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1 Introduction

Dynamic systems are primarily expected to operate safely. However, what exactly we
mean by safety is generally not a well-defined concept, even in engineering. In mechanical
engineering, safety is most often considered in the context of operating machines at their
operation point: for example, keeping an inverted pendulum in vertical position, or path
following of an autonomous vehicle. In these situations, the most commonly used control
tool is stabilization around the equilibrium point via linearization. Another much more
up-to-date and sophisticated method is the Safety Critical Control, one of the most popu-
lar in recent years, which provides a completely different approach to safety compared to
stabilization methods. Its starting point is that safety is interpreted as forward invariance
of sets, in other words, it tries to keep the state variables (or a function of them) of the
dynamical system within a predefined subset in the phase space, namely in the safe set.
When looking for a relationship between these two methods, it becomes clear that the
latter one is actually an extension of the former one, since the operation point has been
extended to a set. Recognising its potential benefits, it is worth making use of it in more
and more areas, but without losing sight of the real-life circumstances.

1.1 Problem formulation

One of the greatest limiting factors in the practical implementation of theoretical calcu-
lations is the input constraint: we are frequently confronted with situations where the
magnitude of the predetermined input signal cannot be reached in real life due to satu-
ration of the actuators. By looking at the control law, we cannot affect the intervention
because it is always an output value, since the control loop is closed by some sort of feed-
back. The problem of input constraint frequently arises with any control method, also
in the case of Safety Critical Control, it has a significant impact specifically on safety, as
the forward invariance property is violated and safety can no longer be guaranteed. The
general solution to input constraint cannot be the simple statement "let’s make bigger and
stronger motors", because in the first place, this idea would always lead to even bigger
actuators or the modification of the mechanical system itself, which might not be practi-
cal nor realizable. On the other hand, we also have to consider the physical limitations,
because for example, it is physically impossible to go down below zero (or even close to
it) for a controller that operates based on absolute temperature or pressure.

A real-life case where this problem comes from is vehicle braking on a surface with
asymmetric friction, when the vehicle can then easily spin due to the yaw torque resulting
from the difference in braking forces on the two sides. But the driver must be assisted in
order not to lose control of the vehicle, by an appropriate braking force, and the following
dilemma must be addressed: if the difference in braking force is at its maximum, the
braking distance is minimal, but the probability of a spin-out is high; on the other hand,
if the difference in braking force is eliminated, there is no chance of a spin-out, but the
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braking distance of the vehicle is drastically increased, thus exposing the driver to another
danger and without a doubt braking distance should be the priority during emergency
braking. The input constraint is present naturally, as braking forces due to traction
have a maximal value which cannot be exceeded. In an earlier TDK and paper I have
already studied vehicle braking on a surface with asymmetric friction but neglecting input
constraint [1], [2]. It was found that, in most cases, Safety Critical Control required more
braking force than was available. This is the motivation for the present paper, which aims
to take into account the input constraint.

Overall, both finding a suitable controller that interacts always at the perfect time and
a safe set under which the Safety Critical Control is feasible is quite challenging. All of
these are propositions which are not taken into account by the "classical" Safety Critical
Control, and thus need to be improved.

1.2 Literature

The notion of Control Barrier Function appeared first in [3] in 2014, and since then it has
been growing enormously establishing the theory that has been evolving over the years
and will be presented in Section 2. Along with the input constraint, there are other real-
life problems that need to be taken into consideration when developing Safety Critical
Control. Typically, one of these are the robustness [4], where the robustness of control
barrier functions under model perturbation is investigated. Another real-life problem to
explain is the time delay that can appear both in the control input or in the state. To
handle this, the Control Barrier Functionals [5] has been introduced.

The issue of input constraints has been a concern for researchers since the origin of
safety-critical control and there is still no universal solution. The literature is still rela-
tively rich in attempts that either rely on their own ideas or on other control methods’.
The idea from [6] realizes the fact that the size of the original safe set must be decreased in
general and provides its own method for preparing even smaller subsets. However, there
is no advice for how many subsets are needed until reaching the final, control invariant
subset, and for how to figure out new class K∞ functions which have significant effect on
the successive safe sets. Another approach from [7] is again investigating the reduction
of the safe set using sum-of-squares (SOS) programming but according to the authors,
this method can be only used in polynomial systems. The next example [8] demonstrates
the so-called Intergal Control Barrier Function which uses forward integration and is able
to define safe sets for states and inputs separately. With that, unfortunately, instead of
nominal (desired) control, we can only provide its derivative with respect to time. The
reason why this is a problem is that, returning back to the inverted pendulum problem,
if we specify a constant intervention as a nominal control, its derivative is obviously zero,
and from that integrating back we get some constant that is unlikely to be the same as
our preferred value.
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The method from which this paper is inspired is the backup set method; the backup
set itself was first mentioned in paper [9]. The idea behind the method is to examine how
the future state of the dynamical system evolves under a controller that obeys an input
constraint, and then determine the actual intervention based on this. In [10] can be found
the case of an inverted pendulum, where the viability kernel (which is the largest control
invariant subset of the safety set) and the prediction time are examined. However, it does
not deal with such basic things as how to choose backup set and controller or what to do
in the case of an input constraint with non-symmetric bounds.

1.3 Paper’s objective

In this contribution, the main goal is to explore the backup set method in as much depth
as possible and to give a generalized solution for implementing the backup set and backup
controller using the well-known Lyapunov function. Although a similar Lyapunov-based
backup sets can be found in the previously mentioned literature [10], it is not yet stated
why this is an efficient method and how it can be algorithmically applied to any mechanical
system.

In what follows, In Sect. 2, the theoretical background of safety and its relation to the
Lyapunov function is considered in detail, which is necessary because the construction of
the backup set method presented later is based on it. Then, the Backup set method is
discussed. After that, in Section 3, a custom method will be presented to help construct
backup sets and backup controllers. In addition, the steps of the methodology are provided
in detail. In Section 4, after an overview of the Safety Critical Control and Backup set
methods, three different application examples are presented: a simple scalar equation
to help understand more easily the backup set method. Then, an inverted pendulum
is demonstrated to show the high potential of the new method. Finally, the previously
mentioned vehicle braking, with its even more complex dynamics, will be discussed.
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2 Safety Critical Control with input constraint

With the Safety Critical Control, developers are able to provide a state-of-the-art solution
to a wide range of mechanical problems that were before unimaginable. The method has
proven its applicability in obstacle avoidance tasks for robots, drones, road vehicles [ref]
and lots of other controllable moving objects. As I mentioned in the introduction, the
present controller introduces a completely different approach to the notion of safety as
opposed to stabilization, namely forward invariance of sets. Moreover, it has the enormous
advantage that linearization is not required, it can be applied to any nonlinear dynamical
system. This is due to the fact that its theoretical background is based on Lyapunov
functions, which will be discussed in detail in Section 2.2.

2.1 Theoretical background of Safety Critical Control

Before proceeding to the controller, it is necessary to first interpret the dynamical system
itself, which is assumed to be in affine form:

ẋ(t) = f(x) + g(x)u , (2.1)

where x(t) ∈ Rn is the state vector, f : Rn → Rn and g: Rn → Rn×m, which are the vector
and matrix functions of the dynamical model, and u ∈ Rm ∈ U is the input signals. With
the system being affine, the intervention signal (or its vector) can be linearly detached
from the right-hand side of equation (2.1). This is key for the subsequent design of the
control signal, and on the other hand, it is also typical for real dynamical systems, where
most of the time the force or torque input appears linearly in the equation of motion.
We give a mathematical formulation of the safety by an superlevel set of a function h,
denoted by S and assumed to be continuously differentiable. With that:

S = {x ∈ Rn : h ≥ 0} , (2.2)
∂S = {x ∈ Rn : h = 0} , (2.3)

and hence we refer to S as the safe set, the bound of safety is ∂S and h is called Control
Barrier Function (CBF) can be seen in Fig. 2.1. As we can see, it is relatively easy to
find safe sets, and in fact a given region can usually be described by more than one safe
set. This leads to the key of this method, namely to forward invariance, is shown by the
following inequality:

ḣ(x,u) + α(h(x)) ≥ 0 , (2.4)

where α is a so-called class K∞ function, which has two properties: α(0) = 0 and is a
strictly monotone increasing function. With these properties, it is evident that if we are
on the boundary of safety (∂S), the previous inequality is:

ḣ(x,u)︸ ︷︷ ︸
≥0

+α(h(x))︸ ︷︷ ︸
=0

≥ 0 , (2.5)
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Figure 2.1: Graphical meaning of the safe set [11]

so if the time derivative of the Control Barrier Function is non-negative, then h increases
from 0 to positive, i.e., from its boundary the trajectory of the system heads towards the
center of the safe set, thus forward invariance is satisfied. The essence of the control is
to find a suitable intervention u for this condition (2.4), which is generally possible by an
optimization problem, also known as Quadratic Programming (QP):

u(x) = arg min
u

1
2 ||u − kd(x)||2 ,

s.t. ḣ(x,u) + α(h(x)) ≥ 0 .
(2.6)

We merely seek the minimum deviation of the intervention u from a known desired con-
troller kd(x) such that forward invariance is satisfied. In the optimization problem, the
time derivative of the CBF is determined by the chain rule similar to the Lyapunov
function, and then substituting the dynamical system from (2.1):

ḣ(x,u) = ∂h

∂x
ẋ = ∂h

∂x
f(x)︸ ︷︷ ︸

Lfh(x)

+ ∂h

∂x
g(x)︸ ︷︷ ︸

Lgh(x)

u , (2.7)

where the corresponding terms Lfh(x) and Lgh(x) are called Lie-derivatives. If no further
conditions are included in the QP in (2.6), then the explicit analytic solution of the
intervention is known by the KKT-conditions (Karush-Kuhn-Tucker) :

u(x) =
 kd(x) if φ > 0 ,

kd(x) − φφ⊤
0

φ0φ⊤
0

otherwise ,
(2.8)

where:

φ = Lfh(x) + Lgh(x)kd(x) + α(h(x)) , (2.9)
φ0 = Lgh(x) . (2.10)

It is an important observation that the quantity denoted by φ is a switching function,
since its sign determines whether the known desired controller is able to keep the system
trajectory within the safe set. If it fails to do so, then intervention according to (2.8) is
required to guarantee safety. It is also a property of φ that it involves the α class K∞

function, which can be appropriately chosen to manipulate whether the safety-critical
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controller intervenes closer to or further from the boundary of the safe set. However, what
can be eye-catching is the fractional term, since we can encounter a singularity as soon as
the denominator approaches zero. This is equivalent to the statement φ0 = Lgh(x) → 0
which implies that theoretically we would need an infinitely large intervention signal
for safe control. This is not to be confused with the case where φ0 = Lgh(x) ≡ 0,
which is related to the so-called relative degree, for which the High order Control Barrier
Function (HOCBF) was introduced [12], but since this will not appear in the paper, this
methodology will not be covered.

Walking through the framework of Safety-Critical Control, we notice that the input
constraint is not part of it, so it is no coincidence that we are not able to satisfy it in
many cases. On the other hand, it is also not a sufficient answer to expand the QP in
(2.6) with an interval for u:

u(x) = arg min
u

1
2 ||u − kd(x)||2 ,

s.t. ḣ(x,u) + α(h(x)) ≥ 0 ,
umin ≤ u ≤ umax ,

(2.11)

because this would lead to the fact that there is no minimum of the objective function
(quadratic term next to argmin) under such constraints.

2.2 Relationship with Lyapunov-function

The path to the solution (discussed in Section 3) is motivated by the Lyapunov function,
the predecessor of the CBF, so it may be useful for us to recall it. To help understand the
Lyapunov function, we refer to Fig. 2.2, which can be used not only for stability analysis of
the equilibrium points of an arbitrary nonlinear dynamical system, but also for designing
a stabilizing control. Furthermore, the similarity between the CBF shown in Fig. 2.1 and
the Lyapunov function denoted by V in Fig. 2.2 is not an accident, and understanding
the relationship between them is essential for us.

Figure 2.2: Graphical meaning of the Lyapunov function [11]
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Based on the precedents, the first thing we need is an equilibrium point from which we
want to verify its stability: let this point be (x0,u0) and satisfy equation (2.1) if ẋ(t) = 0:

f(x0) + g(x0)u0 = 0 , (2.12)

which is a system of algebraic equations that does not always have an explicit solution,
but can be solved numerically by the equation x0 ≜ x0(u0). Around this operating point,
the Lyapunov function V is written, which just happens to be at the origin in Fig. 2.2.
Lyapunov’s theorem is stated as follows [13]: assume a scalar function V : Rn → R, which
is zero only at the equilibrium point: V (x0) = 0 . If

• V (x) > 0 for all x ̸= x0, and

• V̇ (x) ≤ 0 for all x, then

the x0 equilibrium point is stable, V is positive definite and V̇ is negative semi-definite.
Moreover, if the latter term is negative definite, then x0 is asymptotically stable. V̇ is
defined along the solution of the dynamical system by the chain rule:

V̇ (x) = ∂V

∂x
ẋ = ∂V

∂x
f(x)︸ ︷︷ ︸

LfV (x)

+ ∂V

∂x
g(x)︸ ︷︷ ︸

LgV (x)

u(x) , (2.13)

so that we can also interpret the Lie-derivatives, and here we have already assumed some
feedback for the input. However, if we want to use V for stabilizing control rather than
for verifying the stability of an equilibrium point, we can use QP as in (2.6):

u(x) = arg min
u

1
2 ||u − kd(x)||2 ,

s.t. V̇ (x,u) + γ(V (x)) ≤ 0 ,
(2.14)

where γ is again a class K∞ function. So far so good, but constructing a proper V is
perhaps one step harder than constructing a safe sate. In general, quadratic functions are
ideal for choosing a Lypunov function because of their positive definiteness, for example
V (x) = x2 for one-variable or V (x, y) = x2 +y2 for two-variable systems, but the criterion
of negative (or negative semi) definiteness of the derivative along the system dynamics is
much harder to satisfy, so there is no general methodology for choosing V . Nevertheless, by
linearization, we are able to define effective Lyapunov functions using the so-called CTLE
(Continuous-time Lyapunov Equation), by firstly transforming the nonlinear dynamical
system (2.1) into the following form:

ẋ(t) = f(x) + g(x)u ≡ F(x,u) −→ ẋ(t) = A(x − x0) + B(u − u0) , (2.15)

where
A = ∂F

∂x

∣∣∣∣x=x0
u=u0

, B = ∂F
∂u

∣∣∣∣x=x0
u=u0

. (2.16)
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After shifting the state and the input with the operation point, the (2.15) linearized
system simplifies as:

˙̃x = Ax̃ + Bũ , (2.17)

where x̃ = x − x0 and ũ = u − u0 . According to Lyapunov’s direct method full-state
feedback controller (ũ = −Kx̃) can be used to obtain the closed-loop system:

˙̃x = Ax̃ + B(−Kx̃) = (A − BK)︸ ︷︷ ︸
≜Acl

x̃ , (2.18)

where K ∈ Rn×m is the control gain matrix (or vector if m = 1), which does affect the
behaviour of the closed-loop system: if all the real parts of the eigenvalues of Acl are
negative, then x0 is a stable equilibrium point. Since this is the target, the choice of K is
a crucial step, which can be done conventionally using the Routh-Hurwitz criterion, where
the coefficients in the characteristic equation of the closed-loop matrix are investigated.
It was mentioned earlier that quadratic functions are the most ideal Lyapunov functions,
which in n-dimension have the following form:

V (x̃) = x̃⊤Px̃ , (2.19)

where P ∈ Rn×n is a symmetric, positive definite matrix. If this condition holds, V (x̃)
is a positive definite function and V (x̃) = 0 if and only if x̃ = 0 . To determine P, it is
useful to take the derivative of V (x̃) with respect to time and substitute (2.18):

V̇ (x̃) = ˙̃x⊤Px̃ + x̃⊤P ˙̃x = x̃⊤(A⊤
clP + PAcl︸ ︷︷ ︸

≜−Q

)x̃ , (2.20)

where if Q ∈ Rn×n is a positive definite matrix, which we have to specify and in the most
convenient case is a unit matrix, then V̇ (x̃) is also negative definite, and (2.20) is called
the CTLE equation itself. At this point, two important observations must be added:

• if x0 is a stable equilibrium point, then P exists and is unique,

• a V (x̃) = c level curve (where c ∈ R+) is always an n−dimensional ellipse.

The level curves of Lyapunov functions already entail the forward invariance property,
since − as shown in Fig. 2.2 − if the trajectory starts from the range V < c, it stays
within this range for ∀t. This is exactly what we will exploit in the next section to define
backup sets.

2.3 Theory of Backup set method

In recent years, the so-called backup set method has received the most attention, regarding
the input constraint problem, since this method is general enough to be applicable to
arbitrary dynamical systems, and even has a mathematical proof behind it. All this make
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it outstanding among the other methods in the literature, although the first step in its use
is the construction of valid backup sets, which this work aims to facilitate. The backup set
method has the following core idea: to predict into the future dynamics so that being able
to see whether the control task is feasible or not with the given input bounds. From today’s
point of view, prediction of dynamical systems is not a new idea, it is also used by Model
Predictive Control (MPC), which has been known for more than half a century. Although
there are similarities between MPC and CBF (and its later extension with Backup set),
as both are optimization-based and can handle nonlinear systems, while the former is an
"optimal control problem" [14] meaning that the controller is required to minimize a cost
function subject to predefined constraints, the latter is set invariance-based.

As mentioned in the previous section, in the presence of input constraint, the CBF h

we choose will not necessarily control in a safe way, in other words, it will not be control
invariant. The reason for this is that the intervention is a function of the mechanical
system and the defined safe set, i.e., u = u(f(x),g(x), h(x)) according to QP (2.8).
However, we do not have to adopt this at all costs; we can also have our own ideas for
choosing u that makes h control invariant. This could also mean that if we are not satisfied
with a particular u because it violates the input constraint, we can simply change h. In
short, it is a much easier task to find a safe set that can be invariant under given input
constraints than to prove one afterwards that it is indeed control invariant [15].

This is where the central idea of the method comes from, namely define a control
invariant subset of the safe set S, which is also the name of the method, the backup set
hb(x) ≥ 0 , with the domain notation Sb . Assume that it has the same properties as the
safe set, only Sb ⊆ S must be satisfied. To do this, we need to find a controller u under
which hb(x) is control invariant, this will be the backup controller satisfying the input
constraint, so kb(x) ∈ U .

If it was just that straightforward to find for any set a controller that satisfies the input
constraint and under which invariance is satisfied, there would be no need to use QP at
all. On the contrary, it is a struggle to find backup sets and their backup controllers,
and general guidelines do not exists yet. If we do manage to find (or rather discover)
them, the backup set might be quite small. We would like to resolve this conservatism via
forward prediction, which has been referred to several times before. To do this, we need
the future value of the dynamics under the backup controller, obtained by integrating the
following differential equation:

ẋ(t) = f(x) + g(x)kb(x) ≡ fb(x) , (2.21)

and the future state shall be φb(t,x(0)), which as we can see depends on the future
moment we want to know (t) and the initial point from which the simulation starts
(x(t = 0)). This helps us to extend the original Sb, ideally up to S. Instead, we extend
it to a maximally reachable invariant set Sb → SI ⊆ S, defined as follows [16]:
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Figure 2.3: Graphical meaning of the SI

SI =
{

x :
(
φb(θ,x) ∈ S , ∀θ ∈ [0, T ]

)
∧
(
φb(T,x) ∈ Sb

)}
. (2.22)

In words, SI is the set of points x where its future state is within the safe set at all
instants of the interval [0, T ] and arrives at Sb at time T , the idea of which is shown
in Fig. 2.3, where we can see the so-called flows started from different starting points,
which were solutions of the dynamics under the backup controller, and we can see that
the flow started from outside SI fails to stay within the safe set. Another remarkable
fact about SI is that we do not see any insight into its boundary during simulation, it
cannot be determined explicitly [16]. The T may be called the integration time [thesis]
or the time-horizon, the choice of which is that if T = 0, then Sb = SI and increasing
it expands the backup set, as visually illustrated in Fig. 2.4. After a certain time, it is
not worth increasing it because it doesn’t increase SI, but the computational need of
the simulation grows and it should always be chosen efficiently for the given dynamical
system. For example, for an inverted pendulum shorter than 1 m and lighter than 1 kg,
it makes no sense to predict by hundreds of seconds, it may be enough to predict by only
a few seconds.

Figure 2.4: Graphical meaning of the backup set extension

In Fig. 2.4, we can observe the effect of this time T as we increase the backup set up
to the invariant set. To understand how this concept is implemented in practice, we can
translate the definition of invariant set in (2.22) into the QP optimization in (2.6), which

10



is then given by the following form:

u(x) = arg min
u ∈ U

1
2 ||u − kd(x)||2 ,

s.t. ḣ(φb(θ,x),u) + α(h(φb(θ,x)) ≥ 0 , ∀θ ∈ [0, T ] ,
ḣb(φb(T,x),u) + αb(hb(φb(T,x)) ≥ 0 .

(2.23)

To be applicable, we need to make two observations:

• in the first inequality, θ applies to every time instant between 0 and T , so this is
actually an infinite amount of inequality. In practice, however, we are forced to
discretize and work with only Nc (number of constraints),

• only in the simplest examples it is possible to define the flow analytically, so in all
other cases we have to solve an "inner" IVP (Initial Value Problem).

This occurs for time derivatives of h and hb, which can be computed using double chain
rule as follows:

ḣ(φb(θ,x),u) = ∂h(φb(θ,x))
∂φb(θ,x)

∂φb(θ,x)
∂x︸ ︷︷ ︸

Q̂(θ,x)

(f(x) + g(x)u︸ ︷︷ ︸
ẋ(t)

) , (2.24)

ḣb(φb(T,x),u) = ∂hb(φb(T,x))
∂φb(T,x)

∂φb(T,x)
∂x︸ ︷︷ ︸

Q̂(T,x)

(f(x) + g(x)u︸ ︷︷ ︸
ẋ(t)

) , (2.25)

where Q̂(θ,x) (and obviously Q̂(T,x)) is the so-called sensitivity matrix [15]. It is another
unknown function besides the flow, so it will be included in the IVP mentioned above, so:

dφb(θ,x)
dθ = fb(φb(θ,x)) , (2.26)

dQ̂(θ,x)
dθ = ∂fb(θ,x)

∂x
Q̂(θ,x) , (2.27)

and the associated initial conditions φb(0,x) = x and Q̂(0,x) = I, where I is an n × n

unit matrix. Thus, finally, all terms in QP (2.23) are known, and only the backup set and
backup controller suitable for the given control task need to be defined.
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3 Construction of backup set and backup controller

As mentioned earlier, there is no exact algorithm for the construction of a valid backup set
and a corresponding backup controller, and the existing examples [15], [16], [17] mainly
capture the underlying physical meaning of the particular problem, which rather requires
individual intuition (and talent). In this chapter, we propose an analytical way to over-
come this problem using the Continuous-time Lyapunov Equation (CTLE). Most impor-
tantly, with that one can specify not only the backup set, but also the backup controller.
Four main aspects have to be fulfilled for the proper construction of backup sets, we can
divide the problem into four parts in the following: ensuring the forward invariance of
the backup set, stabilizing the operation point, solving the input constraint of the backup
controller and forcing the backup set into the safe set.

3.1 Forward invariance

The motivation behind it comes from the forward invariance property of the Lyapunov
function. Let us introduce the backup set the following way:

hb(x) = c− V (x) , (3.1)

where let V be a Lyapunov function and c is one of its level curves and its magnitude
is proportional to the size of the backup set. Substituting (3.1) into the inequality (2.4)
that handles forward invariance:

ḣb(x) + αb(hb(x)) = −V̇ (x) + αb(hb(x)) ≥ 0 . (3.2)

The latter term is always non-negative by the class K∞ function definition, and if −V̇ is
also non-negative, then the backup set in (3.1) is always rendered forward invariant. This
means that V̇ must be smaller or equal to zero which combined with the V > 0 assumption
makes it clear that if a x0 operation point exists inside the backup set (hb(x0) ≥ 0), then
it is stable. To sum up, if a backup set is defined with a sub-level of a Lyapunov function,
its forward invariance is satisfied only if the backup controller can stabilize the operation
point x0 of the closed-loop system, then we are done with the forward invariance part.
However, it is necessary not to ignore the fact that all this requires an operation point
within the backup set. Previously, we obtained the relation x0 = x0(u0), i.e., the following
conditions for static intervention must be satisfied:

h(x0(u0)) ≥ 0 , (3.3)
umin ≤ u0 ≤ umax . (3.4)

If the intersection of these two sets determined by these inequalities is empty, then the
control task will not be feasible. Thus, all application examples should also start by
checking this, a kind of zero-step task.

12



3.1.1 Stabilization of operation points

Primarily, the stability of the working points needs to be guaranteed, otherwise, as dis-
cussed in the previous section, forward invariance cannot be guaranteed. In fact, this is
where the CTLE will be actually utilised. For this reason, the final form of the backup
set (2.21) will be written around the operation point:

hb(x) = c− (x − x0)⊤P(x − x0) , (3.5)

where P is determined from the CTLE:

A⊤
clP + PAcl = −Q . (3.6)

Here we have to provide the matrix Q, the main requirement is that it must be a positive
definite matrix. The closed-loop matrix also contains the backup controller as in (2.18),
which must be full-state feedback in order to apply the CTLE:

kb(x) = −K(x − x0) + u0 . (3.7)

For x0 to be stable, all the real parts of the eigenvalues of the closed-loop matrix must
be negative. The most convenient method to ensure this is the Routh-Hurwitz criterion,
from which we obtain various conditions for the choice of elements of K.

3.1.2 Ensuring input constraint

Obviously, the backup controller defined by the full-state feedback seen in (3.13) cannot
satisfy any input constraint, since as ||x||2 → ±∞, so ||kb||2 → ∓∞, where ||.||2 denotes
the norm two. To resolve this, saturation must be introduced:

kb(x) =


umin if − K(x − x0) + u0 < umin ,

umax if − K(x − x0) + u0 > umax ,

−K(x − x0) + u0 otherwise .
(3.8)

The harmful side effect of this saturation is that it ruins the forward invariance of the
backup set at the section where full-state feedback is no longer in operation. Thus, we are
forced to make the backup set "not hang out of the linear section of the backup controller".
What we mean by this can be seen visually in the example of the inverted pendulum later.
But the point is that both the backup set and the backup controller are written around
the operation point (x0,u0). However, with a choice of certain c, there can exist a x̄ for
which hb(x̄) ≥ 0, but kb(x̄) = umin or kb(x̄) = umax, meaning that despite being inside
the backup set, the backup controller is saturated. This is absolutely not allowed, we
must choose c well to prevent the backup set from "hanging out".

For this we use Lagrange-multipliers, a multivariable method, to adjust c such that the
backup set reaches precisely the saturated point getting the backup set with maximal
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size. Its fundamental formula is as follows [18]:

∇f̃(x) = Λ∇g̃(x) , (3.9)
g̃(x) = 0 . (3.10)

Here, f̃ : Rn → R is a multidimensional function whose extrema we seek under constraint
g̃: Rn → R and Λ ∈ R is the Lagrange multiplier. The analogy is f̃(x) = kb(x) and
g̃(x) = hb(x) − c and it is not accidental that the backup controller is not now in bold,
since for this analysis the backup controller must be a scalar function, and the following
test must be performed separately for each component of kb(x), since the coordinate
functions of the backup controller can be considered as independent variables. Thus, in
this case kb,i(x) is the i−th element of kb(x), and is a scalar function of the form:

kb,i(x) = −K⊤
i (x − x0) + u0,i , (3.11)

where Ki is the i−th row vector of K.

Figure 3.1: Graphical meaning of the Lagrange-multiplier

To demonstrate the method, see Fig. 3.1, which shows not only the orange backup set
written around x0 operation point and the green safe set, but also the saturated boundaries
of the backup controller. Our goal is to set c, which characterizes the size of the backup
set intersects at least one of the umax and umin boundaries. Consider that in order for
the backup set to intersect both boundaries, u0 = 0.5(umax + umin) would be required.
Performing the operation in (3.10), we obtain:

−Ki = −2ΛP(x − x0) , (3.12)

and here we have exploited the fact that P is a symmetric matrix. Our goal is to eliminate
Λ, since we do not need it further. To do this, we express the x − x0 term from (3.12):

x − x0 = 1
2ΛP−1Ki . (3.13)

We need to substitute this back into (3.10):
1

2ΛK⊤
i P−1︸ ︷︷ ︸

(x−x0)⊤

P
1

2ΛP−1Ki︸ ︷︷ ︸
(x−x0)

= c . (3.14)

14



After simplifications we get:

Λ = ±
√

K⊤
i P−1Ki

4c . (3.15)

Substituting this into (3.13), we obtain:

x − x0 = ±
√
c√

K⊤
i P−1Ki

P−1Ki , (3.16)

so we know where the extreme values are, because the backup set is quadratic form, so
we are not surprised that the ± sign gives us two solutions. The backup controller must
saturate at this point because of the input constraint, so (3.16) should be substituted into
kb,i(x) = −K⊤

i (x − x0) + u0,i ≜ umin,i and kb,i(x) = −K⊤
i (x − x0) + u0,i ≜ umax,i. From

here we obtain two solutions for ci:

c1,i = (umax,i − u0,i)2

K⊤
i P−1Ki

, (3.17)

c2,i = (umin,i − u0,i)2

K⊤
i P−1Ki

. (3.18)

Of these, the appropriate choice will be the smaller one, i.e. ci = min(c1,i, c2,i) . We must
not forget that we have to perform this with all the element functions of the backup
controller and choose the true minimum.

3.1.3 Backup set constraint

There is another aspect to consider for the correct choice of c in addition to the previous
invariance condition, namely that the backup set should not only be within the linear
section of the backup controller, but also within the safe set. This also requires the
parameter c to be well tuned, and may even require a reduction on c calculated in the
previous section. In general, this part of the problem can be solved via [19] by finding
critical ccr values for which the backup set and the safe set intersect each other in only
one point. However, we will use a more conservative method to constrain the backup
set, which will require less computational resource, but is customized to the application
examples.

In the next section, we will demonstrate the construction of backup sets and backup
controllers in practice through three application examples, together with a proper solution
ensuring Sb ⊆ S.
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4 Applications

In this chapter, three dynamic systems are described in detail presenting how powerful
tool the backup set method can be with the proposed method. Firstly, a simple scalar
equation will be demonstrated so as to witness how to calculate the forward prediction part
of the controller analytically. Then we see the inverted pendulum avoiding the danger of
limited intervention. The chapter ends with an even more complex model, namely vehicle
braking on a split−µ surface, where the driver poses a greater difficulty as an external
disturbance and the problem of linearizability of the mechanical system.

4.1 Scalar equation

We are dealing with probably one of the simplest differential equation:

ẋ = x+ u . (4.1)

Without any intervention (u ≡ 0), the solution would be:

x(t) = Cet , (4.2)

meaning that the state x goes to infinity (or minus infinity), depending on the initial
condition. Let us say that the state x shall vary only between −xmax and xmax, and the
input u between umin and umax, where xmax ∈ R+ and (umin, umax) ∈ R. The corresponding
safe set can be the following:

h = x2
max − x2 . (4.3)

With the help of the well-known explicit formula from KKT-conditions (2.8), one can
calculate the input signal if input constraint is neglected:

u(x) =
 kd(x) if − 2x2 − 2xkd(x) + α(h) > 0 ,

−x+ α(h)
2x otherwise ,

(4.4)

where α is a class K∞ function and kd(x) is the desired controller. However, no matter
how cleverly they are chosen, it can be proven that the extreme values of the input
are |umax| = |umin| = xmax inside the safe set. This is shown in Fig. 4.1 in blue, where
no matter how α and kd(x) changes, the extreme values of u(x) will always be on the
boundary of the safe set.

4.1.1 Backup set and backup controller construction

If we are interested in regulating them, we shall use the Backup set method. Its first step
is to find the equilibrium point by setting (4.1) equal to zero according to (2.12):

x0 + u0 = 0 −→ x0 = −u0 . (4.5)
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Figure 4.1: Input for scalar equation based on (4.1).

From that the backup controller is defined as based on (3.8):

kb(x) =


umin if −K(x− x0) + u0 < umin ,

umax if −K(x− x0) + u0 > umax ,

−K(x− x0) + u0 otherwise ,
(4.6)

where this time K is a scalar as P, Acl and Q will be, moreover the eigenvalue of Acl is
itself. Next, the linearized system is identical with the origin one resulting the closed-loop
"matrix" and must fulfil the condition below:

Acl = 1 −K < 0 −→ K > 1 . (4.7)

The CTLE transforms into a scalar equation where the transpose of a scalar is simply
itself and setting Q = Q ≜ 1:

(1 −K)P + P (1 −K) = −1 −→ P = 1
2(K − 1) . (4.8)

The last unknown is c, which is according to (3.18):

c1 = (umax − u0)2P

K2 , (4.9)

c2 = (umin − u0)2P

K2 , (4.10)

and based on (3.5) the backup set is

hb = c− P (x− x0)2 . (4.11)

It shall not be forgotten that the backup set cannot exceed the safe set. For that in this
simple case the explicit c values can be expressed:

c3 = P (xmax + x0)2 , (4.12)
c4 = P (xmax − x0)2 . (4.13)
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Visually it means that for c3 or c4 the backup set and the safe set are tangent at only one
point and the final value is c = min(c1, c2, c3, c4) . Last step is to pick such u0 static input
values which retain every resulting x0’s in h according to (3.9) and simultaneously abide
the input constraint:

x2
max − (x0(u0))2 ≥ 0 −→ −xmax ≤ u0 ≤ xmax AND umin ≤ u0 ≤ umax . (4.14)

It is crucial to check before the simulation that these previous two sets have an intersection,
otherwise neither safety nor the input constraint will work.

4.1.2 Forward prediction

This part of the simulation can be solved numerically via the (2.27) IVP, but since we
are faced with such a simple equation, we can do it manually. Finally, we need the future
state under the backup controller φb, where

ẋ = x+ kb(x) (4.15)

differential equation needs to be solved. Let us first consider the linear part of the backup
controller:

ẋ = (1 −K)x+Kx0 + u0 , (4.16)

which can be solved analytically:

xlin(t) = Ce(1−K)t − Kx0 + u0

1 −K
. (4.17)

Using this we can determine the flow:

φb,lin(θ, x) = Ce(1−K)θ − Kx0 + u0

1 −K
, (4.18)

and in order to find C, we can utilise the initial condition φb(0, x) = x :

φb,lin(θ, x) =
(
x+ Kx0 + u0

1 −K

)
e(1−K)θ − Kx0 + u0

1 −K
, (4.19)

and the sensitivity "matrix" is just its partial derivative with respect to x:

Qlin(θ, x) = e(1−K)θ , (4.20)

which automatically satisfies the other initial condition Q(0, x) = 1 . To get the flow of
the saturated section we solve the next differential equation:

ẋ = x+ û , (4.21)

where let û = umax or û = umin . Its solution is:

xsat(t) = Cet − û . (4.22)
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Writing it in the sense of flow:

φb,sat(θ, x) = Ceθ − û , (4.23)

and determining C again with the initial condition:

φb,sat(θ, x) = (x+ û)eθ − û . (4.24)

The final form of the flow under the backup controller is:

φb(θ, x) =


(x+ umin)eθ − umin if −K(x− x0) + u0 < umin ,

(x+ umax)eθ − umax if −K(x− x0) + u0 > umax ,(
x+ Kx0+u0

1−K

)
e(1−K)θ − Kx0+u0

1−K otherwise .
(4.25)

With that, everything is finally ready to solve the (2.23) optimization problem.

4.1.3 Results

The following parameters in Table (4.1) are fixed throughout the entire presentation of
the results. The input bounds are purposefully chosen to produce a non-symmetric input
constraint, which is one of the greatest benefits of this method. Of course, since we are
not talking about an example with a concrete physical connotation, unitless quantities
are used.

Table 4.1: Fixed parameters

Parameter marking value
Bound of the safe set xmax 1 [−]

Lower bound of the input umin −0.5 [−]
Upper bound of the input umax 0.75 [−]

Gain of the backup controller K 5 [−]
class K∞ for safe set α 3 [−]

Number of constraints Nc 80 [−]
class K∞ for backup set αb 1 [−]

Static input u0 0 [−]

Furthermore, the nominal (desired) controller is considered kd(x) = 0 . The analysis
starts with a comparison, namely with the Safety Critical Control, which is saturated at
its intervention boundaries. Started from different starting points from x(t = 0) = −0.6
to x(t = 0) = 0.6. In Fig. 4.2, it can be seen that in none of the cases could the saturated
CBF keep the trajectory within the safe set. For the state x to remain inside the safe set,
ẋ ≥ 0 must be satisfied for negative x, which in the light of (4.1) corresponds to u ≥ −x,
while the opposite condition is true for negative x. This is the reason why in Fig. (4.1)
you can see a line of −45◦, because this is the boundary. Since u ≥ −x (∀x ≥ 0) and
u ≤ −x (∀x ≤ 0) are nowhere satisfied except the case without input constraint. It is not
surprising that the saturated u(x) (4.4) cannot keep the trajectory inside the safe set for
any initial condition.
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Figure 4.2: Scalar equation from different initial points with saturate CBF.

Next we can see what can be achieved by using the backup set method on Fig. 4.3.
Starting the simulation from the same starting points as in Fig. 4.2, it can be seen that
the trajectories were kept within the safe set (blue curves) from all but one (red curve)
starting point. Moreover, it can be observed that, due to the non-symmetric boundaries,
the directions in which larger interference was possible the backup controller intervened
later. This time, T was set to 10. Furthermore, the invariant set, which is the interval
x = [−0.75, 0.5], is also explored, and by comparing it with the size of the backup set,
we can see how much the latter can be increased. In addition, what is worth showing is
precisely the effect of this T on the controller. Fig. 4.4 shows this for 3 different prediction
times. If T = 0, as described in Section 2.3, the invariant set is identical with the backup
set and as a result the trajectory comes back to the backup set. With increasing T we
can see how the trajectories wander wider regions.

Figure 4.3: Scalar equation from different initial points with Backup-CBF and T = 10.
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Figure 4.4: Scalar equation for 3 different T values.

4.2 Inverted pendulum

Presenting the backup method via the pendulum has two new features compared to the
previous 1D model: first, it has physical meaning, so it is easier to imagine how the
parameters used in the backup set method affect the mechanical system in reality, and
second, there is no longer a closed form formula for the flow, so the prediction part of the
task has to be performed numerically. The equation of motion of an inverted pendulum
is: ẋ

ẏ

 =
 y

3g
2L sin(x)

+
 0

3
mL2

u , (4.26)

which can be derived from for example the Lagrange’s equations of the second kind. In
equation (4.26) the two states are the angle measured from the vertical axes (x ≜ ϑ)
and the angular velocity (y ≜ ϑ̇), u is the input proportional to some torque, g is the
gravitational acceleration, m is the pendulum’s mass and L is the pendulum’s length. For
further purpose of simplification let L ≜ 3g/2 and m ≜ 4/3g2 to get unit coefficients:ẋ

ẏ


︸︷︷︸

ẋ

=
 y

sin(x)


︸ ︷︷ ︸

f(x)

+
0
1


︸︷︷︸
g(x)

u . (4.27)

The initial objective could be for an inverted pendulum to stop before hitting the table
after releasing it from an upper position, but not from the vertical one. It would imply
the following safe set:

h(x) = 1 −
(
x

x̂

)2
, (4.28)

where x̂ = π/2 . But, taking into account the above-mentioned fact about Lgh(x) ≡ 0, it
is evident that with this safe set the exactly this situation would occur. Not to complicate
the task by wandering into the theory of High order Control Barrier Functions, let’s modify
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this safe set a bit:
h(x) = 1 −

(
x

x̂

)2
−
(
y

ŷ

)2

, (4.29)

where the zero-level subset of this particular safe set is an origin-centered ellipse with
(x̂, ŷ) semi-axis. In other word, beyond the angle, the angular velocity is also restricted
though the Lgh(x) ≡ 0 case is avoided successfully.

4.2.1 Backup set and backup controller construction

The analysis begins with the search for the equilibrium point again by setting (4.26) equal
to zero. Solving the (2.12) algebraic equation we get:

x0 = arcsin(−u0) , (4.30)
y0 = 0 . (4.31)

With these point we select which u0 can keep (x0, y0) within the safe set:

h(x0(u0)) = 1 −
(
x0

xmax

)2
−
(
y0

ŷ

)2

= 1 −
(

arcsin(−u0)
xmax

)2

≥ 0 . (4.32)

From (4.31) u0 can be expressed but also has to obey the input constraint:

− sin(xmax) ≤ u0 ≤ sin(xmax) AND umin ≤ u0 ≤ umax . (4.33)

Next, we can write the backup controller (3.8) for two variables this time:

kb(x) =


umin if −K1(x− x0) −K2(y − y0) + u0 < umin ,

umax if −K1(x− x0) −K2(y − y0) + u0 > umax ,

−K1(x− x0) −K2(y − y0) + u0 otherwise ,
(4.34)

where K = (K1, K2)⊤ gain vector since u ∈ R . What we need to do now is to linearize
around (x0, y0, u0), where the matrix A and vector B will look like according to equations
in (2.16):

A =
 0 1
cos(x0) 0

 , (4.35)

B =
0
1

 , (4.36)

thus we can now write the closed-loop matrix:

Acl =
 0 1
cos(x0) −K1 −K2

 . (4.37)

Given that we have now a matrix, we will now apply the Routh-Hurwitz criterion to check
which K gain vector can stabilize the linearized system around the equilibrium point. To
do so, we derive the characteristic equation of the closed-loop matrix:

λ2 +K2λ+K1 − cos(x0) = 0 , (4.38)
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and set all of the coefficients to be positive (or negavitve, the point is that they all must
have the same sign):

K1 > cos(x0) , (4.39)
K2 > 0 . (4.40)

Next the CTLE in (2.20) has to be solved to get the P matrix which is always unique
and exists if x0 equilibrium point is stable. Fortunately, MATLAB has a built-in function
(called lyap) that calculates it easily. The zero-superlevel of the backup set for two
variables is an ellipse and the c constant can be computed with the Lagrange-multipliers
method via equations (3.18). The other essential condition for the choice of c is to ensure
the backup set does not exceed the safe set with that. Though, this problem is more of
a geometrical one rather than a controlling one, because it is all about to constrain an
ellipse (backup set) inside an other (safe set). The pleasant scenario would be same as it
was in the 1D example, to intersect each other at only one point. For that a system of
two quadratic equations need to be solved (because they are ellipses) and make sure that
out of the four solutions (as two ellipses can intersect each other at maximum four points)
there is only one real solution. As this would lead to a considerably more complicated
algebraic problem, let us instead provide a more conservative, own method to address it.

4.2.2 Ellipse constraint

The idea behind this comes from the fact that while finding the intersection of two ellipses
and giving a condition on it is tough, it is easier for an ellipse and a line. For the latter
case we can make use of the quadratic formula and by setting its discriminant to zero we
are able to ensure that the line is tangent to the ellipse, i.e. they intersect each other
at only one point. It should be noted that this method works only for this particular
example, so we are talking about a constraint of two n-dimensional quadratic sets. If the
shape of the safe set is different, a new method has to be established, as discussed in
Section 3.2.4. In this case, it is advantageous, because we work with similar sets in the
pendulum problem here and in the vehicle example afterwards. The algorithm is shown
in Fig 4.1 - Fig 4.3. and can be divided into the following steps:

1. Compute the eigenvectors is P which describes the slopes of the major-axis of the
backup set.

2. Find intersection points of the backup set’s major-axis and the safe set (Fig. 4.5).

3. Connect these intersection points with lines (Fig. 4.5).

4. For all of the four lines solve the quadratic equation that comes from the intersection
of each line with the backup set and set the discriminant to zero (Fig. 4.6).
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Figure 4.5: Eigen-axis of the
backup set (solid lines) and connec-
tions between intersection points (dot-
ted lines).

Figure 4.6: Inner ellipse constraint with the
four lines.

5. Choose out of the four options the smallest c value, thus ensuring that the backup
set always remains inside the safe set (in Fig. 4.6) the first two and the last two c
values are the same, that is why only two backup set ellipses can be seen).

However, recall that this is only one possible solution among many, there are other ways
to check that the backup set is actually inside the safe set. As mentioned, [19] provides a
general approach for the multidimensional case.

4.2.3 Results

In the example of the inverse pendulum, again non-symmetric intervention boundaries
were selected to demonstrate how powerful the proposed method is. For that, if assumed
that the torque needed to keep the pendulum statically horizontal, that would lead to
u = ±1, which comes from equation (4.26). Therefore let one of the boundaries be a
little bit higher and the other one a little bit lower to test the Backup set method but
ensuring that the double condition in (4.33) is satisfied. The constant parameters of the
simulations for the inverted pendulum can be found in Table (4.2)

Fig. 4.7 shows all preliminary functions visualized in three dimension: with green stands
the safe set including the orange backup set and both of them are ellipse based cylinders.
With gray the saturated backup controller is plotted and with the perfect c parameter
selection the backup set cylinder remains not just inside the safe set, but also inside the
linear section of the backup controller. What is expected from the simulation is that
the trajectories (the two states and the one input) should be within the green, top and
bottom locked safe set cylinder, i.e. not crossing the saturated section of the backup
controller. Also, at the end of each simulation, an equilibrium point is reached, so the
pendulum is (pleasantly) stopped inside the safe set, so the angular velocity is zero, and
the trajectories lie on the horizontal axis in the graphs.
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Table 4.2: Fixed parameters for inverted pendulum

Parameter marking value
Maximal angle x̂ π/2 [rad]

Maximal angular velocity ŷ 4/3 [rad/s]
Lower bound of the input umin −0.75 [SI]
Upper bound of the input umax 1.25 [SI]

Gain vector of the backup controller K (3, 3)⊤ [SI]
class K∞ for safe set α 1 [−]

Number of constraints Nc 80 [−]
class K∞ for backup set αb 1 [−]

Static input u0 0 [−]

The nominal (desired) controller is once again considered kd(x) = 0 and the elements
of K gain vector fulfil the stability criterion in (4.40). The most fundamental point
of comparison is the emphasis on the backup set method control over the classical, but
saturated CBF from (2.11). The colour codes are identical to the ones used so far. Fig. 4.8
shows the trajectories of the dynamics under the Safety Critical Control corresponding
to the QP in (2.11), i.e. the intervention is saturated. Using the so-called brute force
method, starting from nearly 300 initial points, the trajectories of the system are shown,
which were separated into two groups by appropriate coloring: those that are able to stay
inside the safe set are blue, those that are not are red. It is noticeable how relatively
few of these trajectories are able to be retained, and it is obvious that this needs to be
improved. In addition, a faded yellow area indicates the invariant set defined in SI (2.22),
which should be enlarged using the backup set method.

Figure 4.7: 3-dimensional plot of all the functions of Backup set method
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Figure 4.8: Trajectories under saturated CBF with SI indicated.

Fig. 4.9 and Fig. 4.10 represent the trajectories obtained with the backup set method,
the only difference between them being the prediction time, which is T = 1 s for the former
one and T = 10 s for the latter one. Still, the huge improvement over the saturated
Safety Critical Control is how much we could increase the region that trajectories −
launched from inside the safe set − eventually stay inside safe set throughout the whole
simulation. In other words, the SI was successfully expanded. The difference, though, is
the prediction time, which, while not significantly enlarging the region spanned by the
blue curves between 1 and 10 seconds, is worth observing how they affect the dynamics of
the controlled system. In both cases we notice the appearance of new equilibrium points,
which are actually the equilibrium points of the closed-loop dynamics under the (2.23)
controller. These are marked by × signs, closer to the origin at T = 1 s and further away
at T = 10 s.
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Figure 4.9: Trajectories under Backup set method with T = 1 s and with SI indicated.
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Figure 4.10: Trajectories under Backup set method with T = 10 s and with SI indicated.

Returning to Fig. 4.7, to visualize the method in space, Fig. 4.11 illustrates two trajec-
tories, in 3 dimensions on the left, and a top view on the right. It can be claimed that
both the safety and the input constraint are satisfied. Based on this example, we intend
to use a similar approach to control an even more complex mechanical system in the next
section.

Figure 4.11: 3-dimensional plot of the whole mechanical system with two trajectories
under Backup set method with T = 10 s (right) and top view (left)
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4.3 Vehicle braking

The third and most challenging application is vehicle braking on a split−µ surface. The
marking µ refers here to the coefficient of traction, while the word "split" refers to the
separation of the road surface, to sum up meaning that braking on a road surface with an
asymmetric coefficient of traction [20]. In the conventional case, the longitudinal (forward)
dynamics of the vehicle can be controlled by pressing the gas or brake pedal, while the
lateral dynamics can be controlled by the steering wheel. A different and surprising
phenomenon for the driver is braking on a surface with different traction. This is not
caused by the steering movement but by the split−µ braking, which can result in critical
dynamic values leading to a spin-out, for which ordinary drivers are less, if not not at all,
prepared due to the uncommon nature of the situation.

Due to the different friction and adhesion conditions, the difference of braking forces
causes a torque around the vertical axis (yaw moment), which can lead to the loss of
stability and therefore loss of vehicle control. Based on measurement results, the loss of
stability due to split−µ braking can lead to a critical increase in the vehicle’s angular
velocity about the vertical axis (yaw rate) ψ̇ and side-slip angle β, as shown in Fig. 4.12.
This can basically be avoided by not allowing the opposite sides of the vehicle to brake
with different forces − i.e. both sides braking with the lower traction side’s braking force
− but this will result in a drastically increased stopping distance. It is indisputable that
the driver must be assisted through the intervention in the braking forces in order to
be able to brake safely and avoid spinning out. The question is, however, what kind of
control should be chosen to deal with this problem. It would be a trivial solution to
reduce the yaw rate and side-slip angle to 0, so that the vehicle has zero lateral dynamics.
To do this, it is necessary eliminate the torque, so that the wheels on both sides brake
with equal force. This method is called Select-Low (SL) because both sides brake with
the braking force of the low traction side. Its opposite is Select-High (SH), where both
wheels brake with their own maximal force possible [21].

Figure 4.12: Vehicle dynamics during split−µ braking
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The solution is between the two methods outlined: a certain yaw rate and side-slip
angle is allowed, to which the driver can adapt and react to appropriately. This is why
Safety Critical Control is perfectly applicable to this example, to prevent the vehicle’s yaw
rate and side slip angle from increasing significantly. The first step is to define the vehicle
model itself, which includes three unknown parameters (independent of the particular
vehicle model): the longitudinal and lateral forces on the wheels and the angle of wheel
position relative to the longitudinal direction. The first two are obtained from the selected
wheel model, while the latter is obtained from the driver model.

As mentioned in the introduction, the input constraint is present naturally, and both
of its boundaries have physical meaning. One is the maximum braking force, which
cannot be exceeded due to the traction conditions, it is not possible to brake with any
force. The other limit is the minimum, which, if exceeded, would physically mean that
the wheel would accelerate rather than decelerate. However, in the case of emergency
braking, it is not allowed to accelerate wheels. In the example outlined, first the models
that constitute the mechanical system will be reviewed, and then the application of the
backup set method.

4.3.1 Mechanical model

To model braking on a split mu surface, it is necessary to separate the vehicle in the
model into right and left sides for different braking forces, and front and rear axles for
front axle steerability. This means that at least a four-wheel vehicle model is needed, and
its free body diagram is shown in Fig. (4.13).

Figure 4.13: Mechanical model of a vehicle [2]
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Using the Lagrange’s equations of the second kind can be derived of the equation of
motion of the planar vehicle model (also known as bicycle model) according to [22]:



v̇x
v̇y
ω̇

ẋE

ẏE
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(4.41)

where:

F̃w = F22,x + F12,x cos(δ) − (F12,y − F11,y) sin(δ) , (4.42)
F̃a1 = (F11,y + F12,y) cos(δ) + F12,x sin(δ) , (4.43)
F̃a2 = −(F21,y + F22,y) . (4.44)

Here we assume that from Fig. (4.13) δ11 = δ12 ≜ δ and the input will be the longitudinal
wheel forces on the high traction side, with the following input constraint:F11,x,max

F21,x,max


︸ ︷︷ ︸

umax

≥

F11,x

F21,x

 ≥

F12,x,max

F22,x,max


︸ ︷︷ ︸

umin

, (4.45)

which makes sense if the braking forces are assumed to be essentially negative, as they
decelerate the given wheels. Furthermore longitudinal forces play a key role in µ-split
braking as we have seen. However, they can not only occur due to braking in reality, but
also due to the so-called longitudinal slip phenomenon, which is neglected in this model.
Thus, the longitudinal force in the model can only be the braking force applied by the
brake controller. Finally to get the full picture, the safe set is interpreted as described
above:

h(x) = 1 −
(
β

βcr

)2

−
(
ω

ωcr

)2
, (4.46)

where β can be approximated by β = vy/vx according to Fig. (4.12) as these values during
the simulations will be much smaller, than 1 radian.
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4.3.2 Tire model

The purpose of the wheel model is to determine the forces and moments acting on the
wheel, based on the dynamic and geometric quantities. Since the vehicle model is planar,
it is also useful to consider the wheel in plane too. The forces in the x and y directions
in the vehicle model (4.41) are the forces acting at the wheel’s contact point, and the
longitudinal force in the x direction being the one already described, since it takes the
role of the input signal. For the lateral force there are many models in the literature, from
the simplest to the most complex. Pacejka’s magic formula [23] is considered to be the
most sophisticated one, but it employs an empirical formula, parameter tuning is required.
However, a much simpler wheel model may be suitable for us, as the more complex the
mechanical model, the more difficult the forward integration becomes in backup control.
On the other hand, in order to obtain an affine dynamical system (2.1) by setting Fx to
be the input, the linear wheel model will be used instead of the combined wheel model −
which takes into account the mutual influence of Fx and Fy . Its formula is the following:

Fij,y = Cαij
αij , (4.47)

where ij refers to the j-th wheel from left to right of the i-th axle and Cαij
is the wheel’s

cornering stiffness, αij is the wheel’s side-slip angle, which can be calculated via vehicle
kinematics [22] for the first and second axle:

α1j = tan−1
(
vy + xV,1jω

vx − yV,1jω

)
− δ , (4.48)

α2j = tan−1
(
vy + xV,2jω

vx − yV,2jω

)
. (4.49)

The linear wheel model uses the initial linear section of the slip curve shown in Fig. (4.14),
and the cornering stiffness is its slope.

Figure 4.14: Lateral force − slip-angle curve [23].
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4.3.3 Driver model

There are many different driver models in the literature, but we need to choose a model of
a certain complexity for the task. As the emphasis is not on the driver, but on the braking
controller, a simple driver model can be sufficient, the point is to keep the vehicle in lane
under braking. What will be used, is the so-called Look-ahead method [24]. It takes into
account the expected lateral displacement of the vehicle (in the global coordinate system)
with respect to a given reference path, L distance ahead of the vehicle’s current position
and assuming that the vehicle’s direction remains unchanged. For a better understanding
helps Fig. 4.15.

Figure 4.15: Presentation of the Look-ahead method [24].

To determine the steering angle, a proportional feedback controller is assumed for lateral
displacement:

δ = −Py(y + L sin(ψ)) , (4.50)

where if we consider small angles and use the notation PyL ≜ Pψ, then:

δ = −Pyy − Pψψ . (4.51)

Therefore, we feedback both the current lateral position of the vehicle and the yaw angle,
which are part of the state space. However, the parameters for which the driver will react
in a stable or unstable way can be found in this article [2]. Although it contains a driver
model with time delay, but assuming zero delay, it provides the case without time delay,
which will be used in the simulation later on.

4.3.4 Linearized system

A separate subsection should be devoted to linearization, which is an essential aspect
of backup set and backup controller design. If equation (2.12) were to used to find the
operation points of the vehicle model when braking, it would not provide a single solution
that is even numerically valid. The only solution would be the rectilinear motion, which
is contradictory under braking. In order to resolve the issue, the so-called frozen-time
method can be used. This will give a time invariant system where the transient signals
have enough time to decay [25]. In practice, this means that, for a constant velocity vx,
the operation points for vy,0 and ω0 can be determined by detaching the first and last three
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rows of the vehicle model’s differential equation (4.41). The significance of this will be
that, unlike the two simpler examples shown, a new backup controller and a new backup
set must be interpreted for each new vx longitudinal velocity due to the frozen-time. Also,
each time the backup set parameter c must be re-checked to see if it is correctly adjusted.

The linearized system is also strongly affected by another factor, namely the driver,
which is considered as an external phenomenon with its own control laws. The driver is
indeed capable of "pushing" the operation point in the linearized system out of the safe set
with his steering angle, thus violating condition (3.4). Until now u0, even if it was within
bounds in conditions (3.4), could be chosen arbitrarily, but this time it must be used to
compensate the driver. Moreover, by using frozen-time, this must also be recalculated at
each time instant. This means that u0 must depend on both δ and vx. To simplify the
analysis, let us introduce the following parameter p:

u0 ≜

F11,x,0

F21,x,0

 =
F11,x,max

F21,x,max

− p

F11,x,max − F12,x,max

F21,x,max − F22,x,max

 , (4.52)

which means if p = 0, then u0 = [F11,x,max, F21,x,max]⊤ i.e. u0 is actually the Select-High
braking, and if p = 1, then u0 = [F12,x,max, F22,x,max]⊤ i.e. u0 is the Select-Low braking.
Since u0 must obey the input constraint, a bound must be added to p as well, namely
p ∈ [0, 1] . However, for a given δ and vx, there might be no p ∈ [0, 1] , which means that
there is no u0 within the input bounds, thus the operation point is out of the safe set.
The Fig. 4.16 shows the surfaces that separate the points in the space (δ, vx, p) for which
the vehicle’s operation points (vy,0, ω0) fall inside or outside the safe set (4.46).

Figure 4.16: Space-separating surface, yellow sides indicate the inner space where h > 0 .
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Figure 4.17: Choosing algorithm for p .

The smoothness of these curves obviously depends on how fine refinement is applied,
since these surfaces can only be defined numerically due to the model’s nonlinearity.
To make the control feasible, assume that for each (δ, vx) there exists p ∈ [0, 1], then
the operation point (vy,0, ω0) is located in the inner space in Fig. 4.16, which is covered
by yellow surfaces. Then, there is a wide range of choice for choosing p illustrated in
Fig. 4.17, which depicts a cross section of the surface in Fig. 4.16 for an arbitrary vx.

According to Fig. 4.17 and if the previous statements hold about p, there always exist a
pmin and a pmax ∀(δ, vx), which can be computed also numerically. Since the purpose of the
simulation is to reduce the stopping distance as much as possible while maintaining safety,
it is beneficial to keep p as small as possible, since if p = 0, then u0 = [F11,x,max, F21,x,max]⊤.
However, if u0 equals to one of its input bounds, it is unfortunate because the backup set
would be defined at saturation. This time, according to (3.18) the smallest c would be
zero causing the backup set to shrink to a single point. Therefore, a values between pmax

and pmin should be selected, which is closer to pmin. Let it be one tenth of the distance
between them and closer to pmin:

p(δ, vx) = pmin(δ, vx) + 0.1 · (pmax(δ, vx) − pmin(δ, vx)) . (4.53)

4.3.5 Backup set and backup controller construction

As discussed, due to frozen-time, new operation points have to be calculated at each time
instant, which are already known from the previous method. What this causes is the
dependency of the backup set and backup controller parameters on vx, hence the shape
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of the backup controller:

kb(xr, vx) =


umin if − K(xr − x0(vx)) + u0(vx) < umin ,

umax if − K(xr − x0(vx)) + u0(vx) > umax ,

−K(xr − x0(vx)) + u0(vx) otherwise ,
(4.54)

where x0 = [vy,0, ω0]⊤ and xr = [vy, ω]⊤. The matrix K is therefore a 2-by-2 matrix of
the form:

K(vx) =
K1(vx) K2(vx)
K3(vx) K4(vx)

 , (4.55)

and the subscript r refers to the reduced state, since in our case the equilibrium space is
characterized by only 2 states. The choice of K is no longer straightforward, since it has
to be updated for all vx, but for simplicity we choose such a K that will be appropriate
for all vx during the simulation. The backup set will also be affected by the frozen-time
method:

hb(xr, vx) = c(vx) − (xr − x0(vx))⊤P(vx)(xr − x0(vx)) , (4.56)

causing the CTLE to construct new backup sets for every new vx and determine new c’s
as well.

4.3.6 Results

Before getting to the results, we shall discuss firstly what circumstances do we assume
during the following, µ−split braking situation:

• modelling an emergency braking, when the nominal (desired) control should be the
Select-High option: kd(x) ≜ [F11,x,max, F21,x,max]⊤ , so apply the maximum possible
braking force,

• both sides of the road have homogeneous surface but with different coefficient of
traction and the wheels do not change between the lanes,

• the driver parameters Pψ and Py are chosen in such way that at the beginning of
the simulation the driver’s behaviour is unstable modelling its unpreparedness for
the µ−split braking, but becomes stable at low vx as the vehicle slows down.

Table 4.3 contains all the parameters used during the simulation. This time, the com-
parison will be carried out in contrast to the saturated CBF, the weakness of which we
would like to improve by using the backup set method. The initial condition of each
simulation was a vx(t = 0) = 100 [km/h] and everything else was zero. T integration
time should not be set to a large value, because the due to the frozen-time method the
operation points and thus the backup set are updated at every instant. So choosing a
large T time may also predict inaccurate future dynamics for the backup controller.
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Table 4.3: Fixed parameters for vehicle braking

Parameter marking value
Maximal yaw rate ωcr 0.1 [rad/s]

Maximal side-slip angle βcr 0.03 [rad]
Maximal braking force of wheel 11 F11,x,max −12000 [N]
Maximal braking force of wheel 12 F12,x,max −3600 [N]
Maximal braking force of wheel 21 F21,x,max −5600 [N]
Maximal braking force of wheel 22 F22,x,max −1400 [N]

Gain matrix of the backup controller K 103 · (10, 10; 4.6, 4.6) [SI]
class K∞ for safe set α 10 [−]

Number of constraints Nc 80 [−]
class K∞ for backup set αb 1 [−]

Prediction time T 0.125 [s]
Driver parameters (Py,Pψ) (0.25, 0.6) [SI]
Mass of the vehicle m 8850 [kg]

Moment of inertia around the vertical axes Iz 36952 [kgm2]
Distance between center of mass and first axle a1 1.142 [m]
Distance between center of mass and rear axle a1 2.458 [m]

Track width w 1 [m]
Cornering stiffness of first axle wheels Cα11, Cα12 −125000 [N/rad]
Cornering stiffness of rear axle wheels Cα21, Cα22 −115000 [N/rad]

Figure 4.18: Safe set plane with comparison between CBF-Backup (blue) CBF (red)
and Select-High (gray).

First of all, let us look at how the trajectories of the system evolve in the phase plane
(β −ω), shown in Fig, 4.18. It is understandable that the Select-High braking, marked in
gray, has the highest lateral dynamics, since without any assistance from the vehicle side,
the driver cannot react properly on his own. With the saturated CBF, which is shown
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in red, lower velocities were obtained, but the safety was not fulfilled here either, the
trajectory left the safe set. In contrast, the CBF-Backup was able to keep the trajectory
inside while ensuring input constraint, which is depicted in Fig. (4.20).

Figure 4.19: Braking forces applied during saturated CBF control.

Fig. 4.19 shows the inputs of the saturated CBF, with the front axle braking force in
blue and the rear axle in magenta. Slightly chaotic interventions are observed when they
oscillate between their minimum and maximum. Dotted lines indicate the limits of each
intervention with corresponding colours. The input signals with Backup set method are
shown in Fig. 4.20, which now successfully keeps the trajectory inside the safe set and is
also smoother. The difference is that the intervention calculated using the backup set
method reduces the braking forces earlier and by a larger amount compared to the satu-
rated CBF. This is no coincidence, since more information about the dynamical system
and its evolution is available in the latter case thanks to forward prediction.

Figure 4.20: Braking forces applied during CBF-Backup control.
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Figure 4.21: Driver’s steering angle for CBF (red) and CBF-Backup (red) and Select-
High (gray).

What is also important is the effect of brake control on the driver, as shown in Fig. 4.21.
A noticeable difference, the saturated CBF and Select-High allowed the driver to steer up
to 120 and 200 degrees, whereas with the same parameters in case of CBF-Backup, the
driver had to steer 40 degrees at maximum, and did it even more smoothly and gently.
Fig. 4.21 also shows how long it took the different methods to stop the vehicle assuming
the same initial velocity. Obviously, Select-High was the quickest, as the braking forces
are the highest, but in this case the probability of loss of stability is enormous. The
same can be said for the saturated CBF, as it also violated the safety. Although it took
more time for the Backup-CBF to stop the vehicle, but this is the only simulation that is
feasible in reality and still safe. It can be declared that Safety Critical Control combined
with the backup set method, can be considered to be a driving assistant system. This can
be clearly identified from the results, as the brake control is able to brake the system in a
way that the driver can react in an appropriate way. Furthermore, no oscillation occurred
in this case, as occurred without the assistance.

What is really worth looking at is the three-dimensional shape of the safe set, where
the β is split into two state variables vx and vy:

h(x) = 1 −
(

vy
vxβcr

)2

−
(
ω

ωcr

)2
, (4.57)

In Fig. 4.22 these ellipses are defined around the operation points marked by the red
curve, the blue curve shows the real trajectory which starts from (vx(t = 0), 0, 0) and goes
down approaching zero longitudinal velocity. We can see that not only the blue trajectory
remains in the safe set (as it did in Fig. 4.18), but also the constraint of the backup set
ellipses works, with a new parameter c recalculated at each update. In fact, in Fig. 4.22
we can now represent backup sets, which will display planar-ellipses for each vx in space.
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It can be concluded that the method presented in Section 3 can be applied to vehicle
braking on an asymmetric surface using frozen-time method.

Figure 4.22: Three-dimensional representation of the safe set (green), backup sets (or-
ange), trajectory (blue) and equilibium points (red).
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5 Summary

5.1 Results

We have shown how safety-critical control of mechanical systems under input constraints
can be performed using the backup set method. For this purpose, we designed our own
backup set and backup controller construction method and applied it to three mechanical
systems of different complexity. The Lyapunov function was a key element in the structure
of the method and was used to prove the invariance of the backup set. In addition, we had
to solve the constraint of the backup set: firstly, it had to be constrained into the safe set,
and secondly, it had to be constrained into the linear segment of the backup controller.
For the former we used our own geometric method in the two-dimensional case, for the
latter we used Lagrange-multipliers.

The peculiarities of the three application examples are that in the first, scalar equation
example, the future states were analytically determinable and could be substituted in the
optimization. After that, we could not do this for the inverted pendulum, but needed a
numerical simulation. We also saw in the phase space of the inverted pendulum how much
we could improve the controller compared to Safety-Critical Control. In the last example,
we had one even more difficult problem, namely that we had no suitable operation point
around which the backup set and backup controller could be written during vehicle brak-
ing. The way to resolve the problem was to use the so-called frozen-time method, where
we calculated the operation points for the lateral dynamics assuming a constant forward
speed. This fact implied that all parameters calculated during the backup set method
had to be updated for each new velocity. The other complicating factor was the driver,
who can interfere with and even deteriorate the vehicle dynamics through steering angle.
Against this, we had to tune the static braking force intervention in order to perform the
control with the backup set method.

5.2 Future plans

The presented method for constructing backup set and backup controller relies essentially
on the operation points of the linearized system, and if we do not have them, or if we
are not able to keep them within the safe set with the available control, we are no longer
able to control them effectively. Therefore, the relationship between the feasible control
signal, the defined safe set and the operation point requires further investigation, as
they are strongly interdependent factors. Besides, the appropriate handling of external
disturbances, such as the case of the driver, where we cannot control the vehicle safely
for certain steering angles.
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