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1
Introduction

1.1 Aim of the work

Soft materials have many engineering applications due to their favourable mechanical
properties like flexibility, energy absorption, not to mention that they are easy to man-
ufacture, with a low cost of prototyping. These characteristics make such materials the
perfect basis for the design of complex mechanical systems, addressed as soft robotics
[1, 2]. However, describing the exact behaviour of these materials is a complex task, as
they exhibit nonlinear stress - strain characteristics, which is often paired with nonlinear
geometric and loading conditions. By exploiting the unstable configurations of these hy-
perelastic materials, the response of the fluidic actuators applied in soft robotics can be
enhanced. A general method for determining such characteristic of a shell is to find the
appropriate load - displacement relationship, which can be done by resolving the pressure
and volume relation of a closed cavity formed by the shell.

The aim of this contribution is to investigate the snap - through instability of soft el-
liptical shells and analyse the critical values which determines the main characteristics
of the phenomena. The paper provides three methods to characterize the shells response
to external loading cases. During my previous research, I developed a simulation envi-
ronment capable of analysing the phenomena. After this, I carried out measurements
corresponding to the FE calculations, which were performed using a self - developed flu-
idic control board, which provides the possibility to apply different loading- and control
options [3]. The final approach is to determine the critical buckling pressure of the shells
by analytical calculations, which is based on the basic principles of the description of the
snap - through problem, which were first proposed by Zoelly [4].
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Chapter 1. Introduction

After the methods has been presented, I will compare them qualitatively and quantita-
tively as well. The methodology of the paper can be summarized below.

Simulation

+

Experiments

fluidic board

Analytic mod.

shell theory

Comparison

Figure 1.1: The methodology of the work

1.2 Layout

This thesis is divided into seven main chapters, including Chapter 1 , where the goals
and the structure of the thesis are presented.

Chapter 2 contains the basics of continuum mechanics, which is necessary to understand
the used hyperelastic material models, and the snap - through phenomena. This chapter
also contains some applications of the snap - through.

Chapter 3 is dedicated to summarize the prior research methodologies and objectives.
This section provides the description of used geometry and the simulation environment.

Chapter 4 presents the development and the operation of the fluidic control board,
which is dedicated to carry out the measurements.

Chapter 5 provides the description of the analytic theory of the snap - through phe-
nomena and its application to the proposed geometry.

Chapter 6 is focused on comparing the different calculations (analytical and numerical)
with the measurement results, which were conducted on three specimens.

In the end, Chapter 7 contains the summary of my work in English and in Hungarian
as well.
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Chapter 1. Introduction

1.3 Nomenclature

If a and b are vectors, A and B are second order tensors and D is a scalar field quantity,
the mathematical operations are interpreted as follows:

AT Transpose of A
A−1 Inverse of A
Ȧ Time derivative of A
grad(D) Gradient of D
det (A) Determinant of A
a ⊗ b Dyadic product between a and b

A : B Double dot product between A and B, (A : B = AijBij)

Important characters are summarized below:

X Referential position
x Current position
Ei Unit basis vectors in the reference configuration
ei Unit basis vectors in the spatial configuration
ϕ General mapping
F Deformation gradient
J Volume ratio
C Right Cauchy - Green deformation tensor
b Left Cauchy - Green deformation tensor
U Right stretch tensor
V Left stretch tensor
R Proper orthogonal tensor
t Cauchy traction vector
T First Piola - Kirchhoff traction vector
N Unit normal of the surface element in the reference configuration
n Unit normal of the surface element in the spatial configuration
σ Symmetric Cauchy stress tensor
P First Piola - Kirchhoff stress tensor
τ Kirchhoff stress tensor
W Stored strain energy per unit reference volume
λi Eigenvalues of U or V

µk, αk Parameters of the Ogden hyperelastic model

3



q Intensity of distributed load
Ai, Bi, θi, ti Parameters of the ellipse
R, θic Radius and opening angle of the equivalent circle
P s

cr Critical pressure from simulation
Pmv

cr Critical pressure from volume controlled measurements
Pmp

cr Critical pressure from pressure controlled measurements
P a

cr Critical pressure from analytic calculation
P e

cr Critical pressure from empiric relation



2
Theoretical background

2.1 Hyperelastic material models

2.1.1 Strain measures

In solid mechanics, the behavior of a deformable solid can be described using the phe-
nomenological approach of continuum mechanics. Continuum theory assumes that we
are concerned with a body in which both mass and volume are continuous functions of
continuum particles [5, 6]. A general motion of a continuum body is shown in Fig. 2.1
below.

E1,e1 E2,e2

E3,e3
X
(X
1
,X 2
,X 3
)

x(x1,x2
,x3)

reference
configuration

current
configuration

t=0 t>0

��

�

P

P'

�(X,t)

dX

dx

Figure 2.1: Representation of a continuum body
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Chapter 2. Theoretical background

The body in its initial position occupies the region Ω0 in which the material points are
identified with their coordinates X with respect to the Cartesian basis Ei. This configu-
ration is referred as the reference configuration [5, 6]. After the deformation, the current
position of material points can be described with the vector x in the basis ei, which
is called current configuration. Between these configurations, a unique mapping can be
defined as

x = ϕ(X, t). (2.1)

Assuming the motion to be uniquely invertible, the inverse of the mapping is

X = ϕ−1(x, t). (2.2)

In continuum mechanics, we distinguish between two ways of description. In the La-
grangian (or material) description, the quantities are characterized with respect to the
reference configuration, meanwhile, the Eulerian (or spatial) description uses the current
configuration to identify the quantities [6]. A primary measure of deformation can be
introduced as

F (X, t) = ∂ϕ(X, t)
∂X

, (2.3)

known as the deformation gradient, which must satisfy det (F ) > 0, to ensure non -
singular motion. This gradient can be used to form a relationship between the infinitesimal
line and volume elements as

dx = F dX and dv = J dV, (2.4)

where J = det (F ) is the volume ratio. Using the deformation gradient, several strain
measures can be introduced, starting with the right and the left Cauchy – Green deforma-
tion tensors defined as

C(X, t) = F TF , (2.5)

b(X, t) = FF T . (2.6)

The deformation gradient can be decomposed in a form

F = R U = V R, (2.7)

using the polar decomposition theorem, where U(X, t) is the right, V (X, t) is the left
stretch tensor, and R is an orthogonal rotation tensor [6]. The stretch tensors are related
to the strain tensors as

U =
√
C and V =

√
b. (2.8)

The λi eigenvalues of U and V are called principal stretches, while the corresponding
normalized eigenvectors define the principal directions. The principal stretches give the
ratio between the current and the initial length of a deformed line element oriented in the
principal direction [5, 6, 7].
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Chapter 2. Theoretical background

2.1.2 Concept of stress

Motion and deformation give rise to interactions between the continuum body and
its neighboring environment. One consequence of these interactions is stress, which is
a representation of the internal forces acting on a unit surface area. The mathematical
description can be introduced using Fig. 2.2, which shows a deformable continuum body,
occupying the region Ω with boundary surface ∂Ω. Let the body be cut by a surface that
passes through any given point x ∈ Ω, thus separating the body into two portions [5, 6].
The forces are transmitted across a planar surface. The force acting on the infinitesimal
surface area is denoted by df , and it can be defined for every element as

df = tds = TdS, (2.9)

where t(x, t,n) represent the Cauchy traction vector, while T (X, t,N ) is the first Piola –
Kirchhoff traction vector. The infinitesimal surface elements are defined with their normal
vectors (facing outwards) n and N , respectively. Cauchy’s stress theorem states, that

X(X
1 ,X
2 ,X
3 )

x(x
1,x
2,x
3)

E1,e1 E2,e2

E3,e3

reference
configuration

t=0

current
configuration

t>0

��
�

�(X,t)

dS

��� ��

ds

n

t

N

T

Figure 2.2: Traction vectors acting on the infinitesimal surface elements

there exist some unique second - order tensor fields σ and P such that the traction vectors
can be expressed as

t(x, t,n) = σ(x, t) n, (2.10)

T (X, t,N ) = P (X, t) N , (2.11)

where σ is the symmetric, so - called Cauchy stress tensor, and P is the first Piola –
Kirchhoff stress tensor [6]. The Cauchy stress tensor can be expressed with the first
Piola – Kirchhoff stress tensor as

σ = J−1P F T . (2.12)

From the Cauchy stress tensor, the Kirchhoff stress tensor can be introduced as

τ = J σ. (2.13)
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Chapter 2. Theoretical background

2.1.3 Theory of hyperelasticity

Small - strain theory is a mathematical approach to describe the deformation of a solid
body, in which the displacements of the material particles are assumed to be much smaller
than any relevant dimension of the body. For materials like soft rubbers, stress - strain
relations cannot be described using this approach, because these materials are capable of
high deformations, while maintaining material continuity [6]. As a consequence of this,
to describe the mechanical behavior, we need to use the so - called (finite) hyperelasticity
theory, which postulates the existence of a strain energy function W = W (F ), which
is an explicit function of the deformation gradient F . This strain energy function is
a polyconvex function, which is expressing the stored strain energy per unit reference
volume. Since it’s only a function of the deformation gradient, this postulates that we are
dealing with homogeneous materials, in which the distribution of internal constituents
are assumed to be uniform on the continuum scale [6, 7]. The theory states, that the
stress power per unit reference volume is equal to the time derivative of the strain energy
function. The stress power is also related to stress tensors as

Ẇ = J σ : d = τ : d = P : Ḟ . (2.14)

At the same time, we can express this quantity as the time - derivative of the strain energy
function by using the chain rule of derivation:

Ẇ = ∂W (F )
∂F

: F . (2.15)

Comparing Eq. (2.14) with Eq. (2.15), we can express the first Piola – Kirchhoff stress
tensor as an explicit function of the strain energy as

P = ∂W (F )
∂F

. (2.16)

If the continuum body is subjected to rigid - body rotation, the strain energy function
cannot change because of material objectivity, mathematically expressed as

W (F ) = W (QF ). (2.17)

If the rigid - body rotation is chosen as Q = RT based on the polar decomposition theorem,
W can be expressed as a function of the right stretch tensor as

W (F ) = W (QF ) = W (QR U) = W (RTR U) = W (U), (2.18)

which is now can be related to the right Cauchy – Green deformation tensor using Eq. (2.8),
so the strain energy is given by a function

W (F ) = W̃ (C). (2.19)

8



Chapter 2. Theoretical background

Now, the time - derivative of the strain energy function can be expressed in terms of the
right Cauchy – Green deformation tensor as

Ẇ = ∂W (F )
∂F

: F = ∂W̃ (C)
∂C

∂C

∂F
: F . (2.20)

Comparing the formulations of Eq. (2.15) with Eq. (2.20), we can conclude that the first
Piola – Kirchhoff stress tensor can be written as the explicit function of the right Cauchy –
Green deformation tensor:

P = 2F ∂W (C)
∂C

. (2.21)

Applying the relation between the stress tensors expressed in Eq. (2.12), the Cauchy stress
tensor can be written as

σ = 2
J
F
∂W (C)
∂C

F T . (2.22)

The representation theorem for invariants states, that if a scalar - valued tensor function is
an invariant under a rotation, it can be expressed in terms of the principal invariants of its
argument [5, 6, 7]. In our case, we have the scalar function W which has the argument C
(right Cauchy – Green deformation tensor) or b (left Cauchy – Green deformation tensor),
hence

W = W (I1, I2, I3) , (2.23)

where Ii = Ii(C) = Ii(b) are the principal invariants of C or b. Similarly, we can
express the strain energy function in terms of the principal stretches λi, since they are
the eigenvalues of the stretch tensors:

W = W (λ1, λ2, λ3) . (2.24)

Using this formulation of the strain energy function, and substituting back into Eq. (2.22)
we can derive an equation that gives the relation between the principal stretches and the
stress tensor, expressed as

σ =
3∑

k=1

λk

J

∂W

∂λk

nk ⊗ nk, (2.25)

where nk are the unit eigenvectors of the left Cauchy – Green deformation tensor b [5].

2.1.4 The Ogden hyperelastic model

There are plenty of hyperelastic models available in finite element software to simulate
the response of rubbery materials. One of the most common hyperelastic model was
developed by Ogden in 1972, which has multiple formulations [6, 7]. The strain energy
function is expressed in terms of the principal stretches. In Abaqus the strain energy
function is defined as

W (λ1, λ2, λ3) =
N∑

k=1

2µk

α2
k

(
λαk

1 + λαk
3 + λαk

3 − 3
)

+
N∑

k=1

1
Dk

(J − 1)2k , (2.26)

9



Chapter 2. Theoretical background

where λi = J− 1
3λi and N is the order of hyperelastic the model. The parameters αk, µk

and Dk are material properties [8]. The volumetric response of the material is written
in terms of the Dk parameters. During my work, I used incompressible materials (see
Section 4.1.4 for specifications), where the volume ratio J = 1, meaning that the strain
energy function can be simplified as

W (λ1, λ2, λ3) =
N∑

k=1

2µk

α2
k

(λαk
1 + λαk

3 + λαk
3 − 3) . (2.27)

The material’s initial shear modulus µ0 can be calculated from the µi parameters as

µ0 =
N∑

k=1
µk > 0. (2.28)

It is important to note, that the formulation which is present in Abaqus is only valid for
µk > 0, however the nonlinearity parameter α can be either negative or positive [8].

2.2 The snap - through phenomena

Most elastic structures have several possible equilibrium states, which can be stable or
unstable. The transformation from one state (often) happens via a rapid motion, which
is called snap - through. This happens because we are building up elastic energy inside
the structure, which releases suddenly, which generates rapid motions. Essentially, the
effect of snap - through is a special case of buckling, which is usually a very dangerous
failure mode of structural systems. Buckling happens, when a structure is subjected to a
gradually increasing load, which eventually exceeds a critical level, the structure releases
a sudden burst of energy and deforms to another stable state [9, 10, 11, 12].

snapping

P P
P

Figure 2.3: A simple example of the snap - through

The phenomena can be characterized by the force - displacement relationship, which is
highly nonlinear. A general equilibrium path of a system seen on Fig. 2.4 is plotted below.
However, if we conduct the experiments, we are unable to trace the whole curve, because
some points on it are unstable configurations, which can’t be reached in an experiment [6].
There are two control methods that can be used in an experiment: in the first method, we
are controlling the input force, while in the other method, we are driving the displacement.
These two approaches are illustrated on a general nonlinear behaviour on Fig. 2.5.

In finite element software, the load controlled method means that the load increment
kept constant during an increment, conversely to the displacement control, when we keep

10
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F
or

ce

Displacement

Equilibrium path

Figure 2.4: Equilibrium path of the arc’s midpoint

F
or

ce

Displacement

Snap-through

Equilibrium path

F
or

ce

Displacement

Snap-back

Equilibrium path

Dcr

Figure 2.5: The snap - through and snap - back behaviour

the displacement constant during an increment [13, 14]. However, as we can see, they
both fail at a critical point on the curve, we can be denoted by the critical force and
critical displacement. By taking the advantageous numerical method first proposed by
Riks (called arc - length method), we can solve these problems assuming quasi - static
conditions, and finally we are able to trace the whole equilibrium path [13].

2.2.1 Fields of application

The snap - through phenomena has several applications in every field of engineering,
but as my work involves in the study of soft (rubber - like, silicone) materials, I will focus
on soft robotics [1, 15].

Xinjie Zhang et al. presented a soft valve, which takes advantage of the snapping of a
silicone shell [16]. They proposed a design, which is suitable to control the flow in soft
systems. It works very similarly to the principle that I am investigating: when the supply
pressure of the system exceeds the critical pressure of the shell, it snaps to the other
configuration, relieving the pressure of the system, thus keeping it safe.

Figure 2.6: The original (left) and the invert (right) state [16]
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The research group of Yichao Tang proposed several design principles of soft actuators,
that are focused on speed / force by harnessing the mechanical instabilty of the silicone
materials [11]. One of the actuators formed a bistable gripper, which can be seen on the
Fig. 2.5. Thanks to the tendon inserted into the soft material, it can produce high grip
forces, thus it can move weights heavier than 10 kg. However, when we are dealing with
delicate materials (for example, consider an egg), then we can only actuate the pneumatic
part of the gripper.

Figure 2.7: Bistable gripper with different weights [11]

Soft robotics plays an important role in biomedical applications as well, because the
materials from which the actuators are made of are usually biocompatible. E.B. van der
Houwen et al. analysed silicone shells from a shunt valve, which is routinely implanted in
the neck region of the laryngectomy patient (whose larynx has been excised as a remedy
against cancer of the throat) [17]. These patients can only speak by pushing the valve,
thus pressing the exhaled air through the esophaegal tissue. The valve designed by the
group is called a handsfree speech valve, because leveraging the bistable positions of the
shell, they achieved that the patient doesn’t need to hold the shell constantly: after
pressing it snaps to the other stable state, and after pressing it again, it snaps back to
the original state [17].

Figure 2.8: Laryngectomy patient with a shunt valve [17]

Another example can be given by the industry: the team of Ying Lin developed a pipe
crawler robot [18]. The soft robot capable of moving through a pipe (even if it’s filled with
water) with a single actuation motion. In this study, they harnesses the highly nonlinear
buckling of elastic ribbons and bioinspired artificial muscles to significantly enhance the
crawling capability of previous designs.

Figure 2.9: Single actuation pipe crawler [18]

12



Chapter 2. Theoretical background

After all, the list could be continued for several pages, which highlights the great need
to understand the behaviour of these soft materials better. For a more in-depth review of
the current state of the art, we could read the work of Aniket Pal et al. which summarizes
several other concepts which were not introduced above [15].
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3
Preliminary research

This chapter provides a short summary of my previous work in the topic. My paper pre-
sented at last year’s conference was titled Optimization of soft robots based on hyperelastic
instabilities, since in this work an FE - based optimization procedure was proposed. I suc-
cessfully created an automatic simulation environment for a fluidic actuator, which was
used to investigate the behaviour of the snap - through instability with different material
and geometric properties.

3.1 The proposed geometry

The geometric design was inspired by the article Inflatable soft jumper inspired by shell
snapping written by Gorissen et al. [19]. Their geometry consist of two spherical caps,
which are joined together at their base. If the cavity between the two shells are inflated,
the inner (lower) cap snaps to another stable state. I investigated a more general form
of this geometry, replacing the inner spherical shell with general elliptical shell, which led
to more distinguished geometric parameters and more possible combinations out of them.
The figure of the proposed geometry can be seen of Fig. 3.1.

The geometry and the loading (and boundary) conditions is axisymmetric, and the
material models reflex homogeneous isotropic material behaviour, the geometry can be
analysed by axisymmetric models. This simplification ensures, that the models are simple
enough (compared to a 3D solid model) to be able to analyse a lot of parameter com-
binations in a relatively short amount of time. Note, that the subscripts „i” and „o”
indicate the quantities for the inner and outer shell, respectively.

15
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x

y�
�i
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P1
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to

tr

Rr

Enclosed volume
P2

P3

P4

P5
P7

P8

P6

P9

Rigid outer shell

Inner shell

Figure 3.1: The geometry and its parameters

During my work I investigated only the behaviour of the snapping shell, which is in this
case the inner shell. As a consequence of this, the outer shell is assumed as a completely
rigid shell, thus when we are inflating the enclosed volume by a fluid, it wont deform.
This property will be enhanced at Section 4.1 to simplify the experimental setup.

The coordinates of the points listed in Fig. 3.1 can be easily obtained, which were done
previously, and can be seen in Appendix A.

The conclusion is that the axisymmetric geometry is defined using 4 input parameters,
which are used to describe the inner elliptical shell in its entirety. These parameters are
the semi-axes (Ai and Bi), the opening angle (θi) and the shell’s thickness (ti).

3.2 Finite element modelling

3.2.1 General overview of the model

The simulations were done in the Abaqus finite element software, which has a module
called Interaction, in which the user can define interactions between regions of the model
such as a contact. One of the interactions is the so - called Fluid Cavity interaction, which
can be used to model fluid filled cavities. This tool is very useful, when the deformation of

16



Chapter 3. Preliminary research

the structure and the pressure of the contained fluid are not independent. These coupled
problems can be solved by using a virtual cavity, which is defined by the surfaces of the
enclosed volume, and a reference point, which defines the direction of the surface normals
[8].

Fluid

F

Reference 
point

Hidrostatic
elements

Regular
elements

Figure 3.2: Discretization of a fluid - filled structure, redrawdn as [8]

Regarding my model, the selection of these geometric parameters can be defined by
Fig. 3.3, which shows a simplified FE model of the structure. Important to note, that
the mesh size is enlarged in this figure, to ensure great visibility. However, before the
simulation procedure, a mesh independence study was carried out, which can be found
in the Appendix B.1. The pressure inside the cavity is defined as a gauge pressure. The
models were meshed accordingly to the geometry, however one could think that for the
shell, we could’ve used shell elements to represent the geometry. This is, in fact, true, but
the shell under my investigation are not thin, they are called semi - thick shells, which can
be modelled favourably with 2D elements according to the literature.

x

y

Figure 3.3: Finite element model (left) and the created mesh (right)

To fully define the problem, we also need to define the properties of the stored (or
supplied) fluid. In my case, this was water, which can be modelled as an incompressible
fluid in this application. Thanks to the Fluid Cavity interaction, the system’s pressure -
volume curve can be instantly obtained after solving the model.

3.2.2 Automatic simulation environment

After I found the optimal settings to create a simulation model, I created a program
code, which is automatically capable of simulating models with several combination of
geometric parameters. The input parameters can be specified by the user as a vector,
which encapsulates the range to be calculated by the software. This process’ block diagram
can be seen on Fig. 3.5 below. As we can see, the software is based on scripting Abaqus
using the open - source Python programming language. The output form the model is
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Figure 3.4: The obtained equilibrium path

the characteristic curve of the inner shell. It is important to note, that from this pressure -
volume curve the energy release during the instability can also be calculated (however this
property will not be widely used in this paper).
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Figure 3.5: Block diagram of the simulation environment
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4
Experimental testing

The goal of this chapter is to introduce the experimental setup which was developed
and built to carry out measurements. In the literature we can find multiple solutions
to measure the snap - through phenomena, because it has not been established which
one is the best (probably we can’t even highlight one as the best because of the wide
variety of designs and geometries), there are still a lot of open questions. For example,
there exist methods which are based on the inflation of a cavity [17, 20], but others used
force measurements to capture a characteristic curve of the system [21, 22], or an image
processing to determine the area of the buckled region [23].

4.1 Overview of the test setup

4.1.1 The fluidic control board

As we previously discussed in Chapter 3 the finite element models are constructed in
such a way, that the snapping behaviour of the inner shell is induced by the inflation of
a fluid cavity. This is the main idea of my measurement setup as well [3, 17].

For this purpose, we have to supply the fluid with enough pressure, which can be
done by using a diaphragm pump. The fluid flow in the system needs to be controlled,
because after inflation, we have to deflate the setup, so we need some control elements as
well, which can be choosen as solenoid valves. These valves can be operated by analog
electric signals to open and close the routes of the fluid. Probably the most important
part of the measurement setup is the pressure sensor which captures the instantaneous
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Chapter 4. Experimental testing

gauge pressure in the system at each measurement point we define. To obtained the
characteristic (pressure - volume) curve of a shell, we also have to monitor the fluid flow
rate (to express the volume change), which is deducted from the voltage of the pump,
because it shows nearly linear characteristic (for more information, see Appendix C). We
also have to create some kind of measurement container, which is capable of hermetically
sealing the shell from the environment, and capable of withstand the pressures (which are
very low in general, so the structural integrity will not cause any problems). After all, we
need an electric circuit with a controller, which is capable of connecting and controlling
these parts that make up the setup. To enable the data acquisition and control, we have
to connect out microcontroller to a computer, where we can define the input values, and
capture the output values of the sensor. Based on these ideas, a basic sketch of the setup
can be seen on Fig. 4.1 below.

Measurement container

Pressure sensor

PumpFluid source

PC Data acquisition
and control

Solenoid
valve

Figure 4.1: The main skeleton of the test setup

The diaphragm pump was chosen to be the Kamoer KLP01 diaphragm pump, which
is capable of providing 3 bar pressure with 400 ml/min flow rate, and it can operate with
non - corrosive liquids, such as water. These properties are more than enough if we take
into account the scale of the measurements. It can be controlled by a single voltage input
(with a nominal value of 12 V, but it was found out that it can operate above 5 V).

Two solenoid valves were introduced into the test setup, due to the necessity of the
flow control. These solenoid valves were chosen from the M&M company, with a model
number of D263DVG with the corresponding coil 7250. Their supply voltage is 24 V,
and they can be operated using PWM signals provided by a MOSFET, which is very
advantageous of the electrical control. One of the solenoid valve opens the route, so the
pump can inflate the cavity, while the other opens an another route, which is used to
release the pressure (and the fluid) from the container.

To supply these components, we need to create 12 V and 24 V signals, which can be
done by the two DC - DC converters. As their name suggests, they can convert a DC
signal obtained from the laboratory power supply to the desired values.

The pressure sensor was chosen according to the specific pressure ranges. The selected
model was the Betterbeita BT-P8000 with a measurement range of 0 - 30 kPa and with
a measurement accuracy of 0.01 kPa on the full scale. It is capable of withstanding
gases, and non - corrosive fluids as well. It has a G1/4" connection, which determined
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Chapter 4. Experimental testing

that the whole system of hydraulic components should have this connection, to ensure
easy integration.

The control of the board and the data acquisition was done by an Arduino UNO
R3, which has limited capability’s compared to other microcontrollers, but this drawback
is balanced by its simplicity and ease of use. This microcontroller and it’s interface was
used to program the software which is capable of controlling the board with two different
methods, which is explained in detail at Section 4.2. The most important part of the
electrical subsystem of the board is that we have to open and close the solenoid valves
with respect to the desired output of the system, which can be done by implementing a
PID controller. The solenoid valves are controlled by MOSFETs, which has the exact
type of FR120N-M.

Measurement
container Tubing

Solenoid
valves

Pressure
sensor

Arduino UNO
microcontroller

with a breadboard

Diaphragm
pump

DC - DC
converters

Figure 4.2: The fluidic control board with all subsystems

4.1.2 The measurement container

The measurement container is a 3D printed container which is capable of securing the
shell in place. The geometry is constructed in such a way that it is easy to print it out,
and it is self sealing without any additional components added. Notice, that we enhance
the silicone shell to create a sealing, so no fluid is lost during inflating the cavity. The top
hole is the position of the connector element, which is used to connect the measurement
container to the fluidic control board. Notice the bottom hole, which is large enough to
ensure the free snap - through motion of the shell. The CAD model of the container can
be seen on Fig. 4.3 below.

It is very important to note, that the shape of the measurement container differs from
the shape of the outer shell on Fig. 3.1. This is due to the simplification of the geometry:
this cylindrical geometry is very simple to print out with great accuracy, conversely to
the introduced outer shell in the finite element model. As a consequence of this, the
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Chapter 4. Experimental testing

volume of the cavity won’t match for a specific shell between the measurement setup and
the numerical calculation. However this is not a problem, because instead of the volume
as a parameter for evaluating the results, we can use the change of the volume, which
will be the same regardless of the shape and size of the cavity. This simplification can
be made, because the pressures are so low in the system that they will not deform the
ABS container during the measurement significantly. To prove this, I made a simple finite
element analysis, which can be seen at Appendix B.2. This mapping between the actual
volume and the volume change can be done by shifting the volume axis with the initial
volume for both the numerical and the test results as well.

Overlap to enhance
self sealing

Holes to bolt together
the container

Figure 4.3: The CAD model of the measurement container showcasing the sealing solution

Figure 4.4: The final 3D printed measurement container with a shell placed inside

4.1.3 Specimen fabrication

The shells were fabricated out of the two component silicone ELASTOSTIL M 4061.
It is a pourable, addition - curing silicone rubber, which vulcanizes at room temperature.
Based on the manufacturer it is perfect to create shrink - free molds [24].

Property Component A Component B

Color White Reddish brown
Density at 23 ◦C 1.14 g/cm3 1.01 g/cm3

Dynamic viscosity 15000 mPa · s 800 mPa · s

Table 4.1: The properties of the components
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Chapter 4. Experimental testing

The two component need to be mixed in a ratio of 9:1 (A:B), which were done in paper
cups using a precision scale.

Figure 4.5: The two component in the mixing phase

After mixing, the silicone was placed inside a vacuum chamber, which is responsible for
removing air bubbles from the material before curing. This step ensured, that the silicone
material is homogeneous and specimens are high quality shells.

Figure 4.6: Degassing the silicone in the vaccuum chamber

After this, the silicone is poured into 3D printed molds, according to the required
geometry. The CAD model and its features can be seen on Fig. 4.7 below.

Top mold

Molded shell

Bottom mold Holes to bolt
together the mold

The overrunner to 
capture extra material

Figure 4.7: The CAD model of the mold
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The geometric model of the mold is also parametric, so it changes its shape according
to the desired shell geometric parameters. The molds were 3D printed on a Zortrax M200
Plus printer, with ABS filament.

Figure 4.8: Different sizes of 3D printed molds

After the silicone was poured inside the forming cavity of the molds, the two halves
were locked together with bolts to ensure that the shell doesn’t push the mold apart.
The silicone will eventually cure in room temperature as well, but it would need at least
12, but favourably 24 hours. To speed up this process, I placed the mold into a drying
chamber, which was set to 65◦C, which is high enough that the silicone will cure in about
20 minutes, but not as high that the ABS material of the mold will not deform due to
the resultant thermal stress.

Figure 4.9: The curing process in the drying chamber

The shells can be easily removed from the molds, and if needed the external material
can be cut off from the overrunner part. One of the fabricated shell can be seen on
Fig. 4.10 below.

Figure 4.10: The final silicone shell
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4.1.4 Determination of the material parameters

As in all numerical calculations, simulations require the material parameters for the
corresponding material model, which is used to describe the response of the material.

As it was proposed in Section 2.1.4, the Ogden hyperelastic model was used to capture
the silicone’s behaviour. To be exact, I used to use the second order Ogden hyperelastic
model (multiple models were tested, and found this one as the most accurate), which is
defined by 4 material parameters µ1, µ2, α1 and α2, which were determined by uniaxial
tensile and compression test using the Instron 3345 Single Column Universal Testing Sys-
tem, equipped with and Instron 2519-107 5 kN load cell. First, tensile test were performed
on bone - shaped (ISO 37 standard) specimens with different thicknesses, to capture the
transversal stretch component of the material. The transversal and longitudinal stretch
component were find by image processing (binarization), and it was found that the used
material is incompressible, where the stretches (for the uniaxial test case) can be written
as:

• in the direction of tension: λ1,

• in the transversal direction: λ2 = λ3 = 1/
√
λ,

which satisfies the expression J = λ1λ2λ3 = 1, for incompressible materials.

Figure 4.11: Bone - shaped specimens during tensile testing according to ASTM D395-03

After this, compression tests were performed on two cylindrical specimens (with two
different diameters), which is equivalent to equibiaxial tension tests, through the super-
position of hydrostatic stress. It states that if a fully incompressible material is subjected
to uniaxial tension (uniaxial compression), it’s equivalent to an equibiaxial compression
(equibiaxial tension).

The compression tests performed on the cylindrical specimens with the binarization as
a result processing method can be seen on Fig. 4.13.
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Figure 4.12: Equivalent experimental test for fully incompressible materials

Figure 4.13: Compression test on cylindrical specimens

These tests resulted into several force - displacement (which has been converted into
nominal stress - stretch) curves, which represent uniaxial and equibiaxial tests. We can
use the closed form solutions of the second order Ogden hyperelastic model in these stress
states to fit the model parameters. The solution for the nominal stress in the uniaxial
case can be written as [7]:

P =
2∑

k=1

2µk

αk

[
λαk−1 − λ−αk/2−1

]
. (4.1)

Defining the error - function as the root means square error as

RMSE =

√√√√ 1
M

M∑
i=1

(
Pmod

i − P exp
i

P exp
i

)
, (4.2)

where M are the number of the datapoints, Pmod
i is the nominal stress given by the model

(by the stretch and the intermediate model parameters as the input) and P exp
i denotes the

experimental value of the nominal stress. By utilizing the optimize function of the Scipy
module found in the Python programming language, we can easily obtain the model
parameters corresponding to the measurement data, with the above give error function.
The fitted model and the parameters can be seen on the figure below.
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Experimental data
Fitted model

Obtained model parameters:

Figure 4.14: The fitted second order Ogden model and the obtained model parameters

4.2 Controlling the measurement board

4.2.1 Volume and pressure control

As it was previously discussed in Section 2.2, the nonlinear system can be solved with
force (which is the pressure in this case) or displacement (which is the volume change)
control. This two method opens the two possible control method for the measurements
as well:

1. Volume control method,

2. Pressure control method.

From these, the volume control is a simpler method, because the volume change can
be explicitly controlled by the pump via the known characteristic of the pump which
was described in Appendix C. We know the volume flow rate for every input voltage on
the pump, so we can create several input profiles which defines the change of the cavity
volume.

The pressure control method is the harder method, because we can only control the
pressure in the system through setting different volume flow rates. To be able to control
the pressure, we would need to derive the relationship between the pressure and the
volume. Once this relationship is known, a controller can be designed and its parameters
could be derived. Unfortunately, these governing equations (to the best of the author’s
knowledge) has been not derived yet for this exact problem (considering moderately thick
shells, with incompressible hyperelastic materials). To overcome this difficulty, we can
implement a simple PID controller and define its parameters from measurements, which
we are able to do by utilizing the volume control method. The essence of this control
method can be found in the next section.
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4.2.2 The PID controller

Nowadays the Proportional–Integral–Derivative (PID) controller is one of the most
widely used type of the closed - loop control methods. The goal of the controller is to
produce a control signal that can dynamically minimize the difference between the current
output and the desired output of the system.

Plant

Feedback signal

c

Figure 4.15: The schematic diagram of the PID controller

The essence is that we create a negative feedback in the system, which is used to create
the so - called error signal e(t). The controller interprets this signal, and is calculates
how to manipulate the control signal c(t) of the plant to reduce the error between the
input u(t) and the output y(t). The controller can be tuned with the help of the three
constant parameters KP, KI and KD. The controller manipulates the control signal with
respect to „history” (integral), the „present” (proportional) and the „future” (derivative)
value of the error signal. The values of these three parameters defines how fast the
controller works, what is the overshoot value, how fast it stabilizes the output, etc. This
paper is not addressed for a complete description of the PID controller, however these
parameters needs to be defined, which can be done by analysing the governing equations.
But nowadays, engineers often use several tools to obtain numerical values which can be
tested, and iterated until the are sufficient for the controller which is designed for that
specific problem. This is the method that I followed as well: the Matlab software has
very handy tools to identify your system based on measurement data, and tune a PID
controller for it. As we said previously, with the volume control method, we can already
create a measurement, which has an input signal defined by the Heaviside step function
as

H(x) =

1, x ≥ 0,
0, x ≤ 0.

(4.3)

The input signal in this case is the voltage of the pump, so using t for the time:

U(t) =

12, t ≥ 0,
0, t ≤ 0,

(4.4)
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which essentially means that the pump was turned on with 12 V of voltage at the time
t = 0 and it stayed on this constant value during the whole measurement. Meanwhile
the pump is inflating the cavity, we can log the corresponding pressure data from the
transducer. The acquired pressure - volume change curve can be seen on Fig. 4.16 for the
shell with Ai = 22 mm, Bi = 22 mm, ti = 3.5 mm and θi = 65◦, with a constant 12 V
of input voltage. Utilizing the PID tuner app from Matlab, we can import this output
signal, and specify that this is our system’s response for the input described in Eq. (4.4).
After this, the software will identify a plant. Of course, the identification will not be
a 100% accurate, but this method is still far better to estimate the control parameters
instead of just trying a bunch of combinations.

Experimental data
Identified plant

Figure 4.16: An experimental result with the volume control method, and the identified
plant based on it

My goal during the tuning of the controller was to shorten the raise time as much
as possible while keeping the overshoot value as low as possible. The graphical user
interface helps us to see how the response of our system changes with the modification of
each parameters. Matlab has a function to automatically define the parameters which
results in a stable system. I used this option to initialize the parameters of the controller,
but after that I tuned them myself to get a slightly better response.

Parameter Value

KP 132.2
KI 226.6
KD 15.1

Table 4.2: The obtained PID controller parameters

The graphical user interface of the software can be seen below on Fig. 4.17. At the
controller section, we can choose what type of controller we want to tune (P, PD, etc.)
which was PID in my case. The controller tuning menu bar provides tools to tune the
parameters of the selected controller, while the options on the right side of the screen are
corresponds to saving and exporting the tuned plant and controller parameters.
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Controller
selection

Tuned
parameters

Controller
tuning

Figure 4.17: User interface of the PID tuner

4.3 Measurement test procedure

The list below conducts the tasks we need to perform to successfully repeat a test:

1. Place the shell inside the measurement container, and tighten the container with
the bolts.

2. Connect the hydraulic tubing of the system to the measurement container.

3. Connect the PC to the microcontroller.

4. Ensure, that the volume of the supplied fluid is enough to inflate the cavity.

5. Prepare an empty vessel for the overflow branch of the hydraulic system.

6. Select a preferred control method, and set the desired value of the output value.

7. Check if there are no visible shorts in the circuit and no visible damage on the
hydraulic / electronic components.

8. Connect the DC - DC converter to the power supply.

9. Turn on the test setup, and start inflating the hydraulic system, to ensure that no
air is left in the closed system.

10. Start the measurement by the dedicated buttons on the breadboard.

11. Log the measurement data (for example Microsoft Excel can be used for this).
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5
Analytical modelling

The goal of this chapter is to present the analytical modelling of the critical pressure,
which initiates the snap - through behavior.

5.1 Shell theory for circular shells

Let us consider an element OABC cut out from a spherical shell (defined by radius a)
by two meridional section an angle dψ apart and by two conical surfaces normal to the
meridians and inclined to the axis of symmetry by the angles θ and θ + dθ. Introduce
a coordinate system at O, with the x and y axis being tangent to the surface, while
axis z point in the radial direction. The infinitesimal deformation at point O in the
directions defined by the coordinate system is denoted by u, v and w respectively. If we
are considering symmetrical deformations, only u and w differs from zero [25].
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Figure 5.1: The forces and moments acting on a shell element, redrawn from [25]
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The forces acting on the element can be seen on Fig. 5.1 below, where is important to
note, that the forces and the moments act simultaneously, however they are displayed on
different figures to enable great visibility of all components. With these considerations,
we can define the equilibrium state of the shell element with three equations: projections
of all forces on the x and z axis and the moments of all forces with respect to the y axis.
By assuming that the external loading (if there is any) is normal to the shell’s surface,
the equilibrium equations can be written as [4, 25]:

dNx

dθ + (Nx −Ny) cot (θ) −Qx +Ny

(
u

a
+ dw
a dθ

)
−Qx

(
d2w

a dθ2 + w

a

)
= 0,

dQx

dθ +Qx cot (θ) +Nx +Ny + qa+Nx

(
d2w

a dθ2 + du
a dθ

)
+Nx

(
u

a
+ dw
a dθ

)
cot (θ) = 0,

dMx

dθ + (Mx −My) cot (θ) −Qxa+My

(
u

a
+ dw
adθ

)
= 0, (5.1 − 5.3)

where the forces can be written as

Nx = −qa

2 +N ′
x and Ny = −qa

2 +N ′
y (5.4)

where N ′
x and N ′

y are the resultant forces due to the displacements u, v and w, while q is
the intensity of the distributed load. We can use Eq. (5.1) and Eq. (5.2) to eliminate Qx,
we can obtain the resultant forces, which can be substituted back to Eq. (5.3) leading to
a partial differential equation system for u and w as

Mx = −D

a2

[
du
dθ + d2w

dθ2 + ν

(
u+ dw

dθ

)
cot (θ)

]
, (5.5)

My = −D

a2

[(
u+ dw

dθ

)
cot (θ) + ν

(
du
dθ + d2w

dθ2

)]
, (5.6)

where D is a constant (known as flexural rigidity) obtained from geometric and material
parameters [25]:

D = Eh3

12 (1 − ν2) , (5.7)

where E is the Young’s modulus, h is the thickness of the shell and ν is the Poisson ratio.

The solution methodology of these two equations is not presented in this paper, due
to its length, but it can be found in the literature [4, 26, 25]. Zoelly was the first,
who obtained the formula for the critical (smallest) pressure for spherical shells at which
buckling may occur:

qcr = 2E√
3 (1 − ν2)

(
h

a

)2

(5.8)
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It is interesting to note, that this buckling type of spherical and cylindrical shells were
studied intensively in the 20th century. However most of these studies were performed on
very thin shells, which has a ratio of h/a ≪ 1 [26, 27, 28, 29]. The theory was not defined
for thick shells until Hill proposed a new method, where the calculation of this critical
pressure involves solving a fourth-order system of highly non - homogeneous differential
equations [30, 31]. Note, that Hill proposed this method for two type of hyperelastic
materials, however the solution is dependent on the strain energy function of the material
[30], which has been not yet developed for my choice of material model.

It is also remarkable, that a systematic discrepancy was found between the theoretically
calculated and experimentally obtained values. The theoretical values in some cases were
3 to 4 times higher than what the experiments predicted. First the boundary conditions
were analysed, after several attempts were made to lower the theoretical values by taking
into account the initial imperfection of the spherical shell [26].

5.2 Proposed method for elliptical shells

The introduction of the theory above are valid only for spherical shells. The same theory
cannot be applied for my elliptical shell, because of the geometric difference, however, an
estimation could be done to find the equivalent circle with parameters R as a radius and
θic as the opening angle, which has the closes circular segment compared to the elliptical
segment defined by the two semi - axes Ai, Bi and by the opening angle θi.

Ric
Ai

B
i

�
C
E

rey

xE

C

P

Figure 5.2: The elliptical segment (orange) and a very good approximation by a circular
segment (dashed blue)

Introduce a simple drawing of the shells’ mid planes, to be able to establish the rela-
tionship. The curvature is a measure of curve at an arbitrary point, that defines how
much the curve is deviated from a straight line.
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Mathematically, it’s expressed as
κ = 1

Rosc
, (5.9)

where Rosc is the radius of the osculating circle. We can notice, that if Bi < Ai, then
the elliptical segment has smaller curvature, thus the radius of the equivalent circular
segment has to be bigger than Ai. As a consequence of this, the circle’s centerpoint has to
be shifted down with a quantity denoted by ∆EC (note than ∆EC defined as the distance
from point C to point E, which is a negative value). Conversely, if Bi > Ai then the
radius of the circle R has to be smaller than Bi and the circle is shifted upwards, which
results in a positive value of ∆EC. Of course, in the trivial case when Ai = Bi then the
elliptical segment degenerates to a circular segment, so in this case we don’t have make
any calculations.

By taking the ECP triangle, we can notice that from the parameters R,Re and θi we
can calculate the opening angle of the equivalent circle by the law of sines as

θic = arcsin
(
re

R
sin (π − θi)

)
, (5.10)

where re is the length of the line drawn from the elliptical segment’s origin to an arbitrary
point of the ellipse defined by θi, according to Fig. A.2.

This opens the route, to write an optimization script, which takes in the parameters
of the elliptical segment (Ai, Bi, θi) an finds the parameters of the equivalent circular
segment (R, θic). The script was written in Python and it follows these steps:

1. Taking the input of the elliptical segment.

2. Calculating the points of the elliptical segment.

3. Defines a function, which calculates the corresponding y coordinates a circular seg-
ment for given x coordinates.

4. Utilizing this function, and the known x and y coordinates of the elliptical segment,
the script iterates the value of Ric and ∆EC until convergence reached based on an
initial guess, which can be made as explained above.

5. The output of this optimization is Ric and ∆EC, from which the opening angle θic

is calculated.

The written script can be seen in Appendix D.

From now on, the Eq. (5.8) can be used to estimate the critical pressure of the elliptical
shells, using this conversion for the radius.
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6
Comparison and conclusion

6.1 Comparison of the presented methods

The comparison starts by defining the geometric parameters of the shells which were
used to test the presented methods. Three types of shells were used, which were only
different in the parameter Bi. These values were determined with a preliminary study
using the the automatic simulation environment. The simulation predicted that these
shells will behave ideally which enables us to do a qualitative and quantitative comparison
between the methods. Notice that one of the three shell are spherical, where Ai = Bi. The
material model and its parameters were the same for every model, which were discussed
Section 4.1.4.

No. Ai (mm) Bi (mm) ti (mm) θi (◦)

1. 22 18 3.5 65
2. 22 22 3.5 65
3. 22 26 3.5 65

Table 6.1: The geometric parameters of the specimens

6.1.1 Results of the simulations

First, the results of the finite element simulation were evaluated, which resulted in the
graph which can be seen on Fig. 6.1 below. The darkness of the line represent the higher
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values of Bi according to the legend on the right of the figure. We can see that the snap -
through phenomena is present in all three of the curves, however the snap - back effect is
only present on the shells with bigger semi - minor axis. This is happening because more
material needs to be fit through the same space, because Ai is fixed, thus the width of
the shells are equal, while their height differs with 20% and 40%.

Bi = 18 mm

Bi = 22 mm

Bi = 26 mm

Figure 6.1: The characteristic curves of the shells acquired by simulation

The critical pressures are located at the local maxima of the curves, before the snap -
through, which is denoted by a red mark on the figure. Table 6.2 summarizes these
obtained critical values.

No. Bi (mm) P s
cr (kPa)

1. 18 2.525
2. 22 4.069
3. 26 5.139

Table 6.2: The obtained values for the critical pressure based on the simulations

6.1.2 Results of the measurements

During the experimental testing, I followed the proposed test procedure described at
Section 4.3. The sampling frequency of the data was 500 Hz for every measurement.
The measurement container were inflated with water. I performed three measurement for
every shell, and for every method, thus in total 3 · 3 · 2 = 18 measurement were carried
out. The data acquisition was performed via the USB connection between the PC and
the Arduino UNO R3, and the measurement files were saved as comma - separated values.
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Volume controlled case

Regarding the volume controlled case, the inflation was performed with a constant
volume flow rate, which was 400 ml/min, which represent the 12 V input voltage on the
pump. The figure below showcases the acquired data from the three measurement per
shell as a point cloud (pale red color). The averaged values of the measurement data can
be seen with a continuous red line, while the simulation data for comparison is plotted
with a pale blue.

FEA
Measurement

Bi = 18 mm

FEA
Measurement

Bi = 22 mm

FEA
Measurement

Bi = 26 mm

Figure 6.2: The results of the measurements when using the volume controlled method

As we can see, the measurements were following the equilibrium path of the system quite
well at the start of inflation procedure. The smaller shells were approximately reached the
critical pressure which were predicted by the simulations, but the third specimen with the
largest semi - minor axis snapped before reaching this critical point. We can also notice
that the snapping behaviour is not perfect in the measurement, because based on iterative
procedures, we should see only a vertical line when the snapping happens, like the theory
of the solution of nonlinear system describes (see Section 2.2). This could happen due to
a lot of reasons, we could mention the imperfection form of the fabricated shell, or the
discrepancy of the pump, which is not a precision measurement device, the volume flow
rate can differ a bit due to the increasing pressure in the system. The critical pressures
were defined as the local maxima of the actual measurement curve, independent of where
the simulation predicted it previously. The biggest differences obviously emerged at the
shell with Bi = 26 mm, which could’ve been expected, because this shell’s behaviour is
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the stiffest, thus the symmetric conditions will surely break in all test cases. The obtained
values based on the measurement data can be summarized in the following table:

No. Bi (mm) P mv
cr (kPa)

1. 18 2.375
2. 22 3.921
3. 26 4.078

Table 6.3: The obtained values for the critical pressure based on the volume controlled
measurements

Pressure controlled method

The pressure control method is more advanced than the volume control method, it
involves the usage of the PID controller. The desired pressure value was determined
using the previous simulations and the volume controlled measurements. This was in
every case 120% of the lowest predicted critical pressure, to initialize the snap - through.
The results of the measurement compared to the simulation can be seen on the graphs
below.

Bi = 18 mm

FEA
Measurement

Bi = 22 mm

FEA
Measurement

Bi = 26 mm

FEA
Measurement

Figure 6.3: The results of the measurements when using the pressure controlled method

We can see that the measurements overshoots the predicted equilibrium curve for each
shell. This is probably due to the imperfections introduced in the measurement setup.
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We also can’t recognize clearly the snap - through phenomena what the theory states (we
should jump on a vertical line, according to the force controlling method described in
Section 2.2. This is probably due to the small pump, because when the shell snaps, we
can’t produce the required pressure that quickly. This can be solved by implementing a
buffer container, which is pre - pressurized by a stronger pump, and we control the system
from this passive pressure source. The critical pressures can be stated as follows:

No. Bi (mm) P mp
cr (kPa)

1. 18 3.087
2. 22 4.832
3. 26 6.786

Table 6.4: The obtained values for the critical pressure based on the pressure controlled
measurements

However we are not experiencing the perfect behaviour, there is definitely a difference
between the two different measurement method: the volume control method tends to
follow the snap - back behavior, while the pressure control method tends to follow the
snap - through phenomena, which is the expected behvaiour.

6.1.3 The analytical calculations

In order to use the analytical equation derived from the shell theory, we need to find the
equivalent circle’s parameters for the elliptical shells, which can be done by utilizing the
method provided in Section 5.2. Table 6.5 summarizes the input and obtained parameters
as well.

No. Ai (mm) Bi (mm) ti (mm) θi (◦) Ric (mm) θic (mm)

1. 22 18 3.5 65 24.62 50.92
2. 22 22 3.5 65 22 65
3. 22 26 3.5 65 20.60 83.42

Table 6.5: The obtained parameters for the equivalent circles

Now, we can utilize the formula from Eq. (5.8) as

P a
cr = 2E√

3 (1 − ν2)

(
ti
Ric

)2
, (6.1)

where ν = 0.5 (due to the incompressible material property), while

E = 2µ(1 + ν) = 0.144 MPa and µ =
2∑

i=1
µk. (6.2)
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After the calculation, the critical pressures are summarized in the table below.

No. Bi (mm) P a
cr (kPa)

1. 18 11.639
2. 22 14.576
3. 26 16.625

Table 6.6: The obtained values for the critical pressure based on the analytical calculation

As we can see, these value do indeed overestimate the critical buckling pressure, with the
same factor of 3-5 which can be seen on the literature too [26, 17, 29]. But after this
topic has been studied intensively, the usual way of proceeding with analytical calcula-
tions is that we establish some empirical formula, based on measurement. The work of
Taeprasartsit states that the critical pressure value is only dependent on the geometric
parameters for shells that are made from the same material [28]. Houwen also utilized
this property, which states that the critical buckling pressure takes a form of

P e
cr = C1

(
ti
Ric

)2
sin (θic)2 + C2, (6.3)

where C1 and C2 are constants [17, 28]. Using the volume controlled measurement
method’s results from the first two specimens, we can calculate the constants, which
turns out to be:

C1 = 179538 and C2 = 188.589. (6.4)

Based on this equation, the third specimens critical pressure can be estimated as

P e(3)
cr = C1

(
ti

R
(3)
ic

)2

sin
(
θ

(3)
ic

)2
+ C2 = 5.303 kPa, (6.5)

which is above what we experience in the volume controlled measurement (4.078 kPa).
But taking a look back at the simulated value, it is a very good approximation of it, the
relative error is

εe(3)
cr =

∣∣∣∣∣P s(3)
cr − P e(3)

cr

P
e(3)
cr

∣∣∣∣∣ · 100% = 3.09%. (6.6)

Of course, this approximation is only valid for these material and this measurement range,
interpolated (especially extrapolated) values for different parameters should be handles
with care. Of course, this constant determination could be also made from a correlation
between a lot of measurements, utilizing a root means square error optimization tech-
nique for example. This was not performed in this study, because of the low number of
measurements.
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6.2 Conclusions

During my work we’ve seen simulations, measurements and analytical calculations per-
formed in order to characterize a fairly complicated system.

Regarding the simulations, they are a useful tool to predict a shell’s behaviour which
is subjected to external loads, however it’s hard to take into account the imperfections of
the geometry, and the asymmetric deformations.

The measurements proved that the finite element simulations are close to the actual
buckling mode of the shell. The measurement setup provided is capable to characterize a
shell by simple and fast loading conditions. Also, it was found that the setup is capable
of reproducing the measurement results, the deviation of the acquired data for a spe-
cific shell did was not significant, taking into account other imperfections in the system.
Qualitatively the volume method performs better: it follows the desired path better than
the pressure control method, which is probably because of the controller and the weak
(slow) pump. We can also state, that the volume control method provides results with
less deviation in the data.

Analytical calculations can be also a great tool to get an idea of the shell’s basic
behaviour. The biggest advantage of the analytical calculations that they are time and
cost effective, once the theory for a specific shell type is acquired in a closed or empirical
formula, then based on the input parameters the investigated quantity can be easily
calculated. However these theories also do not account for the asymmetric deformations
and material imperfection made on the shell. As it was discussed before, the theory’s
predicted values are overshooting the measured and simulated values, but in case of a
design process this is a conservative approach, so the shell will be able to withstand the
prescribed load.

No. Bi (mm) P s
cr (kPa) P mv

cr (kPa) P mp
cr (kPa) P a

cr (kPa) P e
cr (kPa)

1. 18 2.525 2.375 3.087 11.639 2.375
2. 22 4.069 3.921 4.832 14.576 3.921
3. 26 5.139 4.078 6.786 16.625 5.303

Table 6.7: Comparison of all obtained values for the critical pressure

As Table 6.7 shows above, the obtained values were in a good agreement with each
other. Plotting these values in a bar chart results in Fig. 6.4. We can also create a chart
which shows the relative error of each method corresponding to the simulations. From
these figures we can clearly see, how much the analytical values are overshooting the
predicted critical pressure by the other methods. This is in agreement with the literature
as said before. The smallest deviation between the numerical results were obtained for
the spherical case (Bi = 22 mm), which can be expected: during the inflation of this shell,
asymmetric deformation conditions are less likely to occur.
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Figure 6.5: Relative error compared to the simulated values

As a consequence of these, the measurement and calculation methods that were
presented are capable of characterizing the snap - through problem of soft elastic
shells, in the considered range of geometries.
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7
Summary

7.1 Summary of the paper

The problem of structural stability loss is one of the most critical stages of engineering
design. In conventional structures, the aim is to avoid instability problems as safely as
possible. However, these instabilities can be exploited for structures made of the right
material and with the right geometry, since the multiple deformation between two stable
positions does not imply failure.

In this work, a multidisciplinary study has been carried out, which was centered around
the characterization of the snap - through phenomena. The aim was to propose numerical,
analytical and measurement methods which are capable of predicting how an elastic shell
with a specific geometry will behave during different loading condition.

A tématerületen végzett korábbi munkáim során egy numerikus szimulációs környezet
került kialakításra, amely alkalmas az elliptikus héjak viselkedésének elemzésére. Ezt
követően egy kísérleti berendezést terveztem és építettem meg, amely a héj által bezárt
térfogat felfújásán alapul. Ezzel a kísérleti elrendezéssel a folyadékon keresztül érjük el a
héj külső terhelését, így annak átpattanását egyik stabil helyzetéből a másikba. A kísérleti
berendezés kereskedelmi forgalomban beszerezhető alkatrészekből épült, különös figyelmet
fordítva a berendezés egyszerűségére. A dolgozatban bemutatott harmadik módszer a
héjak analitikus modellezése volt.

After the methods has been established, a comparison study has been carried out: three
main types of shell geometry was selected and they were tested according to the presented
methods. The results proved, that the methods are in good agreement with each other.
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Further lines of inquiry are set out in the following ideas:

• a time - dependent study of the snap - through phenomenon,

• more experimental tests, to tune the controller of the fluidic control board,

• derive the analytical theory for this exact material based on Hill [30, 31].

7.2. A dolgozat összefoglalója

Az szerekezeti stabilitásvesztés problémája a mérnöki tervezésnek egyik legkritikusabb
lépcsőfoka. Hagyományos szerkezeteknél igyekeznek minél nagyobb biztonsággal elkerülni
az instabilitási problémákat. Azonban ezen instabilitások a megfelelő anyagból készült,
és megfelelő geometriával rendelkező szerkezetek esetén kihasználhatók, mivel a két stabil
helyzet közötti sokszoros alakváltozás sem jelent tönkremenetelt.

Dolgozatom során egy több lépcsőfokból álló tanulmányt végeztem el, amelynek kö-
zéppontjában vékony gumiszerű héjak átpattanási jelensége áll. A dolgozat célja olyan
numerikus, analitikus és mérési módszerek felállítása, amelyek képesek előrejelezni egy
adott geometriájú rugalmas héj viselkedését különböző terhelési körülmények között.

A fenti módszerek kidolgozása után összehasonlító vizsgálatot végeztem három héjgeo-
metriát kiválasztva. A számítási és mérési eredmények feldolgozása során megfigyelhető
volt, hogy a különböző módszerek eredményei jó egyezést mutatnak, amely egyben azt
is jelzi, hogy a kidolgozott és bemutatott módszerek képesek lágy, rugalmas héjak ezen
stabilitásvesztési problémáját karakterizálni.

További vizsgálati irányokat fogalmaznak meg az alábbi gondolatok:

• az átpattanás jelenségének időbeli vizsgálata,

• több mérési program elvégzése, a mérőberendezés szabályozásának pontosítása,

• analitikus számítások levezetése Hill nyomán [30, 31].
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A
The geometric description for FE models
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Figure A.1: The geometry and its parameters
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Appendix A. The geometric description for FE models

The coordinates of each point can be easily obtained in the y direction using the opening
angles and the radii, but in the x direction we need to calculate the intersection points
of primitive geometric shapes, such as circles, ellipses, and lines. The x coordinate of the
first four points is zero because these are laying on the axis of rotation. Their y coordinate
can be easily obtained using the parameters Bi, Ro, and the shells’ thickness. The first
intersection point which needs to be calculated is the x coordinate of the point P5, which
can be constructed using the intersection (is. in further readings) of a circle and a line,
such as:

x2 + (y − ∆)2 =
(
Ro + to

2

)2
circle and the y = ∆ +Ro cos θo line is. (A.1)

from which the x coordinate is expressed by substituting the second equation into the
first:

x5 =
√(

Ro + to
2

)2
− (Ro cos θo)2. (A.2)

Point P6 can be written in terms of the inner and the outer cap’s parameters as well.
First, the outer cap’s circle and The point P6 can be described by the geometric parameters
of both the inner and outer shells. First, considering the outer shell, we look for the
intersection of a circle and a line in the form:

x2 + (y − ∆)2 =
(
Ro − to

2

)2
circle and the y = ∆ +Ro cos θo line is. (A.3)

from which the x coordinate:

xo
6 =

√(
Ro − to

2

)2
− (Ro cos θo)2. (A.4)

The same point with respect to the inner cap’s parameters as:

x2(
Ai + ti

2

)2 + y2(
Bi + ti

2

)2 = 1 ellipse and the y = re cos θi line is. (A.5)

from which the x coordinate can be obtained as:

xi
6 =

√√√√√√
1 − r2

e cos2 θi(
Bi + ti

2

)2

 ·
(
Ai + ti

2

)2
, (A.6)

where re is the length of the line drawn from the origin to an arbitrary point on the
ellipse defined by the opening angle θi. The formula can be obtained from the polar
coded description of the ellipse, given as

re = AiBi√
A2

i sin2
(

π
2 − θi

)
+B2

i cos2
(

π
2 − θi

) , (A.7)
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which can be interpreted using the figure below:

x

y

Bi

Ai

Figure A.2: Interpreting the length of the vector pointing to a given point on the ellipse

The coordinates of points P7 and P8 can be easily calculated using the radius and thickness
of the ring, respectively, thus they are not discussed in detail. Finally, the point P9 is
defined by

x2(
Ai − ti

2

)2 + y2(
Bi − ti

2

)2 = 1 ellipse and the y = re cos θi − tr line is. (A.8)

from which the x coordinate:

x9 =

√√√√√√
1 − (re cos θi − tr)2(

Bi − ti

2

)2

 ·
(
Ai − ti

2

)2
. (A.9)

Using the notations shown in Fig. A.1 and the derivations, the coordinates of each point
are summarized below:

P1 =
(

0, Bi − ti
2

)
, (A.10)

P2 =
(

0, Bi + ti
2

)
, (A.11)

P3 =
(

0, ∆ +Bi − to
2

)
, (A.12)

P4 =
(

0, ∆ +Bi + to
2

)
, (A.13)

P5 =
√(Ro + to

2

)2
− (Ro cos θo)2, ∆ +Ro cos θo

 , (A.14)

Pi
6 =


√√√√√√
1 − r2

e cos2 θi(
Bi + ti

2

)2

 ·
(
Ai + ti

2

)2
, re cos θi

 , (A.15)

(A.16)
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Po
6 =

√(Ro − to
2

)2
− (Ro cos θo)2, ∆ +Ro cos θo

 , (A.17)

P7 = (Rr, re cos θi) , (A.18)

P8 = (Rr, re cos θi − tr) , (A.19)

P9 =


√√√√√√
1 − (re cos θi − tr)2(

Bi − ti

2

)2

 ·
(
Ai − ti

2

)2
, re cos θi − tr

 . (A.20)

However, an enclosed volume is formed only if the outer and inner shells are in contact
at point P6, so the following expressions must hold:

xi
6 = xo

6 and yi
6 = yo

6. (A.21)

By comparing the y coordinates of (A.15) and (A.16), the distance between the center of
the ellipse and the center of the circle can be expressed as

∆ = re cos(θi) −Ro cos(θo). (A.22)

Similarly, by comparing the x coordinates, we can conclude that the radius of the outer
shell can be expressed by the following quadratic equation:

Ro =
−B ±

√
(B2 − 4AC)
2A , (A.23)

where the coefficients are given by

A = 1 − cos2 θo, (A.24)

B = −to, (A.25)

C = t2o
4 −

(
xi

6

)2
. (A.26)

The conclusion is that the distance between the centers of the two shapes and the radius
of the outer shell are not independent parameters, they can be described using a function
in terms of the other parameters. It is important to note that Eq. (A.23) has two solutions
in general. The larger of the two should always be chosen, to ensure that the geometry
and the following calculations are correct. To ensure that the inflatable cavity is created,
we can use the constraint equations

y2 < y3 and θi < θo (A.27)
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which needs to be satisfied for each combination of the parameters. The coordinates of the
points defining the geometry can be easily calculated using a Python script, which first
calculates the radius according to Eq. (A.23), which is then used to calculate the center-
to-center distance expressed in Eq. (A.22). The program then computes all coordinates,
taking into account the constraint equations introduced in Eq. (A.27). Of course, the
ring’s radius (Rr) and thickness (tr), the outer shell’s opening angle (θo) and thickness
(to) must be defined too, but for the sake of simplicity, I do not treat them as input
parameters, instead, I calculate them by creating relations to the rest of the geometry
(because their values are not so determinant). The opening angle is chosen to be θo = 90◦

for all of the simulations. The geometric relations can be expressed such as the radius of
the ring must be bigger than the coordinate x5, thus

Rr = x5 + 0,05 · x5 = 1,05 · x5. (A.28)

The thicknesses are defined by the following expression:

tr = to = ti
2 . (A.29)

Using these assumptions, the axisymmetric geometry is defined using 4 input parame-
ters, which are used to describe the inner elliptical shell in its entirety. These parameters
are the semi-axes (Ai and Bi), the opening angle (θi) and the shell’s thickness (ti).
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B
Finite element modelling

B.1 Mesh independence study

A mesh independence study was carried out to ensure that the discretization is fine
enough. The used model does not differ from the ones that were introduced, only the
mesh size was changed. The model can be seen on the figure below, which has a geometric
properties of:

Ai = 22 mm, Bi = 18 mm, ti = 2.5 mm θi = 65◦. (B.1)

x

y

Figure B.1: The finite element model (left) with a coarse mesh (right)

The mesh size is automatically calculated by a program code, with the assumption,
that the outer shell (which has a thickness of to = ti/2) is divided into M number of
elements (M ∈ N+). Three cases were investigated, starting from M = 2, then M = 4
and eventually reaching M = 8.

The resulting pressure - volume curve from the model discretized with the finest element
size (M = 8) can be seen on the left of Fig. B.2. If we plot the relative error between the
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M8−M4 and the M8−M2 case, we can create a diagram which can be seen on the right
hand side of Fig. B.2. Taking a closer look, we can see that even the biggest difference
was around 2.2% between the M8 and M4 case (even in the case of M8 and M2 this
maxima is around 3.1%), which is negligible in the case of the original pressure range.

M 8  M 4
M 8  M 2

Figure B.2: The resulting pressure - volume curve from the finest mesh (left) and the relative
errors between the meshes (right)

As a consequence of this, we can be sure that our numerical calculations will be inde-
pendent of the mesh size, if we use the M = 4 division rule for all of our models.

B.2 Deformation of the measurement container

This section of the appendix contains a short study of the measurement container which
is made out of ABS, to prove that the occurring pressures does not deform it significantly.

The boundary conditions (fixed support at the bottom) and the loading by the pressure
(P = 20 kPa, which is beyond the expected range for the shells) can be seen on the figure
below. The mesh size was appropriately fine enough, and the results stated that the
maximum deformation of the container is around 0.09 mm.

Figure B.3: The boundary conditions and the results (deformation magnified by 50)

The material properties for the ABS was determined as E = 2.04 GPa, ν = 0.37 and
ρ = 1040 kg/m3 based on MatWeb.
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C
Characteristic of the used diaphragm pump

The characteristic of the diaphragm pump is defined by a voltage - volume flow rate
curve. We can create a simple measurement setup, to deduct this relationship as follows:

1. Set up a range of voltage inputs: 5, 6, ... 12 (V), note that the pump cant operate
below 5 V of input voltage.

2. Operate the pump for one minute for each input, and measure the volume of the
fluid at the destination vessel.

3. Graph the correlation between these.

Experimental data
Fitted  line

Q = 32.46  U

R2 =0.999

Figure C.1: The linear pump characteristic
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D
Optimization script for the equivalent circle

1 import numpy as np
2 import matplotlib . pyplot as plt
3 from scipy . optimize import curve_fit
4

5 # Parameters of the elliptical segment
6 A_ell = 22.0 # Semi - major axis
7 B_ell = 18.0 # Semi - minor axis
8 Q_ell = np. radians (60.0) # Opening angle
9

10 # Function to calculate the points of the elliptical segment
11 def ELLIPSEpoints (A,B,Q):
12 t = np. linspace (np.pi/2-Q, np.pi /2+Q, 1000)
13

14 x = A * np.cos(t) # x coordinate
15 y = B * np.sin(t) # y coordinate
16

17 return x, y
18

19 # Function to calculate the radius of ellipse at a point defined by Q
20 def ELLIPSEradius (A,B,Q):
21 S = np.sin(np.pi/2-Q)
22 C = np.cos(np.pi/2-Q)
23

24 r = A*B/np.sqrt(A**2*S**2 + B**2*C**2)
25

26 return r
27

28 # Function to calculate the points of the circular segment
29 def CIRCLEpoints (ellipse_x ,delta ,R):
30 x = ellipse_x
31 y = []
32

33 for i in range (len(x)):
34 yc = delta + np.sqrt(R**2 - x[i ]**2)
35 y. append (yc)
36

37 return y
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38

39 # Function to calculate the points of the circular segment with the obtained values
40 def CIRCLEobtained (R,delta ,Q):
41 t = np. linspace (np.pi/2-Q, np.pi /2+Q, 1000)
42 x = R * np.cos(t)
43 y = R * np.sin(t) + delta
44

45 return x, y
46

47 # The elliptical segment
48 x_ell , y_ell = ELLIPSEpoints (A_ell , B_ell , Q_ell )
49

50 # Find the best fitting circle with the initial guess of p0 = [delta , R]
51 constants = curve_fit ( CIRCLEpoints , x_ell , y_ell , p0=[-2, 22])
52 delta_cir = round ( constants [0][0] , 5)
53 R_cir = round ( constants [0][1] , 5)
54

55 # Find the opening angle of the circle by the law of sines
56 R_ell = ELLIPSEradius (A_ell , B_ell , Q_ell )
57 Q_cir = np. arcsin ( R_ell / R_cir *np.sin(np.pi - Q_ell ))
58

59 # Print the obtained values
60 print (f’The obtained parameters of the equivalent circle :\n* R = { R_cir } [mm],\n*
61 Q_cir = { round (np. degrees ( Q_cir ), 3)} deg.’)
62

63 # The circular segment
64 x_cir , y_cir = CIRCLEobtained (R_cir ,delta_cir , Q_cir )
65

66 # Plot the ellipse and the circle
67 plt. figure ()
68

69 plt.plot(x_ell , y_ell , linewidth =2)
70 plt.plot(x_cir , y_cir , linewidth =2)
71 plt. scatter (0, 0, s=10 , color =’C0 ’)
72 plt. scatter (0, delta_cir , s=10 , color =’C1 ’)
73

74 plt. legend ( labels =[ ’Ellipse ’, ’Circle ’])
75 plt.xlim(- A_ell *1.5 , A_ell *1.5)
76 plt.ylim( delta_cir *1.5 , B_ell *1.5)
77 plt.gca (). set_aspect (’equal ’, adjustable =’box ’)
78 plt. title (’Comparison ’)
79 plt. xlabel (’X’)
80 plt. ylabel (’Y’)
81 plt.grid ()
82 plt. savefig (’test.pdf ’)
83 plt.show ()
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