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1 Introduction

In the manufacturing industry, there is an ongoing quest for enhancing efficiency, pre-
cision and cost-effectiveness throughout the manufacturing process. To accomplish this
objective, a series of advanced mathematical models had been developed to gain a deeper
insight into tool vibrations. Not only can these unwanted high-amplitude vibrations
known as ’chatter’, substantially impact surface quality of the product, but it also has
the potential to initiate tool breakages, which can cascade into formidable challenges for
manufacturers, leading to downtime and financial losses for the company. This has been
a challenge fascinating many engineers since the early 20th century and continues to be a
widely studied and researched field [1]. Depending on the mechanical model used, there
are numerical and sometimes analytical solutions available to determine the so-called sta-
bility map, which is a useful tool to identify whether we can expect the phenomenon of
chatter [2]. The concept of varying the spindle speed arises from the necessity of finding
a solution to expand the stable region in the stability map around a given spindle speed
and feed rate [3].

The main objective of this work is to present the stability analysis of both constant
speed turning and the variable speed turning solution, placing a greater emphasis on
examining the periodic variation of the spindle speed. This will be achieved by carrying
out analytical and numerical analysis for stability testing. We will measure the input
data required for the calculations, such as the dynamic properties of the system through
modal analysis and the cutting force characteristic with the help of the force sensor found
in the Department of Applied Mechanics at BME. The varying spindle speed is generated
using a frequency inverter, which allows us to demonstrate the effects of the frequency
and amplitude of the spindle speed variation on the stability of the system.
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2 Analytical stability testing

2.1 Mechanical model
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Figure 2.1: Mechanical model, (a) 2D view, (b) 3D view

In a single-degree-of-freedom model, we observe the lateral deflection of the tool in the
x-direction relative to the workpiece. The occurence of the tool vibration can be initi-
ated from the imperfection of the workpiece surface or any external disturbances. Using
Newtons II. law of motion and the following notations: m for mass, k for stiffness, c for
damping, and the tool position is x, the equation of motion looks as follow:

mẍ+ cẋ+ kx = F (t). (2.1)

where the excitation force F (t) can be determined by the force characteristic of the tool.
In practice, various models exist for the relationship between the cutting force and the
size of the chip to be separated. In our case, we introduce a shifted linear characteristics:

Fc(h,w) = F0 +K1w(K0 + h). (2.2)

When substituted into the equation of motion, taking into account its direction illustrated
in Fig. 2.1a it looks as

F (t) = −Fc(h,w), (2.3)
F (t) = −F0 −K1w(K0 + h(t)). (2.4)

We can see that the force acting on the tool in the x-direction is proportional to the
cutting coefficients K0 and K1, the depth of cut w (also known as the chip width) and the
chip thickness h(t). We also consider a shift in the cutting force with a constant F0 for a
better fitting to the measured data. However, since the chip thickness to be removed at
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a given moment depends on the current tool position and the one revolution earlier, the
excitation force can be formulated with a delayed term. The actual chip thickness h(t)
can be expressed (according to Fig. 2.1a) in the function of the nominal chip thickness
h0, the actual position of the tool x(t), and the position of the tool one revolution earlier
x(t− τ)

h(t) = h0 + x(t) − x(t− τ). (2.5)

where τ is the time delay, which is the time period of the lathe’s spindle with the spindle
speed of Ω in [rad/s]. When using a constant spindle speed τ is also a constant which can
be expressed as

τ = 2π
Ω . (2.6)

Thus the equation of motion can be formulated in the following way, after substituting
Eq. (2.4) and Eq. (2.5) into Eq. (2.1)

mẍ+ cẋ+ kx = −F0 −K1w(K0 + h0 + x(t) − x(t− τ)). (2.7)

Normalizing it with the mass we get

ẍ+ c

m
ẋ+ k

m
x = −F0

m
− K1w

m
(K0 + h0 + x(t) − x(t− τ)). (2.8)

Introducing the dimensionless machining coefficient φ for later convenience

φ = K1w

k
(2.9)

and substituting the parameters with the modal parameters, where ωn is the natural fre-
quency and ζ is the damping factor, we get the following second-order delayed differential
equation (DDE).

ẍ+ 2ζωnẋ+ ω2
nx = −ω2

nxst − ω2
nφ(x(t) − x(t− τ)). (2.10)

Where the static deformation of the tool is

xst = F0 +K1K0w +K1wh0

k
. (2.11)

In the following subsections, we discuss the solutions of this differential equation in time
and frequency domain. The main goal is to determine the stability boundary of the system
in the function of Ω and w machining parameters.

2.2 Solution in time domain

Since the solution to second-order ODEs is well known, here we also seek the solution in a
similar trial function form, but first for more convenience let’s transform the equation of
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motion with a new coordinate y(t), by shifting the solution with a constant value which
is the static deformation of the tool.

y(t) = x(t) + xst. (2.12)

Now the transformed equation of motion looks as follows

ÿ + 2ζωnẏ + ω2
ny = ω2

nφ(y(t− τ) − y(t)). (2.13)

As mentioned earlier, we seek the solution in a similar form to that of second-order ODEs,
which is an exponential trial function

y(t) = Aeλt. (2.14)

Substituting this into Eq. (2.13)

Aλ2eλt + 2ζωnAλeλt + ω2
nAe

λt = ω2
nφ(Aeλ(t−τ) − Aeλt). (2.15)

After some simplification we get

Aeλt(λ2 + 2ζωnλ+ ω2
n − ω2

nφe
−λτ + ω2

nφ) = 0. (2.16)

To obtain a non-trivial solution (A ̸= 0), the terms within parentheses must be equal to
zero

λ2 + 2ζωnλ+ ω2
n − ω2

nφe
−λτ + ω2

nφ = 0. (2.17)

We look for the λ exponent in a complex form, like

λ = σ + ωi. (2.18)

Substituting the previous equation into Eq. (2.17) we get

(σ + ωi)2 + 2ζωn(σ + ωi) + ω2
n − ω2

nφe
−(σ+ωi)τ + ω2

nφ = 0. (2.19)

However, if we are only concerned with the stability boundary, disregarding the fact that
it may not always be advantageous from an engineering perspective, we seek the solution
in a form where

σ = 0. (2.20)

Which means, that the amplitude of the vibration remains constant in time.
After the substitution, and applying Euler’s formula for the term with the imaginary
exponent

e−iωτ = cos(−ωτ) + i sin(−ωτ). (2.21)

We get the following equation which is called the characteristic equation

D(iω) = −ω2 + 2ζωnωi+ ω2
n − ω2

nφ cos(ωτ) + ω2
nφ sin(ωτ)i+ ω2

nφ = 0. (2.22)
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The characteristic equation can only be satisfied if the real and imaginary parts are both
equal to zero

Re(D(iω)) = −ω2 + ω2
n + ω2

nφ− ω2
nφ cos(ωτ) = 0, (2.23)

Im(D(iω)) = 2ζωnω + ω2
nφ sin(ωτ) = 0. (2.24)

Now the goal is to find those pairs of Ω and w for which the system of equations is
satisfied. Remember that from Eq. (2.9) and Eq. (2.6) the φ is the function of w and τ

is the function of Ω. This way by finding these τ − φ pairs, we can also find the Ω − w

pairs. After solving the system of equations for φ and τ we get

φ = 1
2ω2

n

4ζ2ω2
nω

2 + (ω2
n − ω2)2

ω2 − ω2
n

, (2.25)

τ = 2
ω

arctan
(
ω2
n − ω2

2ζωnω

)
+ 2jπ

ω
j = 1, 2, 3 . . . . (2.26)

We can express w and Ω in the function of ω in the following way:

w(ω) = m

2K1

4ζ2ω2
nω

2 + (ω2
n − ω2)2

ω2 − ω2
n

, (2.27)

Ω(ω) = πω

arctan
ω2

n − ω2

2ζωnω

+ jπ

, j = 1, 2, 3 . . . . (2.28)

These Ω − w pairs determine the curves what are known as ’lobes,’ which mark the
points where the roots of the characteristic equation are purely complex. These are also
commonly referred to as transition curves. These transition curves separate the plane into
regions where the number of unstable characteristic roots is constant. With preliminary
parameters shown in Table 2.1 the stability map looks like
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Figure 2.2: Stability lobes the with preliminary parameters seen in Tab. 2.1

Parameter Value Dimension
m 0.1 kg
k 7·106 N/m
c 50 Ns/m

K1 109 N/m2

Table 2.1: Preliminary parameters

Stable domains associated with zero unstable characteristic roots, which are the do-
mains below the lower envelope of the lobes. The number of unstable roots in different
domains can be expressed using the Stepan formulas. However, in machining, any region
containing unstable roots should be avoided. Therefore, the region of interest is the area
below the lower envelope. This can be constructed by finding the intersection points of
adjacent lobes and by plotting the portion of the curve which is below these intersections
shown in Fig. 2.3a. A more practical use of this map is to plot the spindle speed specified
in RPM (Revolutions Per Minute) shown in Fig. 2.3b, which can be calculated as

n = 60 Ω
2π . (2.29)
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(a) Spindle speed in rad/s (b) Spindle speed in RPM

Figure 2.3: Stability map with lower envelope curves highlighted

Each of these lobes correspond to a different j value, as deduced from Eq. (2.28). The
higher the value of j, the more the lobes shift towards the left side. It is important to
mention that each lobe reaches the same minimum w value, which can be easily proven
by taking the derivative of w(ω) with respect to ω and find the local minimum points.

dw

dω
= m

2K1

(8ζ2ω2
nω − 4ω(ω2

n − ω2)) (ω2 − ω2
n) − 2ω (4ζ2ω2

nω
2 + (ω2

n − ω2)2)
(ω2 − ω2

n)2 . (2.30)

The extremum of w(ω) can be where the derivative is zero, this can only be fulfilled when
the numerator in Eq. (2.30) is zero, thus(

8ζ2ω2
nω − 4ω(ω2

n − ω2)
)

(ω2 − ω2
n) − 2ω

(
4ζ2ω2

nω
2 + (ω2

n − ω2)2
)

= 0. (2.31)

After solving the equation above, there are 4 roots for the equation.

ω = ±ωn
√

1 ± 2ζ. (2.32)

Yet our interest lies in the positive roots, let’s call them ω̂

ω̂ = ωn
√

1 ± 2ζ. (2.33)

Which we can substitute into w(ω)

w(ω̂) = m

2K1

4ζ2ω2
n(ωn

√
1 ± 2ζ)2 + (ω2

n − (ωn
√

1 ± 2ζ)2)2

ω2
n − (ωn

√
1 ± 2ζ)2 . (2.34)

Which equation simplifies to the following equation, where ŵ denotes the minimum pos-
itive w values

ŵ = 2m
K
ζω2

n(1 + ζ). (2.35)

So we have proven that the minimum of each lobe takes the same value of w. In research,
it is common to express the quantities in their dimensionless form. To achieve this, we
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use the following method to remove the dimensions, where w̃ and Ω̃ are the dimensionless
chip width and spindle speed.

w̃ = wK1

k
, (2.36)

Ω̃ = Ω
ωn
. (2.37)

Using the new formulas above, the dimensionless feed rate and the dimensionless spindle
speed are

w̃(ω) = m

wk

4ζ2ω2
nω

2 + (ω2
n − ω)2

ω2 − ω2
n

, (2.38)

Ω̃(ω) = 1
ωn

πω

arctan
ω2

n − ω2

2ζωnω

+ jπ

, j = 1, 2, 3 . . . . (2.39)

Which is also presented in Fig. 2.4.
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Figure 2.4: Dimensionless stability map, where black lines denote the stability
boundary and the dashed line is the lover envelope of the curves

Based on the equations, we could see that the position of these lobes greatly depend on
the modal parameters, primarily the damping factor, where even a slight change results
in significant modifications. The effect of the damping factor on the lobes can be seen in
Fig. 2.5.
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Figure 2.5: Effect of damping factor on the stability map

2.3 Solution in frequency domain

While time-domain approach is widely used when solving differential equations, the fre-
quency domain solution offers an alternative perspective. In this approach we analyze the
behaviour of the system as a function of frequency rather than time. It can be advanta-
geous when dealing with systems excited by periodic or harmonic load, as we can gain
sight into the system’s response to different frequency components.
The Fourier transform is an essential tool to analyze the frequency domain solution. The
general formula of the Fourier transform is

F{x(t)} =
∫ ∞

−∞
x(t)e−iωt dt. (2.40)

For a reminder the transformation rules when transforming the sum of two functions, is
just the sum of the transform of the functions individually

F{x(t) + y(t)} = X(ω) + Y (ω). (2.41)

When transforming the derivative of a function, it appears to be a multiplication in the
frequency domain

F{ẋ(t)} = iωX(ω), (2.42)

and last but not least, the transform of a delayed function is

F{x(t− τ)} = X(ω)e−iωτ . (2.43)
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In our example the motion equation is

mẍ(t) + cẋ(t) + kx(t) = F (t). (2.44)

Using the following notations for the Fourier transform of x(t) and F (t).

x(t) Fourier transform−−−−−−−−−−→ X(ω) (2.45)

F (t) Fourier transform−−−−−−−−−−→ Φ(ω) (2.46)

The transformed equation according to the above mentioned transformation rules is

−ω2mX(ω) + iωX(ω) + kX(ω) = Φ(ω). (2.47)

Afterward, the transfer function H(iω) can be derived, which provides the system’s re-
sponse signals for a given frequency excitation:

H(ω) = X(ω)
Φ(ω) . (2.48)

After rearranging Eq. (2.47), will give us the transfer function in the form of

H(ω) = 1
−ω2m+ iωc+ k

. (2.49)

Also this means that according to Eq. (2.48) X(ω) can be expressed as

X(ω) = H(ω)Φ(ω). (2.50)

To get to the same outcome, like in Eq. (2.22), it is necessary to examine Φ(ω) further.
As we know from Eq. (2.7), according to the mechanical model

F (t) = −F0 −K1w(K0 + h0 + x(t) − x(t− τ)). (2.51)

Transforming the equation above while neglecting the static terms, since they serve as a
constant shift in the solution and analysing only y(t), will give us

Φ(ω) = Y (ω)K1w(e−iωτ − 1). (2.52)

Substituting this into Eq. (2.48):

Y (ω) = H(ω)Y (ω)K1w(e−iωτ − 1). (2.53)

Rearranging the equation above will result

Y (ω)(H(ω)K1w(e−iωτ − 1) − 1) = 0. (2.54)

We are looking for a solution where the Y (ω) term is not zero. So our equation satisfies
when

H(ω)K1w(e−iωτ − 1) − 1 = 0. (2.55)
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This step is analogous to when we were looking for its non-trivial solution in the time
domain in Eq. (2.16). The real and the imaginary part of the above equation can be used
directly in the Multi-Dimensional Bisection Method (MDBM) [4] to find the stability lobes
numerically based on the directly measured transfer function. This method is applied later
in the experiments to check the validity of the fitted analytical models. Substituting the
H(ω) and rearranging the equation, we get to a simplified form:

−ω2 + iωc

m
+ k

m
− K1w

m
(e−iωτ − 1) = 0. (2.56)

Using the modal parameters we arrive at the following characteristic equation, whose
solution is entirely equivalent of Eq. (2.22).

−ω2 + 2ζωnωi+ ω2
n − ω2

nφ cos(ωτ) + ω2
nφ sin(ωτ)i+ ω2

nφ = 0. (2.57)

From this point, the derivation of the stability boundary is exactly the same as in the
time-domain case, as detailed in the previous subsection earlier after Eq. (2.22).
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3 Numerical stability testing

The above-mentioned methods can be used for constant spindle speed turnings. For the
spindle speed variation, it is necessary to use a different method. A well-known method
for such a periodic system is the Multi-Frequency Method [5] in frequency domain. In
the time domain one of the widely used method is the semi-discretization method [6] or
the Implicit Subspace Iteration Method [7]

3.1 Implicit subspace iteration method

Prior to introducing the ISIM for stability analysis, it is crucial to commence with the
foundational method known as the semi-discretization method (SDM). This method serves
as a fundamental and efficient approach for stability analysis. In semi-discretization a
linear mapping can be defined between two states corresponding to two neighbouring
time steps in a way like

zi+1 = Gizi. (3.1)

Where Gi denotes the coefficient matrix connecting the two states zi and zi+1, which are
the vectors of the discretized states sampled of the continuous state-space of the delayed
interval at the discrete time intervals at subsequent time instants. In our case, the zi
vectors contain the position and the velocity of the tool, thereby describing the system’s
state at the given moment.
If these linear mappings are changed by simple multiplications over the time-periodicity,
a discrete map can be defined between the initial delay-discrete state z0 and the state zτ
with one period later:

zτ = Gn . . .G2G1G0z0 = Φz0. (3.2)

where Φ is the transition matrix, a finite approximation of the infinite dimensional mon-
odromy operator. This way the stability analysis is reduced to a problem where we have
to find whether absolute values of all the eigenvalues of Φ are less than one:

|µi| < 1. (3.3)

To construct the whole Φ matrix, the SDM method uses the above-mentioned matrix
multiplication with some further approximation. To determine the zT vector for different
initial conditions we used a 4th order Runge-Kutta method (RK4). This can be rewritten
in a form where we collect all the z0 and zT vectors in the columns of Z0 and ZT matrices:

ZT = ΦZ0. (3.4)
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Figure 3.1: The graphical illustration of the semi-discretization method

If we choose theZ0 matrix to be the identity matrix, the problem significantly simplifies,
because in this case

ZT = Φ. (3.5)

In order check the stability criteria in Eq. (3.3), we only have to find the eigenvalue of Φ
with the largest absolute value and check that its magnitude is less then one, because in
such cases, the absolute value of all the other eigenvalues are smaller than one.

|µn| < . . . < |µ2| < |µ1| < 1. (3.6)

With the ISIM [7], it is possible to determine the stability without calculating the whole
Φ matrix. To better understand this method, consider the general eigenvalue problem

ΦS = Sµ. (3.7)

Φ being an n×n square matrix, µ is a diagonal matrix of size n×n of the eigenvalues of Φ
and S of size n×n containing the eigenvectors of Φ in its columns. The first Ns eigenvalues
of the largest absolute value can be iteratively determined (Ns < n). Let assume that Sj
is an n × Ns size matrix of the first Ns approximated dominant eigenvectors of Φ in its
columns, after the jth iteration step. With the following operation the new set of Vj with
size of n×Ns can be calculated

Vj = ΦSj. (3.8)

After sufficient iteration steps, Sj will converge to the dominant eigenvectors and the
basis formed by the column vectors in both Sj and Vj span approximately the same
space. Therefore, an approximate matrix Hj of size Ns × Ns connecting Sj and Vj can
be obtained using a pseudo-inverse calculation from the relation

Vj ≈ SjHj (3.9)
↓

Hj = (STj Sj)−1STj Vj. (3.10)

13



where matrix Hj represents a subspace of size Ns × Ns of the original space of matrix
Φ of size n × n. After several iteration steps, the eigenvalues of Hj provide a good
approximation for the dominant eigenvalues of Φ. This way, it is enough to compute the
eigenvalues of a significantly reduced Ns ×Ns sized matrix Hj instead of the large n× n

sized matrix Φ.

In the case of a known matrix Φ, the iteration can be initiated from a random array
of S0, and Eq. (3.8) and Eq. (3.10) can be used to calculate the approximation of the
dominant eigenvectors after one iteration step. Normalizing the result:

Sj+1 = VjAj, (3.11)

where Aj is a matrix containing the eigenvectors of Hj, the same formula can be applied
again and again until convergence of the dominant eigenvectors is achieved.

The sizes of the previously mentioned Z0 and ZT matrices depend on the resolution of
the time ∆t. Therefore if

n = τ

∆t (3.12)

it implies that Z0, ZT and Φ are sizes of 2n× 2n. As we seen in Eq. (2.6) a lower spindle
speed leads to a higher τ which leads to a greater size matrix. Despite the fact that with
the iteration seen in Eq. (3.10) it is available to determine the largest absolute value
eigenvalue of a larger matrix of Φ, the challenge of acquiring the complete Φ matrix in
a short time remains. This is where the ISIM proves to be advantageous, because it is
also possible to determine the matrix Hj without calculating the whole Φ matrix, only
the mapping of Sj to Vj is needed, which can be performed by numerical RK simulation.
The vectors in the columns of Vj can be calculated directly from the equation of motion
of the system. With the combination of ISIM and the SDM the iteration looks as follow

Sj
Time integration−−−−−−−−−→ Vj

Hj = (STj Sj)−1STj Vj (3.13)
Sj+1 = VjAjµ

−1
j ,

where the interaction is starting from a random S0. Note that a normalization has been
included using the eigenvalues of Hj in the diagonals of µj at the final step of each
iteration. This step aims to mitigate the potential numerical errors that may appear if
the values in matrix S increase rapidly.
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3.2 Constant spindle speed

In order to generate the stability map of machining with a Constant Spindle Speed (CSS)
using the ISIM we need a numerical solver, that finds the solutions of the equation of
motion for a given set of initial conditions. To accomplish this take a look again at the
equation of motion seen in Eq. (2.10)

ẍ+ 2ζωnẋ+ ω2
nx = −ω2

nxst − ω2
nφ(x(t) − x(t− τ)). (3.14)

For this DDE the simplest and one of the most reliable solver is a 4th-order Runge-Kutta
method, which requires a transformation of the second-order DDE to a first order system
of differential equations. This conversion can be achieved by reformulating Eq. (3.14)
with the Cauchy transform, thereby introducing the new coordinates:

ψ ≡

ψ1

ψ2

 =
x
ẋ

 . (3.15)

And according to the Cauchy transformation Eq. (3.14) can be reformulated as

ψ̇ = f(ψ, t). (3.16)

Which means the derivative of the new coordinates are

ψ̇ =
ψ̇1

ψ̇2

 =
 ψ2(t)
ω2
nφψ1(t− τ) − ω2

nxst − 2ζωnψ2(t) − (ω2
n + ω2

nφ)ψ1(t)

 . (3.17)

Now that we have our system of 1th order differential equations (note, that ψ1(t − τ) is
treated as an external excitation known by the previous values of the simulation), we can
apply the Runge-Kutta method, which is briefly demonstrated. Suppose we are given an
ordinary differential equation with initial conditions below:

ẏ = f(y, t), (3.18)
y(t0) = y0. (3.19)

According to the numerical method, the (i+ 1)th term of the solution is

yi+1 = yi + h

6 (k1 + 2k2 + 2k3 + k4). (3.20)

At the time of

ti+1 = ti + ∆t. (3.21)

At the time of ∆t, where the kj values are:

k1 = f(ti, yi),

k2 = f

(
ti + ∆t

2 , yi + ∆tk1

2

)
,

k3 = f

(
ti + ∆t

2 , yi + ∆tk2

2

)
,

k4 = f(ti + ∆t, yi + ∆tk3).

(3.22)
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This method can be expanded to a system of ODEs. By reformulating Eq. (3.17), we get
the following equationψ1,i+1

ψ2,i+1

 =
ψ1,i

ψ2,i

+ h

6

kψ1
1 + 2kψ1

2 + 2kψ1
3 + kψ1

4

kψ2
1 + 2kψ2

2 + 2kψ2
3 + kψ2

4

 . (3.23)

Where the upper indices ψ1 and ψ2 are indicating which coordinate the given ki term
corresponds to. We can obtain a more programmable form by rewriting the equation
above to

ti+1 = ti + ∆t,

ψi+1 = ψi + ∆t
6 (k1 + 2k2 + 2k3 + k4),

k1 = f(ti, ψ1, ψ2),

k2 = f(ti + ∆t
2 ,ψi + ∆t

2 k1),

k3 = f(ti + ∆t
2 ,ψi + ∆t

2 k2),

k4 = f(ti + ∆t,ψi + ∆tk3).

(3.24)

Where the vector f looks as

f =
 ψ2

ω2
nφψ1(t− τ) − ω2

nxst − 2ζωnψ2 − (ω2
n + ω2

nφ)ψ1

 . (3.25)

However, since f contains a delayed term, ψ1(t − τ), it means that we need a ψ1 value
which was taken τ time earlier. If τ is a multiple of ∆t time step, then it can be written
like

τ = l · ∆t. (3.26)

In this case, we only have to replace the ψ1(t − τ) term with the ψ1 term with l steps
before the current ith time step. Thus:

if l ∈ N+.

f =
 ψ2

ω2
nφψ1,i−l − ω2

nxst − 2ζωnψ2 − (ω2
n + ω2

nφ)ψ1

 . (3.27)

However, if this l is not a whole number, then we can approximately obtain this delayed
term through interpolation between the two adjacent known values at different time in-
stances. Although linear interpolation is just an approximation for ψ1(t − τ), with a
sufficiently small ∆t time step, the error is negligible, however, it might increase the error
rate of the Runge-Kutta method. In this case, let this delayed term be denoted as ψ1,τ

if l ∈ R+,
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f =
 ψ2

ω2
nφψ1,τ − ω2

nxst − 2ζωnψ2 − (ω2
n + ω2

nφ)ψ1

 . (3.28)

For the linear interpolation, we need to find the two adjacent time value, for this τ . Let
a and b be the neighbouring indices of this intermediate time-delayed term

ti−b < ti−τ < ti−a (a, b) ∈ N+, (3.29)
ti − b · ∆t < ti − l · ∆t < ti − a · ∆t. (3.30)

Which simplifies to

a < l < b, (3.31)

where we choose a and b to be whole numbers:

a =
⌊
τ

∆t

⌋
, (3.32)

b =
⌈
τ

∆t

⌉
. (3.33)

So the linear interpolation for the time delayed term in between adjacent know values,
looks like the following

ψ1,τ = l − a

b− a
(ψ1,i−b − ψ1,i−a) + ψ1,i−a. (3.34)

Now that we are familiar with the formulation using the Runge-Kutta method and
have addressed the time delay component on how to handle it, we only need to select
the appropriate time discretization ∆t and the simulation length T . For constant spindle
speed we choose this simulation length to be the period of the spindle which is τ . This
means we are simulating one full revolution of the spindle. In order to make the simulation
reflect reality and avoid convergence problems, we set the time step based on the shortest
period present in the system. The common value in practice for ∆t is a number lower than
the 1

20 -th of this period. In the case of a constant spindle speed, there are two periods
present TΩ and Tn, where

TΩ = 2π
Ω Tn = 2π

ωn
. (3.35)

So the time step depends on both of these periods

∆t ≤ 1
20 min (TΩ, Tn) . (3.36)

Summarizing the theory introduced in the previous chapter combined with the numer-
ical solver detailed above, the stability analysis for a given Ω and w pair starts by taking
a random S0 matrix with a size of 2n×Ns that has the states of the initial conditions (n
conditions for position and n for velocity so a total amount of 2n conditions).

S0 =


S01,1 S01,2 . . . S01,Ns... ... . . . ...
S02n,1 S02n,2 . . . S02n,Ns

 . (3.37)
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Then, using our numerical solver, we produce the solution of the equation of motion for
the given initial conditions given by the columns of matrix S0, whose solutions are placed
in the corresponding column in matrix V0

V0 =


V01,1 V01,2 . . . V01,Ns... ... . . . ...
V02n,1 V02n,2 . . . V02n,Ns

 . (3.38)

Then the H0 matrix can be determined by the following procedure

H0 = (ST0 S0)−1ST0 V0. (3.39)

And a new set of S1 matrix can be calculated

S1 = V0A0µ
−1
0 . (3.40)

Iterating through this procedure, commencing from the step as described after Eq. (3.37)
but this time with the updated matrix of S1, after an adequate number of iterations niter,
the total count of Runge-Kutta runs performed nRK , which is the most computationally
demanding part in the iteration process, amounts to

nRK = niter ·Ns. (3.41)

Comparing this method to calculating the whole Φ matrix with a size of 2n × 2n the
necessary count of Runge-Kutta runs is expressed as

nRK = 2n. (3.42)

So as long as we adhere the following condition

niter ·Ns < 2n. (3.43)

we can reduce the computational time, although this comes at the cost of accuracy. With
the preliminary parameters seen in Tab. 2.1, a step size of ∆t = Tn

25 the following stability
maps had been created with a resolution of 100 × 100, with the iteration parameters of
niter = 7 and Ns = 7. The range was limited to 1700 − 2500 RPM.
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Figure 3.2: Stability map with ISIM

Taking the point with a spindle speed of 2000 RPM the size of the Φ matrix is

2n = 1998. (3.44)

So with the chosen niter and Ns number the amount of Runge-Kutta runs at this point is

niter ·Ns = 49, (3.45)

which is significantly less than the 1998 to be calculated with the semi-discretization
method.

The effect of the subspace size and the number of iterations used was analyzed as shown
in Fig. 3.3 with a resolution of a 150 × 150 grid.
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(a) niter=6, Ns=6 (b) niter=6, Ns=8 (c) niter=6, Ns=10

(d) niter=8, Ns=6 (e) niter=8, Ns=8 (f) niter=8, Ns=10

(g) niter=10, Ns=6 (h) niter=10, Ns=8 (i) niter=10, Ns=10

Figure 3.3: Impact of iteration and subspace size on stability maps

It is clearly visible that the applied methods proved the stability lobe structure well
enough with a significantly small computational cost. However, due to some numerical
problems some small noise can be found even for the Fig. 3.3 (i) panel, but it can be
easily disregarded form the results.

3.3 Spindle speed variation

Among the several methods the researches have made to avoid chatter one of them is
the Spindle Speed Variation (SSV). This method is used in various machining operations
such as drilling, milling and especially in turning. As detailed in the previous sections
earlier, the spindle speed plays a pivotal role in directly influencing the time delay, which
is responsible for the regeneration of the cutting force and, thus, the occurrence of chatter
during the machining process. By manipulating the spindle speed over time, the alignment
of the cutting forces with the natural frequencies of the tool-workpiece system can be
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prevented, and by doing the chatter vibration pattern can be disrupted. In an SSV
operation, the shape of the function describing the spindle speed can vary, typically a
triangle or a sinusoidal function. In our case, only sinusoidal will be used, so the rotational
speed can be described as

n(t) ≡ n0 + n1 sin
(2π
T
t
)
. (3.46)

From the equation above two basic parameters of the SSV [3] can be defined:

RVF ≡ 60
n0T

(3.47)

RVA ≡ n1

n0
. (3.48)

Where the RVF number shows the ratio of the sinusoidal function period to the mean
period τ0, and the RVA number shows the ratio of the sinusoidal function amplitude to the
mean spindle speed n0. Expressing Eq. (3.46) in radians per second for later convenience
we get

Ω(t) = Ω0 + Ω1 sin
(2π
T
t
)
. (3.49)

Also we would like to define this Ω(t) function in a way it ensures that during one sine
wave of the spindle speed only complete amount of turns have been made by the spindle.
To obtain this we should examine the change in the angular position of work piece between
two times t1 and t2, that can be calculated as

∆φ = 2π
∫ t2

t1
Ω(t) dt. (3.50)

With our function in Eq. (3.49) the integration can be expressed as

∆φ =
∫ t2

t1
Ω0 + Ω1 sin

(2π
T
t
)

dt. (3.51)

Where we set the integration limit to t1 = 0 and t2 = kτ0, meaning we are integrating
through k mean period:

k2π =
∫ kτ0

0
Ω0 + Ω1 sin

(2π
T
t
)

dt, k ∈ N+. (3.52)

By solving the integral and rearranging the equation we get

T

τ0
= k, k ∈ N+, (3.53)

so by taking the value of T as a multiple of the kth value of τ0, we can achieve complete
sinusoidal wave within k rotations of the spindle. Expressing this condition with our base
parameter RVF and k:

RVF = 1
k
, (3.54)
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this parameter can be easily adjusted to any desired value of k.

The adjustments to the Runge-Kutta method must begin with by computing the time
delay for each discrete time in the simulation. Subsequently, we can directly use this τ
value and substitute it into Eq. (3.34) at each timestep. This approach guarantees that
for any given τ value a solution can be obtained through linear interpolation. An other
modification that must be mentioned is the simulation length. Note that we assume that
the feed rate is also varied; thus, h0 is kept constant, however, later in the test, the feed
velocity was constant. We consider its effect to be negligible. In the following figure the
effect of the SSV implementation can be seen, as it shifts the lobes higher and increasing
the stable region. In the following figure (Fig. 3.4) the RVF value was set to a constant
0.2 for each simulation while the RVA value was increased from 0.02-0.06 with a step size
of 0.01.

1700 1800 1900 2000 2100 2200 2300 2400 2500
0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.4: Effect of SSV implementation on stability lobes compared to the CSS
turning (black). With an RVF value of 0.2. Above the black line, the associated RVA

values are: 0.02, 0.03, 0.04, 0.05, 0.06.
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3.4 Spindle speed function optimization

In preparation for the stability testing through measurement, we conducted experiments
involving various RVA and RVF values by using the MDBM combined with the ISIM,
this way reducing the computational time even more. An important factor was that with
the frequency inverter we used, we could only operate the machine in limited ranges.
Therefore, we cannot set the RVF value too high, nor can we use a large RVA value.

The following figure shows the effect of the RVA and RVF parameters on the stability
lobes.
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(a) RVA=0.06, RVF=0.25
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(b) RVA=0.06, RVF=0.2
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(c) RVA=0.04, RVF=0.25
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(d) RVA=0.04, RVF=0.2
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(e) RVA=0.02, RVF=0.25
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(f) RVA=0.02, RVF=0.2

Figure 3.5: Impact of RVA and RVF parameters on the stability map. With the black
dashed line representing the lower boundary of the CSS lobes and the black continuous

line representing the SSV lobes
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4 Stability testing with measurements

4.1 Cutting force characteristic

It was necessary to determine the forces acting on the tool tip that occur at different
depths of cut and chip thickness during the machining. Understanding this so-called force
characteristic of the tool is essential for determining the stability maps, as it establishes
the connection between the depth of cut and the constantly changing chip thickness
caused by the vibrating tool and the excitation force. This force characteristic is often
described as a function Fc(w, h) with coefficients called ’cutting coefficients’, that must
be determined by measurements. The type of this curve is not generally specified but
needs to be empirically selected to best fit the measurement points.

4.1.1 Measurement

To carry out the measurement, the following approach was implemented. We placed and
secured the lathe machine onto the table of the NCT milling machining with clamping
elements. Then we measured the deviation of the lathe’s axis from the global x-axis of
the NC machine with the help of a laser distance meter. We then fine-tuned the lathe’s
position until the deviation became sufficiently small.

After positioning the lathe on the table, we attached the Kistler dynamometer device
upside down next to the spindle of the NC machine, then we mounted the tool holder on
the dynamometer directly with the tool attached to it. With this measurement setup, we
were able to monitor the forces, while it was possible to examine various feed rates by
moving the table in the negative x-direction and set the desired depth of cut by positioning
the tool in the z-direction. The nominal rotational speed of the workpiece was set to
n = 1700 RPM, also it was monitored during the measurements, with a reflective sensor
mounted above the lathe chuck. The sensor were developed and used in [8]. The schematic
model of this measurement setup can be seen on Fig. 4.1 .
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Kistler dynamometer

Tool

Reflective sensor

Workpiece

NC table

Tool holder

Figure 4.1: Measurement setup for force characteristic analysis

With the list of the used tools below and the technical data seen in Tab. 4.2, Tab. 4.1
and 4.3.

(a) (b)

(c) (d)

Figure 4.2: Tools of force characteristic measurement
(a) Processing module, (b) Kistler dynamometer, (c) NI DAQ module, (d) NCT

machining center
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National Instruments 9234 data acquisition module
Signal range −5 - +5 V
Number of input channels 4 pcs
maximum sampling frequency 51.2 Hz
Operating temperature −40 - +70 °C

Table 4.1: National Instruments 9234 data acquisition module technical data

NCT EMR-610MS 3-axis CNC machining center
Workspace

Table size 800x450 mm
Number x Size x Distance of T-slots 3x18x100 mm
Table load capacity 400 kg
Spindle nose to table distance 125 - 635 mm
Spindle axis to column distance 535 mm
Positioning accuracy < 0.02 mm
Repeatability < 0.008 mm

Axes
X / Y / Z wire type and number Linear 2 / 2 / 2
X / Y / Z carriage number 4/4/4
X stroke 610 mm
Y stroke 460 mm
Z stroke 510 mm
X / Y / Z axis max. rapid traverse speed 30 / 30 / 24 MPP
Maximum feed rate 10 MPP

Table 4.2: NCT EMR-610MS 3-axis CNC machining center technical data
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Kistler dynamometer
Type 9129AA
ID number 18007216
Manufacturer Kistler
Maximum measuring range 10 kN
Measuring range −10 - +10 kN
Measuring range Fx −10 - +10 kN
Measuring range Fy −10 - +10 kN
Measuring range Mx −500 - +500 Nm
Measuring range My −500 - +500 Nm
Fx sensitivity -8 pC/N
Fy sensitivity -4.1 pC/N
Fz sensitivity -8 pC/N
Weight 3.2 kg
Operating temperature 0 - +70 °C
Natural frequency, fn(x) 3.5 kHz
Natural frequency, fn(y) 4.5 kHz
Natural frequency, fn(z) 3.5 kHz

Table 4.3: Kistler dynamometer technical data

During the measurement, we first set a cutting depth, and then we divided the clamped
workpiece into smaller sections in the x-direction, then we moved along these sections
at different feed rates. We repeated this measurement with various cutting depths and
adjusted the feed rate increments as necessary to achieve a better fit of the cutting force
function. To perform these operations, we used G-codes which were input into the CNC
machine. The following figures display the outcomes of the force measurement, that have
been evaluated by a moving average in order to diminish noise and achieve a smoother
signal.
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Figure 4.3: Force measurement signal with incrementally increasing feed rates from
10-160 µm with a step size of 10 µm. With the blue, red, yellow colors corresponding to

the x, y, z directions in order.
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Figure 4.4: The measured raw data of the x component of the force (blue). The
selected region for the cutting force fitting is denoted by black lines.

A 0.5 second pause in the feed was implemented between every feed rate changes in
order to distinctly separate the data corresponding to different feed rates on the curves.
These values were averaged for each feed rate and was compensated with the static noise of
the force sensor, which is observable at the beginning and at the end of each measurement.
The desired feed rate for a given nominal chip thickness was calculated according to the
following equation

F = h · n. (4.1)

Where the chip thickness was set to a value of 10-160 µm with an increment of 10 µm. By
visualizing the cutting force in 3 dimensions as a function of the chip thickness and the chip
width, the cutting force can be estimated for any values of h and w through arbitrary
surface fitting of Fc(h,w). Based on the arrangement of the measurement points, the
selected force characteristic is a shifted linear characteristics both in w and h, with the
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coefficients of F0, K0 and K1

Fc(h,w) = F0 +K1w(K0 + h). (4.2)

Subsequently we applied the least square method and fitted the aforementioned surface to
the measurement points, only selecting those with a h value below 80 µm, because we are
only interested in the 0-80 µm region. The coefficient of determination was R2 = 0.9944,
which is close to the optimal value of 1. Therefore the fit is considered acceptable, and
we find the fitted coefficients reliable for further calculations.

(a) (b)

Figure 4.5: Force characteristic measurement data (a) measured points, (b) fitted surface

Thus the force characteristic with the calculated coefficients is

Fc(h,w) = −2.9235 + 431.25w(0.108 + h). (4.3)

Where w and h are measured in in millimeters, and Fc stands for force in Newtons and
the coefficients are:

F0 = −2.9235 N,
K0 = 0.108 mm,
K1 = 431.25 MPa.
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4.2 Dynamic properties of the system

Understanding the dynamic properties of the system is crucial for both analytical and
numerical stability testing, as these require the system’s modal parameters such as the
natural frequency, relative damping ratio and the stiffness of the tool. These parameters
can be determined utilizing the modern methods of modal analysis, specifically the Fast
Fourier Transform (FFT). This method is widely used in music, science, mathematics and
specifically in engineering applications as it revolutionized signal processing and analysis
in the mid-20th century by Cooley and Tukey. The foundational concept of the FFT is the
Discrete Fourier Transform (DFT) that converts a signal from its original domain to the
frequency domain and vice versa, enabling analysis based on the frequency components of
a system. However the computational complexity of the DFT limited its application for
real-time implementations. By advancing from the DFT to the FFT the computational
time was drastically reduced. With the help of the FFT we were be able to generate the
Frequency Response Function (FFT) of the tool detailed in the next subchapter.

F (t)m

FFT

Φ(omega)

X(omega)

F (t)

F (t) ẍ(t)

Figure 4.6: Schematic sketch of modal analysis

4.2.1 Measurement

The following setup was used in order to determine the dynamic properties. A piezoelec-
tric accelerometer was attached on the edge of the tool and connected to a National In-
struments Data Acquisition (DAQ) device. The excitation was performed using a modal
hammer, which was also connected to the DAQ. Then the DAQ was connected to the
computer which was the processing module where the analysis was done in MATLAB
environment.
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Processing module

Accelerometer

Modal hammer

Tool

NI DAQ module

Figure 4.7: Measurement setup of modal analysis

At the initial setup we clamped the tool into the tool holder, which was directly po-
sitioned to the Kistler dynamometer (Fig. 4.8a). However with this setup, the system
proved to be overly rigid therefore no successful stability analysis could performed. For
this reason we changed the original setup and in between the tool and the dynamometer
we inserted a more compliant tool holder element (Fig. 4.8b). This allowed us to oper-
ate within a more favorable stiffness/damping range which resulted in successful stability
testing detailed in Chapter 4.3. The following results will only include the measurements
done using the new setup.

(a) (b)

Figure 4.8: (a) Initial setup with the tool directly positioned on the Kistler, (b) new
setup with a compliant tool holder inserted in between the tool and the Kistler

The measurement tools that were used can be seen in the following figures, with their
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technical data in 4.5, 4.4 and 4.1.

(a) (b)

(c) (d)

Figure 4.9: Tools of modal analysis
(a) Processing module, (b) NI DAQ modul, (c) accelerometer, (d) modal hammer

PCB Modally Tuned ICP Impact Hammer
Sensitivity (±15%) 2.25 mV/N
Measurement range ±2224 N
Resonant frequency ≥ 22 kHz
Nonlinearity ≤ 1%
Excitation voltage 20-30 VDC

Table 4.4: PCB Impact Hammer data

Miniature Triaxial ICP Accelerometer technical data
Sensitivity (±20%) 5 mV/g
Measurement range ±1000 g pK
Resonant frequency ≥ 50 kHz
Nonlinearity ≤ 1%
Excitation voltage 28-30 VDC

Table 4.5: PCB accelerometer technical data

During the excitation, we aimed to provide an impulse-like excitation as much as pos-
sible, while we observed the acceleration signal of the accelerometer and the force signal
of the hammer. After applying the FFT on the measured time signal, we were able to
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generate the Frequency Response Function (FRF) of the tool, which will be noted as Hacc
i,j ,

with the indices i referring to measuring in the i-direction and j referring to exciting in
j-direction, and acc meaning the transfer function is an accelerance function

Hacc
i,j (iω) = Ai(iω)

Φj(iω) (4.4)

with Ai being the transformed acceleration signal and Φj being the transformed force
signal. In In Fig. 4.10 we can see the accelerance functions of different excitation and
measurement directions where the rows of the subfigures displacements corresponds to
the different measurement directions (x,y.z) while the columns corresponds to various
excitation directions.
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Figure 4.10: Accelerance functions of different measurment and exctitation directions

Since we are using a 1 DoF model, we specifically focusing on the x-directional response
for an x-directional excitation, the relevant figure required is Fig. 4.10a. The 1 DoF
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approximation is supported by the fact that the FRF in the x-x is at least 5 times larger
than in any other components. From the positions of the peaks of the accelerance function,
the natural frequencies can be determined, and from the height of these peaks, the most
dominant natural frequencies can be identified. The mobility and receptance functions
can be easily calculated from the accelerance functions as these originate from the FFT
of the velocity and position of the tool and as we seen in Eq. (2.42) an integration in time
domain turns into a division in the frequency domain so:

Accelerance
·

1

iω−−−−→ Mobility
·

1

iω−−−−→ Receptance. (4.5)
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Figure 4.11: |Hx,x| (a) accelerance, (b) mobility, (c) receptance functions

By fitting a 1 DoF model to the first dominant peak on the receptance plot, we were
able to determine the modal parameters of the system. The shape of the fitted curve we
are using is similar to the resonance curve, but it requires a division with the stiffness

f(fn, ζ, k) = 1
k

1√√√√√√
1 −

 f

fn

2


2

+ 4ζ2

 f

fn

2
(4.6)

Then applying the fit (Fig. 4.12) to the generated receptance curve with a coefficient of
determination of R2 = 0.9794 the fit is considered acceptable and the modal parameters
can be seen in Tab. 4.6.

Parameter Value Dimension
fn 226.17 Hz
ζ 0.0142 1
m 2.9214 kg
k 5.8995·106 N/m
c 40.4073 Ns/m

Table 4.6: Fitted and calculated modal parameters from the measured data
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Figure 4.12: (a) Measured receptance plot in orange with fitted 1 DoF curve in green
(b) zoomed view of fitted curve

The Real and Imaginary part of the measured and fitted curve can also be plotted and
compared in the next figures.
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Figure 4.13: Measured (orange) and fitted (green) receptance functions. (a) Real part
of receptance function, (b) imaginary part of receptance function

4.3 Stability testing

4.3.1 Measurement setup

The measurement setup necessary for stability testing was similar as seen in Chapter 4.
Initially, we set a relatively small depth of cut and a 50 µm chip thickness, which we tried
to maintain during the measurement by calculating the necessary feed rate based on the
formula seen in Eq. (4.1). Each measurement was done on a approximately 10 mm long
section on the workpiece. After the data collection we needed a method to determine
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whether or not the tool lost its stability. To do this, we analyzed the spectrum of the
measured force signal, where the peak amplitude corresponds to the chatter frequency
of the tool. After a few test measurements, we established an amplitude level that we
considered a stability threshold which was 20 m/s2.

4.3.2 Constant spindle speed

Starting the measurement with constant spindle speed turning the measured points can
be compared to the analytical solution calculated by the directly measured FRF and by
the fitted modal parameters, together with the fitted force coefficients. This comparison
can be seen in Fig. 4.14. It is visible that the stability lobes do not cover the stable
and unstable points determined by the measurement; the reason for this might lies in the
inaccurate depiction of the force characteristic.

Figure 4.14: Comparison of analytical (black), D-separation method (blue) and
measurement results with K1 = 431.25 MPa cutting coefficient. Green and red scatters

representing the stable and unstable turning.

We can see that the D-curve method approximately corresponds to the map calculated
analytically. A possible reason for the shift of the D-curve solution from the analytical
could be the use of a 1 DoF model and the imperfect fitting of the receptance function.

By tuning the force coefficients, more precisely the K1 value which becomes apparent
in the time-varying excitation force, we can align the curve to fit the measurement points
best. The best fit was achieved at K1 = 1000 MPa.

38



Figure 4.15: Comparison of analytical (black), D-separation method (blue) and
measurement results with K1 = 1000 MPa cutting coefficient. Green and red scatters

representing the stable and unstable turning.

Note that the previous K1 value was 431.25 MPa. Comparing this to the updated
K1 = 1000 MPa is a 232 % increase, which would require the reevaluation of the force
characteristic parameters. The main reason behind this drastic difference could be a break-
age of the tool at a certain stage during the force characteristic measurement, prompting
a replacement of the lathe tool potentially changing the cutting coefficients. Furthermore,
the orientation of the tool was also changed, which might have an influence too.

4.3.3 Periodic spindle speed (SSV)

We followed the measurement process by implementing the SSV, with the help of the
frequency inverter [8]. We set the [RVF, RVA] values to [0.1, 0.08] and [0.2,0.04], however,
the spindle cannot hold the desired spindle speed due to its dynamics [8], thus the realized
values are [0.0967, 0.0659] and [0.1912, 0.0285] as an average of the measured values. At
these two selected SSV, we searched for the stability along the w parameter. In Fig.
4.16 and Fig. 4.17 the horizontal axis represents, the nominal spindle speed, while in the
measurement points, the variation level is also represented by a horizontal line segment.
It the first case (Fig. 4.16) with faster variation and smaller amplitude, we can find the
significantly increased stability limit, which were well predicted by the measured cutting
force model (K1 = 431.25 MPa). There is a slight underestimation by the model. In
the second case (Fig. 4.17), we could not find the stability limit. All the selected points
were stable. We could not further increase the chip width due to the power limitation
of the spindle. Still, if we assume a slight underestimation of the predicted stability by
the model with K1 = 431.25 MPa, then the measurements points confirms the increased
predicted stability limit.
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Figure 4.16: Stability map with the implementation of SSV. The numerical prediction
based on the ISIM for RVA = 0.04, RVF = 0.2 and with force coefficient (blue)

K1 = 1000 MPa and (black) K1 = 431.25 MPa
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Figure 4.17: Stability map with the implementation of SSV. The numerical prediction
based on the ISIM for RVA = 0.08, RVF = 0.1 and with force coefficient (blue)

K1 = 1000 MPa and (black) K1 = 431.25 MPa

The applied SSV were really successful in increasing the stability limit. Even with
only 10% of spindle speed variation, we could at least quadruple (0.7/0.15) the maximal
achievable stable chip width at the selected spindle speed.

40



5 Summary

In the current work, we focused on mitigating the unwanted vibrations known as ’chatter’
and providing a comprehensive analysis of stability with both constant and variable speed
turning with a specific emphasis on varying the spindle speed periodically. This was a
very complex task: mechanical and mathematical modelling were assisted with state-of-
the-art numerical simulations for stability analysis in frequency and time domain. The
results were confirmed by detailed measurements for which we had to create viable test
equipment; we had to perform modal analysis and extract modal parameters. Finally, we
confirmed the stability chart for CSS with high accuracy and also validated the stabilizing
effect of the SSV.

As a first step, we conducted analytical stability testing, utilizing a 1-degree-of-freedom
mechanical model and deriving it in both frequency and time domains. In frequency do-
main, we implemented the D-separation method based on the modal parameter and based
on the measured FRF. In the time domain numerical stability testing, we employed the
combination of two advanced methods, the semi-discretization method and the implicit
subspace iteration method which based on direct simulation via RK4 method. These nu-
merical methods were implemented for both constant and variable speed turning, allowing
us to evaluate the efficiency of the spindle speed variation technique.

Moving on to the measurement side, we determined the force characteristic of the tool by
creating a unique measurement environment by combining a lathe machine with the NCT
machine available at the Department of Applied Mechanics at BME. We also assessed
the dynamic properties of the system across multiple degrees of freedom using modern
methods of modal analysis. This measurement confirmed that we made appropriate sim-
plifications in our mechanical model, by setting up our 1-degree-of-freedom model in the
most critical direction.

With another numerical method, the multi-dimensional bisection method, we were able
to calculate the stability lobes of the tool directly from transfer functions computed from
the transfer function measurement data. This method was used during the validation of
constant spindle speed turning. The stability limit predicted based on the determined
modal data and force characteristics provide a sufficient approximation of the measured
stability limit. However, with a fitted simple linear force characteristic, we got an almost
perfect match between the calculation and the measurements.

Subsequently, stability testing were performed turning with spindle speed variation and
the results were compared with every stability testing methods. The prediction based on
the ISIM, provides good estimation for the increase of the lower envelope of the stability
limits.
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