Zhi, Xin-Rong Tan, Zhong-Xia Liu: Effect of Moisture on the Ultrasonic Welding of CarbonFiberReinforced Polyamide 66 Composite. Welding Journal, 96, 185-192 (2017).
- Qian Zhi, Xin-Rong Tan, Zhong-Xia Liu: Effects of Preheat Treatment on the Ultrasonic Welding of Carbon-Fiber-Reinforced Polyamide 66 Composite. Welding Journal, 96, 429-438 (2017).
- 20. Kaifeng Wanga, Yang Li, Mihaela Banua, Jingjing Li, Weihong Guoc, Haris Khan: Effect of interfacial preheating on welded joints during ultrasonic composite welding. Journal of Materials Processing Technology, 246, 116-122 (2017).
- 21. Yu-Hao Gao, Qian Zhi, Lei Lu, Zhong-Xia Liu, Pei-Chung: Ultrasonic Welding of Carbon Fiber Reinforced Nylon 66 Composite without Energy Director. Journal of Manufacturing Science and Engineering (2018).

- 22. Keita Gotoa, Kenta Imaia, Masahiro Araia, Takashi Ishikawa: Shear and tensile joint strengths of carbon fiber-reinforced thermoplastics using ultrasonic welding. Composites Part A, **116**, 126-137 (2019).
- 23. Zsófia Osváth, Anita Szőke, Szabolcs Pásztor, László Balázs Závoczki, Györgyi Szarka, Béla Iván: Recent Advances in the Synthesis and Analysis of Polyamide 6 and Products Therefrom: From Polymerization Chemistry of ε-Caprolactam to Thermoplastic Resin Transfer Molding (T-RTM). Academic Journal of Polymer Science, **4**, 118-120 (2020).
- 24. Zsófia Kovács, Ákos Pomázi, Andrea Toldy: The flame retardancy of polyamide 6-prepared by in situ polymerization of ε-caprolactiom-For T-RTM applications. Polymer Degradation and Stability, **195**, (2022).
- 25. Szebényi Gábor, Tamás-Bényei Péter, Ilya Sibikin, Tatyana Ageyeva, Osváth Zsófia, Pásztor Szabolcs, Iván Béla, Karger-Kocsis József, Czigány Tibor: εkaprolaktám alkalmazása T-RTM technológiákban. 'ERŐSÍTETT MŰANYAGOK 2018 Nemzetközi BALATON Konferencia, Balatonkerese, Magyarország' 988 (2018).
- 26. Michael Wilhelm, Rainer Wendel, Martin Aust, Philipp Rosenberg, Frank Henning: Compensation of Water Influence on Anionic Polymerization of ε-Caprolactam: 1. Chemistry and Experiments. Journal of Composites Science, 4, (2020).
- 27. Zsófia Osváth, Anita Szőke, Szabolcs Pásztor, Györgyi Szarka, László Balázs Závoczki, Béla Iván: Post-Polymerization Heat Effect in the Production of Polyamide 6 by Bulk Quasiliving Anionic Ring-Opening Polymerization of ε-Caprolactam with Industrial Components: A Green Processing Technique. Processes, 8, (2020).
- 28. Rainer Wendel, Bernd Thoma, Frank Henning: Influence of Water during Manufacturing of APA6 in the Thermoplastic RTM Process. 'Polymer Processing Society (PPS International Conference) 2017' (2017).
- 29. Jae Hyo Lee, Seung Mo Son, Jung Jae Yoo, Sang Woo Kim, Jin Woo Yi, Dong Gi Seong: Thermoplastic resin transfer molding of carbon fiber reinforced polyamide 6 composite with the improved processability using zeolite particle. Korea-Australia Rheology Journal, **35**, 39-45 (2023).

- 30. Bernard Miranda Campos, Serge Bourbigot, Gaëlle Fontaine, Fanny Bonnet: Thermoplastic matrix-based composites produced by resin transfer molding: A review. Polymer Composites, 43, 2485-2506 (2022).
- 31. D. Dai, M. Fan: Wood fibres as reinforcements in natural fibre composites: structure, properties, processing and applications. in 'Natural Fibre Composites' (szerk.: Alma Hodzic and Robert Shanks) Woodhead Publishing, Sawston, Egyesült Királyság, 3-65 (2014).
- 32. Nadlene Razali, Muhd Ridzuan Mansor, Ghazali Omar, Syed Ahmad Faiz Syed Kamarulzaman, Mohd Hanafee Zin, Nadia Razali: Chapter 15 – Out-ofautoclave as a sustainable composites manufacturing process for aerospace applications. in 'Design for Sustainability' (szerk.: S. M. Sapuan, Muhd Ridzuan Mansor) Elsevier, Amszterdam, Hollandia, 395-413 (2021).
- 33. Colin Gomez, Damiano Salvatori, Baris Caglar, Robin Trigueira, Gilles Orange, V'eronique Michaud: Resin Transfer molding of High-Fluidity Polyamide-6 with modified Glass-Fabric preforms. Composites Part A, 147, (2021).
- 34. Róbert Boros, Ilya Sibikin, Tatyana Ageyeva, József Gábor Kovács: Development and Validation of a Test Mold for Thermoplastic Resin Transfer Molding of Reactive PA-6. Polymers, 12, (2020).
- 35. Matthieu Thomassey, Baptiste Paul Revol, Frédéric Ruch, Julia Schell, Michel Bouquey: Interest of a Rheokinetic Study for the Development of Thermoplastic Composites by T-RTM. Universal Journal of Materials Science, 5, 15-27 (2017).
- 36. Tatyana Ageyeva, Ilya Sibikin, József Gábor Kovács: A Review of Thermoplastic Resin Transfer Molding: Process Modeling and Simulation. Polymers, 11, (2019).
- 37. Chan-Woong Choi, Ji-Won Jin, Haksung Lee, Mongyoung Huh, Ki-Weon Kang: Optimal Polymerization Conditions in Thermoplastic-Resin Transfer Molding Process for Mechanical Properties of Carbon Fiber-Reinforced PA6 Composites Using the Response Surface Method. Fibers and Polymers, 20, 1021-1028 (2019).
- 38. Damiano Salvatori: Strategies for faster impregnation in melt thermoplastic resin transfer molding process. Scientific production and competences, (2018).

- Orsolya Viktória Semperger, András Suplicz: The Effect of the Parameters of T-RTM on the Properties of Polyamide 6 Prepared by in Situ Polymerization. Materials, 13, (2019).
- 40. Jungwoo Lee, Jun Woo Lim, Minkook Kim: Effect of thermoplastic resin transfer molding process and flame surface treatment on mechanical properties of carbon fiber reinforced polyamide 6 composite. Inspiring Plastics Professionals, 1-13 (2019).
- 41. Orsolya Viktória Semperger, Péter Pomlényi, András Suplicz: Felületibevonatolási eljárás T-RTM technológiához. Polimerek.
- 42. Colin Gomez, Damiano Salvatori, Baris Caglar, Robin Trigueira, Gilles Orange, V'eronique Michaud: Resin Transfer molding of High-Fluidity Polyamide-6 with modified Glass-Fabric preforms. Composites Part A, 147, (2021).
- 43. Elodie Louisy, Fabienne Samyn, Serge Bourbigot, Gaëlle Fontaine, Fanny Bonnet: Preparation of Glass Fabric/Poly(L-lactide) Composites by Thermoplastic Resin Transfer Molding. Polymers, **11**, (2019).
- 44. http://www.pt.bme.hu/gepadat.php?sorszam=75&l=m
- 45. http://www.pt.bme.hu/gepadat.php?sorszam=78&l=m
- 46. http://www.pt.bme.hu/gepadat.php?sorszam=119&l=m
- 47. http://www.pt.bme.hu/gepadat.php?sorszam=35&1=m
- 48. http://www.pt.bme.hu/gepadat.php?sorszam=32&l=m
- 49. http://www.pt.bme.hu/gepadat.php?sorszam=167&l=m
- 50. http://www.pt.bme.hu/gepadat.php?sorszam=129&l=m
- 51. Orsolya Viktoria Semperger, Zsófia Osváth, Szabolcs Pasztor, András Suplicz: The effect of the titanium dioxide nanoparticles on the morphology and degradation of polyamide 6 prepared by anionic ring-opening polymerization. Polymer Engineering and Science, **62**, 2079-2088 (2022).

# 7. MELLÉKLETEK

| Anvog   | Erősítő  | Amplitúdó | Frekvencia | Hegesztési  | Hegesztési    | Hog idő   | Max.     |
|---------|----------|-----------|------------|-------------|---------------|-----------|----------|
| Anyag   | tartalom |           |            | energia     | erő           | neg. iuo  | heg. erő |
| CF/PA66 | 30 m%    | 25 µm     | 20 kHz     | 3000-8000 J | 300 N         | E. mód    | 6,4 kN   |
| CF/PA66 | 30 m%    | 25 µm     | 20 kHz     | 3000 J      | 0,17 MPa      | E. mód    | 6,3 kN   |
| CF/PA66 | 30 m%    | 25 µm     | 20 kHz     | -           | -             | E. mód    | 37 MPa   |
| CF/PA6  | 30 m%    | 35 µm     | 20 kHz     | 400-1200 J  | 200 N         | E. mód    | 3,5 kN   |
| CF/PA66 | 30 m%    | 25 µm     | 20 kHz     | Idő mód     | 0,13-0,2 MPa  | 1,3-3,3 s | 6 kN     |
| CF/PA66 | 30 m%    | 25 µm     | 20 kHz     | Idő mód     | 0,13-0,18 MPa | 1,3-3,3 s | 5,2 kN   |
| CF/PA6  | 50 tf%   | 90 µm     | 15 kHz     | 200-800 J   | 400 N         | E. mód    | 40 MPa   |
| CF/PA6T | 50 tf%   | -         | 20 kHz     | -           | 0,4 MPa       | 0,5-0,6 s | 3 MPa    |

## 1. melléklet: irodalomból kigyűjtött hegesztési paraméterek ultrahangos hegesztéshez