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Nomenclature 

Latin letters Name Unit 

B(t) Boundary of a rotationally coherent Lagrangian 

vortex 

 

c Chord length m 

cD Drag coefficient - 

cL Lift coefficient - 

C Courant number - 

C(t) Center of a rotationally coherent Lagrangian 

vortex 

 

d Diameter m 

D(t) Rotationally coherent Lagrangian vortex  

f Vortex shedding frequency Hz 

h Height of the cylinder m 

L(t) Lagrangian coherent structure  

QV Volume flow rate m3∙s-1 

Δps Static pressure rise Pa 

rb Blade tip radius m 

Re Reynolds number - 

s Variable of integration  

Sr Strouhal number - 

t Final time instant of the integration s 

t0 Starting time instant of the integration s 

Δt Time step size s 

u Blade tip peripheral velocity  m∙s-1 

V Velocity magnitude m∙s-1 

v(x,t) Unsteady velocity field m∙s-1 

x(t,x0) Instantaneous particle positions m 

x0 Initial particle positions m 

Δx Smallest cell size in the domain in the direction 

of the flow 

m 

Δxij Difference between the centers of the 

neighboring vortices in the x-direction 

m 



 

 

Δyij Difference between the centers of the 

neighboring vortices in the y-direction 

m 

   

Greek letters Name Unit 

μ Dynamic viscosity kg∙m-1∙s-1 

ρ Density kg∙m-3 

Φ Global flow coefficient - 

Ψ Global static pressure rise coefficient - 

ω(x,t) Vorticity s-1 

ω̅(t) Instantaneous spatial mean of the vorticity s-1 

   

Abbreviations  Unit 

CFD Computational Fluid Dynamics  

DeficiencyThresh Convexity deficiency threshold % 

LAVD Lagrangian-averaged vorticity deviation - 

LE Leading edge  

MinLength Minimal arc-length threshold % 

Nct Number of contour levels - 

ODE Ordinary Differential Equation  

RMS Root mean square SI 

TE Trailing edge  

TLV Tip leakage vortex  
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1 Introduction and objectives 

Extensive research has been dedicated to studying the flow around solid objects, driven by 

the wide range of practical uses. For instance, according to [1] many structural elements and 

civil structures have rectangular sections. In the case of these bluff bodies, aerodynamic 

instability phenomena such as vortex-induced vibration and galloping are usual. These 

phenomena have to be accounted for when estimating wind loading and aeroelastic instability 

for these sections. Studies in connection with this type of geometry have typically been 

conducted by means of wind tunnel measurements and Computational Fluid Dynamics (CFD) 

simulations. As for another example, in [2] it is stated that wind is one of the dominant load 

criteria in the design of tall circular chimneys which are important power plant structures. 

Vortex induced oscillations significantly influence the across-wind load and response of a 

chimney. In [2] a full scale experiment was examined in connection with the mentioned 

structure. 

When it comes to bluff bodies, there is a specific range of the Reynolds number where the 

so-called von Karman vortex street phenomenon occurs [3]. This phenomenon is characterized 

by symmetric and periodic vortex shedding. The said flow pattern can sometimes trigger 

unwanted structural vibrations which can become especially hazardous when the frequency of 

vortex shedding coincides with the natural frequencies of the bodies [3]. Consequently, 

engineers need to give careful thought to the impact of vortex shedding when designing 

buildings like skyscrapers and chimneys to reduce potential risks. 

Previous vortex detection research has already been performed by the author in connection 

with a two-dimensional circular cylinder, and a two-dimensional square cylinder for various 

Reynolds numbers and/or angles of attack [4]. The applied vortex detection method was the so-

called Lagrangian-averaged vorticity deviation (LAVD) vortex identification method, which is 

based on [5]. The main result of the study was the detection of vortices, the identification of the 

main vortex detection parameters (recommendations were given for their values) which 

fundamentally determine the outcome of the detection, and the comparison of the detected 

vortices with other detection results. 

In the current study the author aims to perform the vortex detection (with the LAVD method), 

and the parameter identification for a three-dimensional circular cylinder geometry. The 

repeated parameter identification of the LAVD method is vital because the publication on which 

the LAVD method is based [5], does not give suggestions for the values of the parameters, thus, 

decreasing the practicality, and applicability of the method. By performing the parameter 

identification repeatedly for different cases, a more general view can be obtained in connection 
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with the parameters, and more general suggestions can be formulated for the settings of the 

LAVD vortex detection method. The data for which the detection is performed is a result of 

simulation, which was performed using ANSYS Workbench 2023 R2 [6]. Two simulations 

were run for two different Reynolds numbers. The vortex detection was performed using 

MATLAB 2023a [7]. A comparison of the current suggested parameter values with the 

previously obtained results [4] will also be presented. 

Apart from the circular cylinder geometry, the capabilities of the LAVD method is tested on 

a case study of an axial flow fan. To the author’s best knowledge this is the first application of 

this method on flows produced by turbomachinery. According to [8] low-speed axial fans are 

frequently used both in industrial and household applications, therefore, high-efficiency and 

low-noise emission are very important characteristics. However, one of the main sources of 

losses, and noise emission is the tip leakage flow [8]. The lip leakage flow can cause almost a 

third of the hydraulic losses, and in many cases, it has been identified as the dominant sound 

source [8]. For axial flow fans, the tip leakage flow rolls up and forms the tip leakage vortex 

(TLV) [8]. After the rollup, the TLV core starts spiraling as it propagates downstream in the 

blade passage. 

In the current study the author aims to detect the tip leakage vortex cores in the case of an 

axial fan by applying the LAVD vortex identification method. The data for which the detection 

is performed is a result of simulation, presented in [9]. According to [9] the simulation was 

performed using the ANSYS Fluent 22R2 software. Comparison of the detection results will 

also be performed with results provided by a different author (Bálint Lendvai). In said case, the 

detection was carried out by Banks’ vorticity predictor-pressure corrector vortex core 

identification method. 

2 Lagrangian-averaged vorticity deviation 

2.1 Theoretical background 

As it was already mentioned, the applied vortex detection method is the so-called Lagrangian-

averaged vorticity deviation (LAVD) which is proposed in [5]. According to [5], the definition 

of coherent vortices is still a disputed matter, however there are two main characteristics which 

are widely accepted: 

1. Vortices are concentrated regions of high vorticity 

2. Vortices are generally viewed as evolving domains with a high level of material 

invariance 

Despite the fact that these characteristics are broadly accepted, different authors interpret 

vortices in different ways. In [5] an objective vortex criterion is proposed, this is the so-called 
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Lagrangian-averaged vorticity deviation (LAVD). The Lagrangian-averaged vorticity deviation 

is defined as the integral of the normalized difference between the vorticity and its spatial mean 

over a trajectory [5]. 

Mathematically, it can be expressed as: 

𝐿𝐴𝑉𝐷𝑡0

𝑡 (𝒙0) ≔  ∫ |𝝎(𝒙(𝑠; 𝒙0), 𝑠) − �̅�(𝑠)|𝑑𝑠
𝑡

𝑡0

(1) 

Where 𝑡0 [s] is the starting time instant of the integration, 𝑡 [s] is the final time instant of the 

integration, 𝒙0 [m] denotes the initial particle positions, 𝝎(𝒙, 𝑠) [
1

s
] is the vorticity, 

𝒙(𝑠; 𝒙0)[m] denotes the instantaneous particle positions, 𝑠 is the variable of integration, and 

�̅�(𝑠) [
1

s
] is the instantaneous spatial mean of the vorticity. 

According to [5] a Lagrangian vortex is a nested set of material tubes with outward 

decreasing tubular level sets of LAVD. The LAVD is derived from the dynamic rotation tensor, 

which is obtained from the dynamic polar decomposition of the deformation gradient. This 

provides an objective global vortex criterion which is entirely frame-invariant. 

The use of LAVD allows for the objective detection of material tubes, along which small 

fluid volumes exhibit the same bulk rotation compared to the mean rotation of the fluid [5]. The 

initial positions of these tubes correspond to tubular level surfaces of the 𝐿𝐴𝑉𝐷𝑡0

𝑡 (𝒙0). In 2D, 

these tubular sets can be interpreted as closed convex curves, while in 3D, they can be 

understood as convex, cylindrical, cup-shaped, or toroidal sets [5]. 

According to [5], a rotationally coherent Lagrangian vortex must satisfy the following 

conditions: 

1. It is an evolving material domain 𝐷(𝑡) where 𝐷(𝑡0) is filled with tubular level 

surfaces of 𝐿𝐴𝑉𝐷𝑡0

𝑡 (𝒙0) and the LAVD values are decreasing as one moves outwards 

2. The boundary 𝐵(𝑡) of 𝐷(𝑡) is a material surface where 𝐵(𝑡0) is the outermost tubular 

level surface (minimum) of 𝐿𝐴𝑉𝐷𝑡0

𝑡 (𝒙0) in 𝐷(𝑡0) 

3. The center 𝐶(𝑡) of 𝐷(𝑡) is a material set where 𝐶(𝑡0) is the innermost member 

(maximum) of 𝐿𝐴𝑉𝐷𝑡0

𝑡 (𝒙0) in 𝐷(𝑡0) 

In Fig. 1 a rotationally coherent Lagrangian vortex can be seen. The first figure is at the 

beginning of the examined time interval and the second figure represents the current state. L(t) 

represents a rotational Lagrangian coherent structure, this means that along L(t) fluid volumes 

have the same rotation in the given time interval. 
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2.2 Numerical implementation 

In this section the numerical implementation of the three-dimensional LAVD method will be 

discussed briefly. It is important to note that some modifications were made in connection with 

the freely accessible code. The major problem was that the original code was intended to be 

used for equidistant, uniform grid data, however, in the case of fluid dynamics, uniform grid 

data is seldom available, on the other hand, scattered data is much more usual (e.g. in the case 

of CFD simulations). The interpolation of the velocity data is needed during the calculations 

(detailed later), however, the ’scatteredInterpolant’ function of MATLAB can only interpolate 

up to three dimensions (due to the transient aspect of the flow, a four-dimensional scattered 

interpolation is required), consequently, the interpolation had to be reformulated within the 

MATLAB code. 

The first step is to create a uniform grid, in order to be able to perform the interpolation later 

on. Afterwards, the interpolation functions have to be created for the interpolation of the 

velocity values which were exported from the CFD simulation. This was done in the following 

way: an interpolation function was created for each velocity component and for each time step. 

For example, in the case of 20 time steps this would mean 60 interpolation functions in total. 

As a next step, the following ordinary differential equation (ODE) has to be solved to calculate 

the particle trajectories: 

𝑑𝑥

𝑑𝑡
= 𝒗(𝒙, 𝑡) (2) 

The ODE is solved by using the built-in ’ode45’ function, and the initial particle positions 

correspond to the created uniform grid. The vorticity values are then subsequently integrated 

Fig. 1 Initial and current positions of a Lagrangian vortex D(t); 

(reproduced from [5]) 
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along the trajectories. With the help of the vorticity values, the LAVD matrix can be determined 

with Eq. (1). 

As for the contour extraction, it is important to mention that in the three-dimensional case as 

well (similarly to the two-dimensional case), the vortices are sought in different two-

dimensional planes, these said planes can be selected. At first, the local maxima of the LAVD 

field are identified. All of the LAVD level curves in the vicinity of the maxima have to be 

extracted. The vortex boundary is identified as the outermost convex LAVD level. These levels 

are only extracted as long as the value of the LAVD decreases outward from the vortex center. 

The general outputs of the code are the coordinates of the vortex centers and the coordinates of 

the vortex boundaries. 

3 Circular cylinder 

3.1 Simulation setup 

The three-dimensional cylindrical domain (which is representing the fluid domain) was 

constructed using SpaceClaim [6] and DesignModeler [6]. A cylindrical shape was cut out of 

the domain, which is representing the infinitely long cylinder. The geometry had to be split into 

several parts so that later on a structured, hexahedral mesh could be created. 

The diameter (d) and the height (h) of the cylinder are the following: 

𝑑 = 0.01 [m] (3) 

ℎ = 0.06 [m] (4) 

The circular domain has a dimension of 40 diameters, and its height is equal to the height of 

the cylinder (h). The geometrical model is based on [10] and can be seen in Fig. 2. 

Fig. 2 The constructed geometrical model. 
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The meshing is also based on [10], and it was performed in the Ansys Workbench Mesher 

[6], where a structured, hexahedral mesh was created. The MultiZone method was applied with 

Hexa elements. There are 140, 120, and 32 nodes stretched along the radial, the circumferential, 

and the vertical directions, respectively. 

The appropriate resolution of the mesh was also achieved by applying appropriate biases 

along with the sizings. The mesh was more refined in the regions close to the cylinder so that 

the simulations could capture the vortex shedding effects appropriately. The smallest cell size 

in the domain is approximately 4.5∙10-4 [m], and the mesh consists of 558,360 nodes. The mesh 

quality was checked by inspecting the maximum and average values of the skewness attribute, 

these are the following: 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑚𝑎𝑥 = 0.50 [−] (5) 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 0.13 [−] (6) 

The quality of the mesh is satisfactory, because for hexahedral elements the maximum 

skewness should not exceed 0.85 [11]. It can be seen that this requirement has been fulfilled. 

In Fig. 3 and Fig. 4 the generated mesh can be seen. 

Two simulations were run for two different Reynolds numbers (60 and 100) using Ansys 

Fluent 2023 R2 [6]. With respect to the 𝑅𝑒 = 100 case, the aim was to visualize the so-called 

von Karman vortex street phenomenon, which is characterized by symmetric and periodic 

vortex shedding [12]. As for the 𝑅𝑒 = 60 case, for this Reynolds number a laminar, unstable 

wake can be observed (the vortex shedding phenomenon is present here as well) [12]. From the 

Reynolds number the inlet velocity can be calculated in the following way [3]: 

𝑅𝑒 =
𝑉 ∙ 𝜌 ∙ 𝑑

𝜇
→ 𝑉 =

𝑅𝑒 ∙ 𝜇

𝜌 ∙ 𝑑
(7) 

Where: 𝑉 [
m

s
]: magnitude of velocity, 𝜌 = 1.225 [

kg

m3]: density of air, 𝑑 = 0.01 [m]: 

characteristic length, which is the cylinder diameter, 𝜇 = 1.7894 ∙ 10−5  [
kg

m∙s
]: dynamic 

viscosity of air. 

For both of the simulations the ‘Viscous Laminar’ model was applied. The air was assumed 

to be incompressible ideal gas. SIMPLE pressure-velocity coupling was used for the 

simulations, and second-order upwinding was set for the numerical schemes. 

Both simulations were run in transient mode, thus, an appropriate time step value had to be 

determined for each of them. The time step values were determined based on the definition of 

the Courant number [11]: 
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𝑉Δ𝑡

Δ𝑥
≤ 𝐶𝑚𝑎𝑥 (8) 

Where: 𝑉 [
m

s
]: magnitude of velocity, Δ𝑡 [s]: time step size, Δ𝑥 [m]: smallest cell size in the 

domain in the direction of the flow. 

 

  

Fig. 3 The generated hexahedral mesh. 

Fig. 4 The generated local mesh around the cylinder. 
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The simulation data for the two cases can be seen in Table 1. For the 𝑅𝑒 = 100 case (this 

was the first simulation) the maximum value of the Courant number was aimed to be around 1. 

However, from the simulation results (𝐶𝑚𝑎𝑥 = 0.8) it could be seen that the time step can be 

chosen to be higher than what is obtained with Eq. (8) for 𝑅𝑒 = 60, while still keeping the 

convergence of the simulation. For this simulation case the maximum value of the Courant 

number was: 𝐶𝑚𝑎𝑥 = 2.3. 

Table 1 Simulation data for the examined cases. 

Reynolds 

numbers [-] 

x-component of 

velocity [m/s] 

y-component of 

velocity [m/s] 

z-component of 

velocity [m/s] 

Time step 

size [s] 

Number of 

time steps [-] 

60 0.0876 0 0 0.005 5500 

100 0.1461 0 0 0.001 14000 

 

It was necessary to prescribe the components of the inlet velocity because of the circular 

domain. This way the inlet velocity was purely x-directional. 

The boundary conditions were set based on [10] and can be seen in Fig. 5. For the inlet and 

the outlet a velocity inlet, and a pressure outlet boundary condition were prescribed, 

respectively. For the upper and lower boundaries periodic boundary conditions were applied 

(in order to realize the infinitely long cylinder). The wall of the cylinder was specified as no-

slip wall in order to bound fluid and solid regions. 

3.2 Results and discussion 

The observed flow behaviors were in accordance with the expected results [12]. In the case 

of 𝑅𝑒 = 60 a laminar unstable wake could be observed. For a Reynolds number of 100 

symmetric periodic vortex shedding occurred. In Fig. 6 and Fig. 7 the contour plots of the 

velocity magnitude can be seen in the x-y plane at 𝑧 = 0.03 [m]. 

Fig. 5 The applied boundary conditions based on [10]. 
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For the validation of the simulation results different flow characteristics were examined. 

These were the following: RMS value of the lift coefficient (𝑐𝐿,𝑟𝑚𝑠), time-averaged value of 

the drag coefficient (𝑐�̅�), and the Strouhal number (𝑆𝑟). 

Fig. 7 Contour plot of the velocity magnitude at Re = 100. 

Fig. 6 Contour plot of the velocity magnitude at Re = 60. 
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The Strouhal number was calculated with the following formula [3]: 

𝑆𝑟 =
𝑓𝑑

𝑉
(9) 

Where: 𝑓 [Hz]: vortex shedding frequency, which was obtained by the Fast-Fourier 

Transform (FFT) of the time signal of the lift coefficient, 𝑑 = 0.01 [m]: characteristic length, 

which is the cylinder diameter, 𝑉 [
m

s
]: magnitude of velocity. 

The simulation results compared with the values taken from the literature [10] [13] (subscript 

’lit’) can be seen in Table 2. 

Table 2 Simulation results. 

𝑹𝒆 [−] 𝒄𝑳,𝑹𝑴𝑺 [−] 𝒄𝑳,𝑹𝑴𝑺,𝒍𝒊𝒕 [−] �̅�𝑫 [−] �̅�𝑫,𝒍𝒊𝒕 [−] 𝑺𝒓 [−] 𝑺𝒓𝒍𝒊𝒕 [−] 

60 0.09 0.09 1.42 1.38 0.14 0.14 

100 0.24 0.18 1.35 1.33 0.17 0.16 

 

It can be seen that the obtained simulation results are in great accordance with the literature 

data. 

3.3 Vortex detection 

3.3.1 Vortex detection at a Reynolds number of 100 

As stated in the introduction, the main aim of the study with respect to the three-dimensional 

cylinder geometry is the detection of vortices, the parameter identification of the vortex 

detection parameters, and the comparison of the suggested parameter values with the results of 

the two-dimensional case [4]. 

Similarly to the two-dimensional study [4], the parameter identification at first was 

performed for the 𝑅𝑒 = 100 case, because for this Reynolds number the von Karman vortex 

street phenomenon holds. For a von Karman vortex there exists a theoretical value in the 

literature for the ratio of the coordinate differences of the neighboring vortex centers, this value 

is 0.281 [14]. Thus, by calculating these values for the different vortex pairs, the quality of the 

detection can be inspected. 

One can see from Eq. (1) that it is required to set the temporal length of the integration. 

According to [4] the LAVD method requires at least two time steps to be able to perform the 

detection. However, it is not possible to increase the time steps unrestrictedly because after a 

while, fluid particles leave the domain, and the LAVD values can no longer be interpreted. In 

[4] it is stated that between the minimum and maximum integration time there is a time range 

within which the result is not significantly affected by the temporal length of the integration. 
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It is important to mention that every 10th time step from the CFD simulation was used for the 

vortex detection. The selected integration time, the number of time steps, and the number of 

files (this is different from the number of time steps, because as it was stated every 10th time 

step was used) used for the calculations can be seen in Table 3. 

Table 3 Integration data for Re = 100. 

Reynolds numbers [-] 
Temporal length of the 

integration [s] 

Number of time steps 

[-] 
Number of files [-] 

100 0.19 190 20 

 

Since running the current code is a very time and memory consuming procedure, two vital 

considerations had to be made in order to be able to perform the vortex identification. At first, 

a much smaller domain had to be selected for the uniform grid than the original one in the 

simulation. The dimensionless coordinates bounding this region are the following (in the z-

direction the whole domain bounded by the selected x- and y-coordinates was considered): 

1.5 [−] ≤ 𝑥/𝑑 ≤ 20 [−] (10) 

−3 [−] ≤ 𝑦/𝑑 ≤ 3 [−] (11) 

This domain does not contain the cylinder and the region near the cylinder, because in this 

area the mesh is highly refined, thus, the interpolation would be significantly slower, and much 

more memory consuming if this region was considered also. The selected domain (denoted by 

a red rectangle) can be seen in Fig. 8. 

Fig. 8 The selected domain for the calculations. 



Vortex detection in three-dimensional flows around solid bodies 

12 

In addition, the number of files had to be restricted at around 20 (as can be seen in Table 3), 

because otherwise the computer ran out of memory. As it was mentioned, between the minimum 

and maximum integration time there is a time range within which the result is not significantly 

affected by the temporal length of the integration. By choosing 20 files, the temporal length of 

the integration lies within said region. With this amount of files satisfactory results could be 

obtained. For this setup the running of the code took 906 seconds, so approximately 15 minutes, 

which is quite optimal from a practical point of view. 

The parameter identification was performed for the same three vortex detection parameters 

as in [4]: Nct, DeficiencyThresh [%], MinLength [%]. Nct denotes the number of LAVD contour 

levels intended to extract. The DeficiencyThresh parameter is the maximum allowable 

convexity deficiency of the detectable vortices. The convexity deficiency of a closed curve in 

the plane is defined as the ratio of the area between the curve and its convex hull to the area 

enclosed by the curve [5]. The MinLength parameter is the minimum required perimeter of a 

vortex. If the perimeter of a given vortex falls below this threshold value, then it is going to be 

omitted. MinLength is expressed as a percentage of the cylinder diameter. 

Firstly, the parameter identification was performed for the Nct parameter, while keeping the 

other two parameters at a constant value. Afterwards, with a suitable Nct value the parameter 

identification was performed for the other two vortex detection parameters also. 

During the tuning of the parameters the same aspects were considered as in the two-

dimensional case, namely: since the identification was based on the visual inspection of the 

detection results, a complete vortex row has to be detected, and the vortices should not be 

touching the surface of the cylinder. In addition, the realization of the 0.281 theoretical value 

was also inspected. 

The suggested intervals for the parameters are the following: Nct ∈ [100;200]; 

DeficiencyThresh ∈ [2;3] %; MinLength ∈ [270;430] %. Within these intervals, the vortex 

detection results are similar to each other. The result of the vortex detection in the x-y plane at 

𝑧 = 0.03 [m] can be seen in Fig. 9. This figure is the contour plot of the LAVD values, where 

the red dots denote the centers, and the red, closed curves denote the boundaries of the vortices. 

This result is similar to the two-dimensional one at Re = 120, presented in [4]. As it was 

stated beforehand, by checking the realization of the theoretical 0.281 value, the correctness of 

the vortex detection can be observed. 
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The ratios of the coordinate differences between the neighboring vortices are the following: 

𝛥𝑦12

𝛥𝑥12
= 0.4359 [−],

𝛥𝑦23

𝛥𝑥23
= −0.3554 [−] (12) 

𝛥𝑦34

𝛥𝑥34
= 0.3192 [−],

𝛥𝑦45

𝛥𝑥45
= −0.2306 [−]  

𝛥𝑦56

𝛥𝑥56
= 0.2031 [−],

𝛥𝑦67

𝛥𝑥67
= −0.2303 [−]  

 

It can be seen that the calculated values slightly differ from the conceptual value. 

Nonetheless, the difference is not very significant, and it can also originate from the fact that 

the 0.281 value is a theoretical value with simplifications. It can be observed in Fig. 9 that a 

complete, symmetric vortex row has been detected. 

Since the current example is a three-dimensional example, three-dimensional figures were 

also created with respect to the detected vortices. This can be seen in Fig. 10. This figure further 

reassures that a symmetric, coherent vortex row has been detected. It can also be seen that there 

is not any significant, observable variance along the z-axis. 

As a next step, the current parameter tuning results were compared with the two-dimensional 

parameter identification results [4]. This can be seen in Table 4. One can see that the Reynolds 

numbers are not exactly the same for the two cases. The reason why 𝑅𝑒 = 100 was chosen for 

the three-dimensional simulation is because the flow structure is the same as for 𝑅𝑒 = 120, 

however, the author intended to compare the identification results for slightly different 

Reynolds numbers (while staying in the same flow regime). In order to compare a two-

dimensional and a three-dimensional case for the same Reynolds numbers, in Chapter 3.3.2 the 

Reynolds number will be 60 for both of the cases. 

  

Fig. 9 Vortex detection with suggested parameters at Re = 100. 
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Table 4 Comparison of the suggested intervals. 

 
Re = 100 (three-

dimensional) 

Re = 120 (two-

dimensional) [4] 
∩ 

Nct [-] [100;200] [100;200] [100;200] 

DeficiencyThresh [%] [2;3] [1;10] [2;3] 

MinLength [%] [270;430] [75;180] - 

 

Based on the current results, and the results presented in [4], one can conclude that the 

[100;200] interval for the Nct parameter is indeed an optimal interval. 

With respect to the DeficiencyThresh parameter a general suggestion cannot be formed 

because the suitable value for this parameter differs a little for every case. However, it can be 

advised based on the results to keep this value below 10%. Based on the visual inspection of 

the vortex detection results the further tuning of this parameter can be performed for the 

different cases more easily. 

As for the MinLength parameter, its preferred value also varies for each case. On the other 

hand, it can be seen that its optimal value is not significantly higher or lower than the 

Fig. 10 Three-dimensional display of the vortex detection results. 
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characteristic length of the body, this aspect is a good starting point when applying the current 

detection method for a given simulation and/or measurement data. 

3.3.2 Vortex detection at a Reynolds number of 60 

The parameter identification for this case is performed similarly to the previous one. The data 

with respect to the integration can be seen in Table 5. 

Table 5 Integration data for Re = 60. 

Reynolds numbers [-] 
Temporal length of the 

integration [s] 

Number of time steps 

[-] 
Number of files [-] 

60 0.95 190 20 

 

The applied domain size is the same as before (in the z-direction also): 

1.5 [−] ≤ 𝑥/𝑑 ≤ 20 [−] (13) 

−3 [−] ≤ 𝑦/𝑑 ≤ 3 [−] (14) 

The running of the code took 868 seconds which is approximately 14.5 minutes. 

At first, the Nct parameter was examined, and afterwards the DeficiencyThresh and 

MinLength parameters were tuned. The suggested intervals for the different parameters, 

compared with the two-dimensional results [4] can be seen in Table 6. 

Table 6 Comparison of the suggested intervals. 

 
Re = 60 (three-

dimensional) 

Re = 60 (two-

dimensional) [4] 
∩ 

Nct [-] [100;200] [100;200] [100;200] 

DeficiencyThresh [%] [1;2] [1;10] [1;2] 

MinLength [%] [190;480] [60;495] [190;480] 

 

By comparing the current results with the results presented in [4], the preferred [100;200] 

interval for Nct is further reassured. As for the DeficiencyThresh parameter the same can be 

said as before, its suggested value differs a little for every case, however, by keeping it below 

10%, and tuning it based on the visual inspection of the results, one can most certainly obtain 

the preferred vortex detection outcome. The MinLength parameter is in great accordance with 

the characteristic length. Therefore experimenting with values between e.g. 50% and 400% of 

the characteristic length can serve as a good starting point for obtaining satisfactory results. 

The result of the vortex detection in the 𝑧 = 0.03 [𝑚] plane can be seen in Fig. 11. The three-

dimensional visualization of the detected vortices has been performed for this case too, this can 

be seen in Fig. 12. 
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The ratios of the coordinate differences between the neighboring vortices were determined 

for this case as well, these are the following: 

𝛥𝑦12

𝛥𝑥12
= 1.4121 [−],

𝛥𝑦23

𝛥𝑥23
= −0.4878 [−] (15) 

𝛥𝑦34

𝛥𝑥34
= 0.4230 [−],

𝛥𝑦45

𝛥𝑥45
= −0.4539 [−]  

𝛥𝑦56

𝛥𝑥56
= 0.5344 [−]  

Fig. 11 Vortex detection with optimal parameters at Re = 60. 

Fig. 12 Three-dimensional display of the vortex detection results. 
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In [4] for a Reynolds number of 60, the whole vortex row exhibited complete symmetry (all 

of the absolute values were very close to each other). This is not entirely true for the current 

results. 
Δ𝑦12

Δ𝑥12
 differs from the other ratios, nonetheless, this vortex pair is very close to the 

cylinder. It could be seen for 𝑅𝑒 = 100 also, that a little time is needed for the convergence of 

the ratios. Apart from 
Δ𝑦12

Δ𝑥12
 the absolute values of the ratios are similar, and they become uniform 

faster than in the case of 𝑅𝑒 = 100 (the 0.281 theoretical value is not valid for this case since 

it only holds for a von Karman vortex street). It is worth mentioning, that in [4], the following 

ratios were obtained: 

𝛥𝑦12

𝛥𝑥12
= −0.4922 [−],

𝛥𝑦23

𝛥𝑥23
= 0.4738 [−] (16) 

𝛥𝑦34

𝛥𝑥34
= −0.4938 [−] 

By excluding the 
Δ𝑦12

Δ𝑥12
 ratio (from the current results, Eq. (15)), it can be seen from Eqs. (15)-

(16) that the ratios are close to one another. Therefore, similarly to the 0.281 theoretical value, 

the said ~ 0.4 − 0.5 range seems to be characteristic of this particular vortex row structure. 

4 Axial fan 

4.1 Simulation setup 

With respect to the axial fan geometry, three-dimensional steady RANS simulations using 

the frozen rotor model were carried out using ANSYS Fluent 22R2 software in [9] by Lendvai 

and Benedek. The applied turbulence model was Menter’s k-ω SST turbulence model [9]. The 

air was assumed to be incompressible ideal gas [9]. Throughout the simulations, coupled 

pressure-velocity coupling was applied, and second-order upwinding was set for the numerical 

schemes [9]. The whole simulation domain can be seen in Fig. 13 a) and the enlarged inlet 

section can be seen in Fig. 13 b) [9]. 

Fig. 13 The simulation domain used for the CFD simulations [9]. 
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In order to reduce the computational cost, and the computational time, one blade was modeled 

with periodic boundary conditions [9]. The inlet included a bellmouth inlet acting as a baffle 

surface [9]. The outlet was positioned at the end of the long outlet duct (20𝑟𝑏), where: 𝑟𝑏 =

0.15 [m] is the blade tip radius of the rotor. The rotating frame of reference was assigned to the 

blade passage domain, whereas the inlet and outlet domains remained steady [9]. In all 

simulations a constant total pressure was imposed on the inlet boundary, and the static pressure 

at the outlet was varied in accordance with measurements [9]. 

The surface mesh of the used numerical grid can be seen in Fig. 14 [9]. The free inlet and 

outlet duct sections featured structured H-grid meshes containing 913,000 and 770,000 

elements, respectively [9]. The structured O-grid mesh for the rotating blade passage consisted 

of approximately 1.5 million hexahedral cells [9]. Above the hub, the blade passage was 

resolved with 110 elements in the axial and spanwise directions, and 122 elements in the pitch-

wise direction [9]. The blade itself featured 80 and 90 cells in the spanwise and streamwise 

directions, respectively [9]. The blade tip gap was adequately resolved radially with 30 

elements, and the blade thickness was modeled using 20 cells across [9]. 

In [9] apart from the CFD simulations, acoustic measurements were also carried out by 

Lendvai and Benedek. The CFD simulations were carried out at all operating points 

corresponding to the measurements [9]. These are seven operating conditions with flow rates 

Fig. 14 The surface mesh of the used numerical grid [9]. 
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between 𝛷 = 0.34 − 0.26 [−], which correspond to the pressure rise coefficients between 

𝛹𝑠 = 0.04 − 0.18 [−] [9]. Where: 

𝛷 =
𝑄𝑉

𝑢 ∙ 𝑟𝑏
2 ∙ 𝜋

(17) 

𝛹𝑠 =
Δ𝑝𝑠

𝜌
2 ∙ 𝑢2

(18) 

Where: 𝛷 [−] and 𝛹𝑠 [−]: global flow coefficient and global static pressure rise coefficient, 

𝑄𝑉  [
m3

s
]: volume flow rate, 𝑢 [

m

s
]: blade tip peripheral velocity, 𝑟𝑏 [m]: blade tip radius, 

Δ𝑝𝑠 [Pa]: static pressure rise, 𝜌 [
kg

m3]: density of air. The rotational speed was 1400 [rpm] for 

each case. 

4.2 Results and discussion 

Based on the results it was concluded that intensive tip leakage flow appears in all of the 

investigated cases [9]. By throttling the fan, the TLV origin moves upstream to the tip leading 

edge, and the exit angle of the TLV measured to the chord line increases [9]: 

• 𝛷 = 0.34: the TLV develops near the mid-chord of the blade 

• 𝛷 = 0.31 − 0.28: the TLV origin moves further upstream to the leading edge 

• The TLV trajectory exit angle increase is observed for the 𝛷 = 0.34 − 0.28 region 

• 𝛷 = 0.28: the exit angle increases to such an extent that the vortex core impinges on 

the consequent blade pressure surface, which leads to the so-called double leakage 

flow 

• 𝛷 = 0.26: TLV trajectory is relatively independent of the operating conditions after 

impingement, but the throttling promotes the increase of strength and size of the TLV 

4.3 Vortex detection 

4.3.1 Banks’ vorticity predictor-pressure corrector vortex core identification method 

Simulation and vortex detection results with respect to one of the abovementioned 

simulations (𝛷 = 0.31) were provided by Bálint Lendvai (PhD student at the Department of 

Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and 

Economics). The applied detection method was Banks’ vorticity predictor-pressure corrector 

vortex core identification method [8]. 

This identification method uses predefined seed points to grow the vortex skeleton [8]. 

Starting from a seed point, the vortex detection algorithm in the first step predicts the vortex 

core direction based on the local vorticity vector [8]. However, the vorticity vector may not 

align with the vortex core [8]. Therefore, in the corrector step this prediction is corrected by 
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searching for nearby pressure minimum in the plane perpendicular to the vorticity vector at the 

predicted point [8]. 

The described technique does not rely on numerical derivatives and the vortex skeleton is 

calculated based on local field variables only [8]. With the help of this vortex skeleton detection 

algorithm, the instantaneous vortex trajectories can be determined [8]. The detailed description, 

and other important aspects of the method can be found in [8]. 

The tip leakage vortex cores detected by Banks’ vorticity predictor-pressure corrector method 

along with the fan geometry can be seen in Fig. 15. 

4.3.2 LAVD vortex identification method 

The advantage of the LAVD method compared to Banks’ is that it uses only kinematic 

quantities, therefore it is applicable for compressible media, and it also offers information on 

the strength, and the size of the vortices besides the position of their cores. 

Since the provided simulation results are in connection with a steady simulation, three time 

steps were utilized for the LAVD method, with an arbitrarily chosen 10-4 [s] time step value. 

Due to the size of the domain, and the number of nodes, the domain size had to be reduced 

significantly, due to the limited availability of computer memory. The numerical 

implementation of the method is in accordance with what is described in Chapter 2.2. The 

running of the code took 1549 seconds, which is approximately 26 minutes. 

Fig. 15 Vortex centers detected with Banks’ vorticity predictor-pressure corrector method. 
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The main difference between the current and the circular cylinder case is the fact that for the 

axial fan, all of the vorticity components, meaning 𝜔𝑥, 𝜔𝑦 and 𝜔𝑧 were considered. For the 

cylinder, only the dominant z-component of the vorticity was taken into account. By 

considering each component, it is not necessary to know the planes in which the vortices should 

be sought for. This makes the detection simpler and more general. 

The vortex detection parameters were the following while determining the centers of the TLV 

along the z-axis: Nct = 100, MinLength = 12%, DeficiencyThresh = 6%. Where MinLength was 

non-dimensionalized by the chord length (𝑐 = 0.124 [m]). Comparing the parameter values to 

the previously detailed circular cylinder case, it can be seen that the Nct and DeficiencyThresh 

values are in great accordance with each other for the different geometries. The suggested value 

with respect to the MinLength parameter is smaller, than in the case of the cylinder. The tip 

leakage vortex cores detected by the LAVD method can be seen in Fig. 16. 

 

The comparison of the results can be seen in Fig. 17 and Fig. 18. It can be seen that the 

detection results are in great accordance with each other. In both cases, the TLV originates close 

downstream of the blade tip leading edge (LE) and then it propagates downstream in the blade 

passage. 

It is important to mention that in the region close to the blades, due to the boundary layer, the 

vorticity has very high values (the LAVD values are also very high in this region), which can 

Fig. 16 Vortex centers detected with the LAVD method. 
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cause problems in the detection of the TLV. As long as the TLV is substantially far from the 

vicinity of the blades, the vortices detected in the boundary layer can be eliminated by the 

proper adjustment of the vortex detection parameters. 

However, when the TLV is close to the blades, the code can no longer distinguish these 

vortices, even is spite of the properly adjusted parameters. After this given point the TLV is 

detected together with the vortices in the boundary layer. Nonetheless, satisfactory results were 

obtained up until this critical point. In addition to the vortex centers the boundary of the TLV 

Fig. 17 Comparison of the TLV detection results. 

Fig. 18 Comparison of the TLV detection results from a different view. 
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was also detected with the LAVD method in the different x-y planes along the z-axis. Some 

representative examples can be seen in Fig. 19-Fig. 23. 

It can be seen from Fig. 19-Fig. 23 that the LAVD values are indeed higher in the region 

close to the blade. It can also be observed that the size of the TLV decreases as it gets closer to 

the blade. This is due to the fact that within a rotationally coherent Lagrangian vortex (as it was 

already mentioned) the LAVD values should decrease outwards, however, when the TLV gets 

closer to the blade the LAVD values start increasing quite close to the TLV, thus, explaining 

the smaller size of the vortex. One can also notice that the LAVD values remain approximately 

the same along the z-axis. 

 

 

Fig. 19 TLV detected by the LAVD at z = 0.0316 [m]. 

Fig. 20 TLV detected by the LAVD at z = 0.0347 [m]. 
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Fig. 21 TLV detected by the LAVD at z = 0.0378 [m]. 

Fig. 22 TLV detected by the LAVD at z = 0.0408 [m]. 

Fig. 23 TLV detected by the LAVD at z = 0.0439 [m]. 
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The three-dimensional visualization of the TLV has also been performed by plotting the 

vortex boundaries in the x-y planes along the z-axis (only some of the detected boundaries were 

plotted for better observability), this can be seen in Fig. 24. The red curves denote the boundary, 

and the blue line denotes the center of the TLV. 

5 Summary of results 

In the present work, vortex detection in three-dimensional flow around solid bodies with the 

LAVD vortex identification method was performed. The three-dimensional flows under 

investigation were the following: transient flow around a circular cylinder for two Reynolds 

numbers (60 and 100), and steady flow around an axial fan at 𝛷 = 0.31. 

With respect to the circular cylinder the detection of the coherent vortex row, and the 

identification of the vortex detection parameters were successfully performed for both Reynolds 

numbers. In addition, the ratios of the coordinate differences between the neighboring vortices 

were also determined. For a Reynolds number of 100, the ratios were close to the conceptual 

0.281 value. As for 𝑅𝑒 = 60, the ratios were similar to the previously determined values in the 

beforehand investigated two-dimensional case. These values were in the range of 0.4 to 0.5. 

This said interval can be representative of this particular vortex structure. 

The determined suggested intervals were compared with the previously found results for the 

two-dimensional case. As a result of the comparison, it was suggested that the preferred value 

of the Nct parameter should be between 100 and 200, and the DeficiencyThresh parameter 

should be kept between 1% and 10%. As for the MinLength parameter, it is the hardest one to 

generalize, because its optimal value varies for every case. Nonetheless, by non-

Fig. 24 Three-dimensional visualization of the TLV. 
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dimensionalizing it with the characteristic value of the given geometry, and by the visual 

inspection of the results, preferred values can be determined, and with these values satisfactory 

detection results can be obtained. The three-dimensional visualization of the results was also 

provided for both cases. 

With respect to the axial fan the aim was to detect the so-called tip leakage vortex, which is 

responsible for significant noise and loss generation both in household and industrial 

applications. The results were compared with detection results obtained by Banks’ vorticity 

predictor-pressure corrector vortex core identification method, provided by Bálint Lendvai. The 

advantage of the LAVD method compared to Banks’ is that it uses only kinematic quantities 

(thus, it is applicable for compressible media), it also offers information on the strength, and on 

the size of the vortices besides the position of their centers. The obtained vortex core results 

were in great accordance with each other. The results showed that the TLV originates close 

downstream of the blade tip leading edge and then it propagates downstream in the blade 

passage. The three-dimensional visualization of the TLV was also provided in the paper. 
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