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Absztrakt

A szonokémia lényege kémiai folyamatok hatékonyságának a növelése ultrahangos besugárzás-
sal. Egy buborék az ultrahangos besugárzás hatására oszcillálni kezd, azaz periodikusan kitágul
és összeomlik. Bizonyos paraméterek mellett az összeomlás olyan nagy lehet, hogy a buborék
átmér®je és ezáltal a térfogata lényegesen lecsökken, így a buborékban lév® gáz nyomása és
h®mérséklete jelent®sen megn®. Ez az akusztikus kavitáció, amely kémiai folyamatokat in-
díthat be a buborékban. A szonokémiában a buborékok sugara néhány mikrométer és a be-
sugárzás frekvenciája az ultrahang tartományba esik (>20kHz). Egyetlen gömb alakú buborék
viselkedése leírható a Keller-Miksis egyenlettel és ez alapján az optimális paraméterek meg-
találhatók a lehet® legnagyobb kompresszió és hatásfok eléréséhez. Azonban egy szonokémia
reaktorban több millió buborék is lehet, és a buborék-buborék illetve a buborék-akusztikus tér
interakciók jelent®sen csökkenthetik a kompresszió hatásfokát.

Egy szonokémia reaktorban számos különféle buborék-buborék interakció el®fordulhat. A
legegyszer¶bb eset az összeolvadás és szétesés. Két egymáshoz közel elhelyezked® buborék a
kitágulás során összeolvadhat, illetve egy buborék széteshet több darabra egy összeomlás során.
El®fordulhatnak komplexebb jelenségek, például egy tengelyszimmetrikus buborékösszeomlás
során a buborékba a tengely mentén folyadéksugár áramolhat ami a buborékot szétszakítja,
ez a folyadéksugár képes környez® buborékokat is befolyásolni, például azok is széteshetnek.
A buborék hatással lehet az akusztikus térre a buborékösszeomlás és szétesés során, amikor
az nagy amplitúdójú nyomáshullámot bocsát ki, illetve a buborékok az akusztikus hullámot
kitakarják és csillapítják.

A buborék és akusztikus tér interakciók szimulálása komplex feladat, hiszen ehhez egyrészt
szükséges egy kétfázisú szimuláció a fázishatár pontos leírásával, ráadásul a fázishatár id®ben gy-
orsan változhat. Másrészt az akusztikus teret is szimulálni kell, amely a folyadék összenyomható
modellezését igényli. Harmadrészt a használt ultrahang hullámhossza (néhány milliméter) és a
buborék mérete (néhány mikrométer) között jelent®s méretbeli különbség van, így az akusztikus
tér és a buborékok együttes szimulációja nagyon nagy méretbeli különbséget igényel a nu-
merikus hálóban. A dolgozatban a már korábban többször használt ALPACA szoftver kerül
alkalmazásra. Az ALPACA képes többfázisú, összenyomható áramlások numerikus szimulá-
ciójára, így lehetséges mind a buborékok szimulációja, és az akusztikus tér �gyelembe vétele
is. Az ALPACA korszer¶ multiresolution algoritmust használ, amely a megfelel® paraméterek
mellett képes a hálót automatikusan beállítani úgy, hogy a buborék határfelülete akár 1000-szer
kisebb cellákkal kerüljön felbontásra, mint a tartomány buboréktól távolabbi részei.

A dolgozatban bemutatásra kerül az ALPACA megoldó és annak validálása szonokémiai
szimulációk szempontjából releváns paramétertartományban. Ezután két buborékot tartalmazó
tengelyszimmetrikus szimulációk beállításának a bemutatása következik és a különböz® buborék
interakciók is bemutatásra kerülnek. A cél a buborékok közti távolság hatásának a vizsgálalat
a dinamikára.
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Abstract

Sonochemistry is a �eld that aims to enhance the e�ciency of chemical processes through
the use of ultrasonic irradiation. When a bubble is exposed to ultrasonic waves in a liquid, it
undergoes oscillations, periodically expanding and collapsing. Under speci�c conditions, these
collapses can become substantial, resulting in a signi�cant reduction in the bubble's diameter
and, consequently, an increase in the pressure and temperature of the gas within the bubble.
This phenomenon is known as acoustic cavitation, and it can trigger chemical reactions within
the bubble. In sonochemistry applications, the bubbles typically have a radius of a few microm-
eters, and the irradiation frequency falls within the ultrasonic range (>20 kHz). The behavior of
a single spherical bubble can be mathematically described by the Keller-Miksis equation. Using
this equation, one can determine the optimal parameters to achieve the highest compression
and e�ciency. However, it's important to note that sonochemical reactors may contain millions
of bubbles, and interactions between these bubbles or between the bubbles and the acoustic
�eld can lead to a signi�cant reduction in compression e�ciency.

In a sonochemical reactor, various bubble-bubble interactions can occur. The simplest cases
involve merging and breaking up. When two bubbles are in close proximity, they may coalesce
during their expansion phases. Alternatively, a single bubble may break up into multiple smaller
bubbles during a collapse. More complex phenomena can also be observed. For instance, during
an axisymmetric bubble collapse, a jet of liquid may penetrate the bubble along its axis, causing
it to break apart. This process can also in�uence nearby bubbles, potentially causing them to
break up as well. Furthermore, bubbles can in�uence the acoustic �eld during both their collapse
and break-up phases. They may emit high-amplitude pressure waves or dampen the acoustic
wave in the surrounding environment.

The simulation of bubble-acoustic �eld interactions is a complex task, since it requires a two-
phase simulation with an accurate description of the phase boundary, and the phase boundary
can change rapidly over time. Additionally, simulating the acoustic �eld requires a compressible
�uid model. Complicating matters, there's a signi�cant size di�erence between the ultrasound
wavelength used (a few millimeters) and the bubble size (a few micrometers). Consequently,
simulating the acoustic �eld and the bubbles together necessitates a considerable disparity in
the cell size of the numerical mesh. In this paper, the ALPACA software is applied, which
has been previously employed for similar cases. ALPACA is capable of numerically simulating
multiphase compressible �ows, allowing us to simulate both bubbles and the acoustic �eld. An
advanced multiresolution algorithm in ALPACA automatically adjusts the mesh, ensuring that
the bubble boundary is resolved with cells up to 1000 times smaller than those used in regions
farther from the bubble.

This paper introduces the ALPACA solver and its validation within a parameter range
relevant to sonochemical simulations. The subsequent section outlines the con�guration of ax-
isymmetric simulations involving two bubbles and discusses various bubble interactions. The
primary objective is to explore the impact of the distance between bubbles on their dynamics.
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Notations

Notations used in the paper

Notation Explanation

a0 cell size on l0 level
amin minimum cell size
âavg non-sphericity based on square sum of modes
âdev non-sphericity based on deviation from a sphere
âmax non-sphericity based on max. mode amplitude
c speed of sound
cV speci�c heat capacity
d distance between bubble interfaces
e internal energy
f acoustic frequency
lm mth level of the multiresolution mesh
mb mass of the bubble
m̂b dimensionless mass of the bubble
p pressure
p0 ambient pressure
pA pressure amplitude
pb average pressure in the bubble
p∞ background pressure (Sti�ened Gas EoS)
t time
x radial coordinate (axissymmetric model)
y axial coordinate (axissymmetric model)
y0 center of bubble
u velocity in x-dimension
v velocity in y-dimension

D distance between bubble centers
D∗ dimensionless bubble distance
Dcell number of cells along the bubble diameter
R bubble radius (also equivalent radius)

R̃ equivalent bubble radius
R0 initial bubble radius (also equilibrium radius)
RE equilibrium bubble radius
Rspec speci�c gas constant
T temperature
Tb average temperature of the bubble
Vb volume of the bubble

γ ratio of speci�c heats
γ parameter of the Sti�ened Gas EoS
λ wavelength
ϕ level-set function
ρ density
ρb average density of the bubble
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1 Introduction

Sonochemistry studies the e�ects of ultrasound waves on chemical reactions and processes.
Its signi�cance lies in its potential industrial applications, which encompass the synthesis of
molecules, ultrasonic cleaning, and improved mixing due to irradiation. It holds promise in
various �elds of engineering and science. In chemical engineering, it o�ers an environmentally
friendly approach to molecule production. Green chemistry, with its focus on reducing the
emission and use of hazardous materials in processes, has gained increasing importance [1].
Sonochemistry can streamline highly complex, multistep chemical reactions, often requiring
fewer steps and enhancing e�ciency [2, 3]. It also �nds niche applications, such as the controlled
production of nanoparticles [4, 5]. In the food and pharmaceutical industries, sonochemistry
proves valuable for surface cleaning without the need for hazardous chemicals [6]. Furthermore,
ultrasound can be employed for water treatment [7].

The physical foundation of this method is a speci�c form of cavitation known as acoustic
cavitation. Due to the high-pressure amplitudes of the sound �eld, which can reach hundreds
of kilopascals, micrometer-sized bubbles form in the liquid. These bubbles experience rapid
expansion when the pressure in the surrounding liquid is low and contraction when the pressure
is high [8]. These expansion-contraction cycles occur quickly due to the ultrasonic frequency
of irradiation, typically exceeding 20 kHz. If the pressure amplitude is su�ciently high, the
contraction phase can be exceptionally intense in a short period, resulting in pressures inside
the bubble reaching several megapascals, and temperatures soaring to thousands of Kelvins.
This phenomenon is referred to as acoustic cavitation. Unlike most engineering applications,
in sonochemistry, cavitation is a deliberate and essential phenomenon. Bubbles and cavitation
serve as the fundamental elements of every sonochemical application, creating the extreme
conditions under which chemical reactions can take place. For instance in ultrasonic cleaning,
the collapse of bubbles near a surface generates high-velocity jets that can kill bacteria or
remove contaminants from surfaces.

Generator

Liquid tank

Ultrasonic
transducerInlet of

ultrasound

Figure 1.1: Parts of a sonochemical reactor

1.1 Sonochemical reactors

Sonochemical reactors are relatively straightforward to construct. They typically involve the
insertion of an ultrasonic transducer into a liquid tank, as illustrated in Figure 1.1. This trans-
ducer is connected to an electrical function generator. Typically, a sinusoidal excitation is used
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with a speci�ed frequency f and amplitude pA, which can be adjusted on the generator. These
are the most crucial control parameters because they are the easiest to modify. In Figure 1.1,
the ultrasound source is located to the north, and the sound wave propagates towards the south
wall, where it is re�ected. The combination of the wave traveling south and the re�ected wave
traveling north can create a standing wave if the distance between the wall and the inlet (l)
corresponds to a multiple of half the wavelength (λ), which is expressed as

l = n · λ
2
, where n ∈ N+. (1.1)

Depending on the application, a multi-frequency excitation can be applied, which may help en-
hance cavitation [9]. The type of liquid is application-dependent, furthermore particles or gases
are usually also dissolved in the liquid. Water can be used to create hydrogen or ammonium;
however, the production of carbon nanotubes requires chlorobenzene with ZnCl2 particles [10].

Microbubbles are typically generated when the high-pressure ultrasound is activated, lead-
ing to the coalescence of pre-existing nanobubbles, which are bubbles with a sub-micrometer
radius. In some instances, gas is introduced directly into the liquid tank to create new bub-
ble nuclei and accelerate the bubble formation process. Large bubbles can readily fragment
into numerous smaller ones, constituting another signi�cant means of bubble generation. These
methods commonly yield a cloud of bubbles containing hundreds of thousands or even millions
of individual bubbles. Alternatively, bubbles can be generated one at a time using short laser
pulses. In this scenario, a substantial amount of energy is deposited in the liquid, causing lo-
calized evaporation [11]. This technique is often employed in experimental setups to investigate
the behavior of individual bubbles because it allows for the nearly precise replication of the
same bubble multiple times.

The ultimate objective is to establish a modeling framework capable of simulating an entire
sonochemical reactor, thereby enabling the determination of the chemical output based on
the input parameters, which can be then used for parameter optimization. This comprehensive
simulation necessitates the modeling of various components, including the bubbles, the acoustic
�eld and the chemical reactions. Furthermore, as a reactor can house millions of bubbles,
interactions between these bubbles and their impact on acoustic damping become signi�cant.
These interactions and acoustic damping have the potential to diminish the reactor's e�ciency.
Consequently, for a precise reactor simulation, it is important to account for these e�ects.

1.2 Modeling of single-bubbles

Modeling single bubbles in an acoustic �eld is relatively straightforward when assuming a
spherical shape. The Gilmore equation provides a suitable framework by considering the com-
pressibility of the liquid, surface tension, and the primary e�ects of viscosity. However, it op-
erates under the assumption of a small density variation in the liquid [12]. In sonochemistry,
the Keller-Miksis equation is the widely used model. This equation incorporates the e�ects
of surface tension, full viscosity, and acoustic radiation [13]. The Keller-Miksis equation is a
second-order di�erential equation for the bubble radius R, which is expressed as:(

1− Ṙ

c

)
RR̈ +

(
1− Ṙ

3c

)
3

2
Ṙ2 =

(
1 +

Ṙ

c
+

R

c

d

dt

)
(p− p∞(t))

ρ
, (1.2)

where c is the sound speed in the liquid, p is the far-�eld pressure and ρ is the density of
the liquid. The acoustic excitation is included through the p∞ pressure term, in a sinusoidal
standing wave

p∞ = pA sin
(
ωt
)
, where ω = 2πf. (1.3)
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In the event of a substantial bubble collapse initiating from a large bubble, the spherical shape
is no longer maintained as the surface tension force is not strong enough to keep the bubble
spherical. The modeling of non-spherical bubbles is a more complex task, although several
simpli�cations can be made. When a bubble experiences excitation along a single axis, the
resulting shape oscillation is axisymmetric. This axisymmetric bubble surface at a speci�c time
t can be described using polar coordinates r and θ [14], as illustrated in Figure 1.2d. As long as
the bubble shape is axissymmetric the bubble surface S is assumed in a general Fourier-series
form as [15],

S(r, θ, t) = r −R(t)−
∞∑
n=1

an(t)Pn(cos(θ)) = 0, (1.4)

where an is the nth mode amplitude, Pn is the nth Legendre polynomial, and Pn(cos(θ)) func-
tions are the orthogonal basis of the general Fourier series. The �rst few mode shapes are
illustrated in Figure 1.2, the 0th mode corresponds to the radial dynamics R(t), the 1st mode
is the translational motion of the bubble and higher modes describe the deviation from the
spherical shape.

The Keller-Miksis equation can be expanded to incorporate the oscillations of these axisym-
metric surface modes, enabling the description of non-spherical bubble oscillations. However,
this approach assumes small surface oscillations, typically requiring the amplitudes of the modes
to be signi�cantly less than the bubble radius, i.e., an ≪ R. This approach is commonly referred
to as the Reduced Order Model (ROM), which consists of a set of coupled di�erential equations
governing the bubble radius R and the surface modes ai. The ROM is grounded in perturbation
theory and assumes potential, inviscid, and incompressible �ows. For this application additional
terms are incorporated, to allow the description of weekly-viscous and weekly-compressible cases
[16].

(a) Mode 0 (Radius) (b) Mode 2 (c) Mode 3
(d) De�nition of polar

coordinates r and θ

Figure 1.2: Illustration of the �rst few axisymmetric modes (with y-axis of symmetry) and the
description of a perturbed bubble surface using polar coordinates r and θ.

When the amplitude of surface oscillations becomes substantial, the reduced-order model is
no longer suitable. Large surface oscillations can potentially lead to bubble breakup, and such
scenarios can only be e�ectively examined through measurements or multiphase hydrodynamic
simulations. Multiphase hydrodynamic simulations of microbubbles can be performed using
computational tools such as OpenFOAM [17, 18], ALPACA [19], and self-developed research
software [20]. In numerical simulations, the bubble interface can be represented using the Vol-
ume of Fluid (VoF) technique. In VoF, a transport equation is formulated to determine the
volumetric fraction of a particular phase within a cell. A volume fraction of zero indicates the
absence of that phase in the cell, while a volume fraction of one means the exclusive presence
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of the phase. Level-set methods are another approach that provides a sharp representation of
the interface [21]. A level-set function is used, where cells with negative level-set values belong
to the �rst phase, while those with positive level-set values belong to the second phase. It's
worth noting that level-set methods are known to exhibit mass loss in cases of signi�cantly
deformed interfaces [22]. Similar to VoF, a transport equation is employed to track the inter-
face's evolution. Direct measurements of non-spherical bubbles and the determination of their
surfaces are possible, but they require advanced optical systems and high-speed cameras [23,
24]. These experimental setups can also serve as valuable validation cases for computational
�uid dynamics (CFD) simulations.

1.3 Multi-bubble systems

As previously mentioned, sonochemical reactors contain millions of bubbles. These bubbles can
break up during collapse if the surface oscillations become too large. In such cases, several new
bubbles are created. Additionally, bubble jets can cut through a bubble, although a jet itself
does not create new bubbles; it may impact neighboring ones. A jet can occur when a large
pressure gradient exists between two sides of a bubble. This large pressure di�erence results
in a highly non-spherical collapse of the bubble, leading to the formation of a high-velocity
liquid jet through the bubble. The processes of jetting and breakup typically occur during the
collapse. Conversely, during the expansion phase, nearby bubbles may coalesce, resulting in the
creation of a new bubble formed by the combination of two existing bubbles [25].

Even when bubbles are positioned farther apart and do not coalesce during the expansion
phase, they still in�uence each other through various mechanisms. Firstly, cavitating bubbles
generate high-amplitude shockwaves in the surrounding liquid. These shockwaves then propa-
gate and impact other nearby bubbles, with the shockwave amplitude decaying with distance.
Therefore, bubbles in proximity are most signi�cantly a�ected by these shockwaves. Secondly,
the presence of multiple bubbles in the liquid can lead to distortions in the acoustic �eld.
Since each bubble may experience a di�erent pressure change, the acoustic �eld is not uniform
when multiple bubbles are involved. Thirdly, bubbles in the system dissipate the energy of
the acoustic waves, which can have an impact on neighboring bubbles and the overall system.
It's important to note that these e�ects between bubbles, while distinct, are interconnected.
For example, one cause of energy dissipation is the emission of shockwaves by the bubbles,
highlighting the complex interaction of factors in a multi-bubble system.

The majority of the aforementioned bubble interactions have unfavorable implications. From
a chemical perspective, the primary objective is to achieve the highest possible compression of
a bubble. However, processes such as bubble breakup or the formation of a jet can signi�cantly
hinder the compression. In these cases, a substantial portion of the energy is diverted towards
the generation of a high-velocity liquid jet instead of producing the desired high pressures and
temperatures within the bubble. The emission of high-amplitude shockwaves by a collapsing
bubble is another disruptive factor, as these shockwaves can impact neighboring bubbles, po-
tentially destabilizing their otherwise spherical surfaces. This destabilization can lead to bubble
breakup or jet formation during subsequent collapse events. The distortion of the acoustic �eld
around the bubble is also problematic, as it reduces the pressure amplitude and results in
a smaller collapse. Additionally, distorted acoustic �elds may give rise to signi�cant pressure
gradients, increasing the likelihood of bubble jet formation during collapse.

Multi-bubble systems can be simulated using the Keller-Miksis equation with the inclusion
of a coupling term that takes into account the compressibility of the liquid and radiation
coupling [26]. However, this method assumes spherical bubbles, and the coupling is treated as
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instantaneous, neglecting the delay caused by the speed of sound. The investigation of multi-
bubble systems using this approach is e�ective primarily when there is signi�cant distance
between the bubbles. In cases where the bubbles are closely positioned, the spherical shape
is lost during collapse due to �attening [27]. Nonetheless, this approach still yields valuable
insights. For instance, there are scenarios where the bubbles positively in�uence each other,
allowing for higher compression ratios [28].

1.4 ALPACA compressible multiphase �ow solver

The requirements for a hydrodynamic simulation of excited microbubbles are numerous:

1. Multiphase simulation: It is necessary to perform a multiphase simulation that de-
scribes the interface and calculates surface tension.

2. Compressible formulation: A compressible formulation must be used, as the simulation
needs to account for acoustic waves and collapsing bubbles.

3. Handling of negative pressures: High-pressure amplitudes can create negative pres-
sures in the liquid, if the pressure amplitude pA exceeds the ambient pressure p0. The
presence of negative pressure in the liquid can pose challenges for certain methods of in-
terface handling. For instance, the Volume of Fluid (VoF) method is known to encounter
issues when negative pressure values coexist with large pressure gradients [17].

4. Mass conservation: It is essential to ensure the conservation of mass for the bubbles. As
mentioned earlier, the level-set method is known to dissipate mass through the interface.

5. Shockwave capture: Cavitating bubbles can produce shockwaves, and accurately cap-
turing these shockwaves is crucial for investigating their e�ects on the surroundings. This
requires the use of numerical schemes with low arti�cial dissipation, such as high-order
Weighted Essentially Non-Oscillatory (WENO) methods [29].

6. Dealing with scale di�erences: Large di�erences in scale must be addressed. The size
of the computational domain should be at least one wavelength to simulate a standing
wave. For a typical case, this means that the domain size, denoted as l, should be as
follows,

l = λ =
c

f
=

1500m/s

100 kHz
= 15mm.

The bubble sizes relevant to sonochemistry are typically below 50 µm, resulting in nearly
three orders of magnitude di�erence between the domain size and the bubble size. This
substantial scale di�erence necessitates speci�c numerical meshes.

In addition to the six criteria mentioned above, achieving a su�cient spatial resolution of the
bubble is important. For collapsing bubbles, high temporal resolution is also required. Meet-
ing these requirements, the ALPACA solver stands out as a good choice. It was purposefully
developed for studying compressible and multiphase phenomena [30]. ALPACA allows for the
application of high-order, non-dissipative numerical schemes to accurately capture shockwaves
[21]. ALPACA's meshing process is relatively straightforward, employing a multiresolution al-
gorithm that automatically re�nes the mesh as needed. In this algorithm, the maximum number
of re�nements, denoted as lmax, can be set. Based on this value and the domain size, the min-
imum cell size can be determined. Another crucial parameter is the tolerance of re�nement,
denoted as ε. Higher ε values result in the re�nement of only the most important details with
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the largest changes, which, in most cases, includes the bubble interface. Figure 1.3a displays the
mesh on the interface of a collapsed bubble, illustrating the highest resolution at the interface,
with cell size increasing farther away from it. By decreasing the ε value, other details, such
as shockwave fronts, can also be re�ned. Figure 1.3b demonstrates the higher resolution at a
wavefront.

(a) Mesh near a bubble interface (b) Higher resolution at a shockwave front

Figure 1.3: Examples of multiresolution meshes in ALPACA bubble simulations using tolerance
ε = 0.01. The coloring is based on the pressure in the liquid and on the velocity magnitude in
the gas phase according to the colorbar.

In ALPACA the interface between phases is tracked by a sharp level-set method. The level-
set method was mentioned previously in Section 1.2. The following transport equation is solved
to track the interface,

∂ϕ(x, y, z)

∂t
+ uϕ · ∇ϕ(x, y, z) = 0, (1.5)

where ϕ(x, y, z) is the level-set function. The level-set function gives the signed non-dimensional
distance from the interface. The interface is given by

ϕ(x, y, z) = 0, (1.6)

and a value of |ϕ| = 1 means that the point is one cell size away from the interface. Positive
signs in ALPACA are assigned to the �rst phase, while negative signs represent the second
phase. To preserve the non-dimensional distance property of the level-set, ALPACA employs
level-set reinitialization in every time step. Additionally, a cuto� is applied in cells that are
located farther away from the interface, limiting the absolute value of |ϕ| and preventing far-
�eld �uctuations of the level-set. One notable drawback of ALPACA is the issue of mass loss at
the interface, primarily due to the discretization errors in the level-set reinitialization [31]. As a
countermeasure, it is essential to track the mass of the bubble in simulations to avoid excessive
dissipation that could lead to non-physical outcomes.
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The ALPACA simulations produce xdmf output �les in HDF5 format, which can be im-
ported into CFD post-processing softwares like Paraview. Given the large number of simula-
tions, post-processing is fully automated for e�ciency and reproducibility, utilizing Paraview's
Python extension. A post-processing script was developed by myself, which calculates various
quantities, including equivalent radius, average bubble pressure, bubble mass. The initial script
was detailed in my 2021 TDK work [32]. Subsequently, it has been updated to incorporate
surface modes, and the script has been extended to handle multi-bubble simulations. While the
Paraview GUI is still used for generating contour plots of scalar and vector �elds, the scripting
automation greatly enhances the e�ciency of the process.

1.5 Goal

In this study, the ALPACA compressible multiphase �ow solver is employed for conducting
multi-bubble simulations. The study focuses on the validation of bubble simulations in AL-
PACA, as well as the setup for simulating multiple bubbles in an axisymmetric scenario. The
primary objectives of this work can be summarized as follows:

1. Demonstrating that ALPACA can e�ectively simulate both spherical and non-spherical
bubbles across a wide range of parameters relevant to sonochemistry. It's worth noting
that while some of this work was covered in last year's TDK, several new results are
introduced.

2. The Keller-Miksis equation can describe the radius�time curves of non-spherical bubbles,
as long as the distortion is not too large. An additional goal is to determine a quantitative
threshold for the equation's applicability, based on the extent of non-sphericity.

3. After the numerical setup is thoroughly validated a multi-bubble simulation is created.
The objective is to identify a distance limit beyond which bubbles have little in�uence on
each other. In Section 1.3 several bubble interactions have been described, in theory their
e�ect reduces with distance. Finding an exact limit is important from the practical point
of view, as it enables the calculation of the maximum number of bubbles that can be
accommodated within a given volume. This, in turn, allows us to estimate the reactor's
chemical output.

4. Di�erent bubble interactions are explained based on the simulation results. The primary
focus is on describing their e�ects on bubble dynamics, with the focus placed on the
maximum compression, as this factor is closely related to the chemical yield.
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2 Validation

The validation of ALPACA was the subject of the previous year's TDK, it included a detailed
convergence study of the simulations for several parameter combinations [32]. Altogether 27
parameter combinations were tested and compared to measurements and other models. This
section gives a short summary about previous work and highlights new �ndings not yet included
in the previous papers.

2.1 Spherical validation

2.1.1 Simulation setup

An axisymmetric setup was used in the bubble simulations, as shown in Figure 2.1a. The x-
and y-axes correspond to the radial and axial directions, respectively. The domain size is b× l,
where l = n ·λ and n ∈ N+. The bubble was placed in the middle of the domain with its center
at y0 = l/2. The level-set can be initialized as

ϕ(x, y) = −R0 +
√
x2 + (y − y0)2, (2.1)

where R0 is the initial bubble radius. The boundary conditions are illustrated in Figure 2.1a.
A wall is present on the south and north sides, causing waves to be re�ected. On the east
side, a zero-gradient boundary condition is applied, while the west side serves as the axis of
symmetry. The standing wave is generated through the initial conditions. The derivation of
the velocity and density of a standing wave can be found in the Appendix at Section 5.2. The
initial conditions in the liquid phase come from setting t = 0, in Equation (5.29)-(5.31),

pl(x, y) = p0, (2.2)

ul(x, y) = 0, (2.3)

vl(x, y) = − pA
cρ0

sin
(
ky
)
and (2.4)

ρl(x, y) = ρ0, (2.5)

where pl is the pressure, ul is the x-directional velocity, vl is the y-directional velocity, ρl is the
density in the liquid phase and k = 2π/λ. The initial conditions in the bubble correspond to
the equilibrium condition, that is

pb(x, y) = p0 +
2σ

R0

, (2.6)

where pb is the bubble pressure, σ is the surface tension and R0 corresponds to the equilibrium
radius RE. The initial velocities are zero and the density is set according to the ideal gas
Equation of State (EoS),

ub(x, y) = 0, (2.7)

vb(x, y) = 0 and (2.8)

ρb(x, y) =
pb(x, y)

(γb − 1)cV Tb
, (2.9)

where ub is the x-directional velocity, vb is the y-directional velocity and ρb is the density in the
gas phase (i.e. bubble). In both phases the sti�ened gas EoS is used [33],

p = (γ − 1)ρe− p∞, (2.10)
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where e is the internal energy and γ, p∞ are the parameters. In the gas phase p∞,g = 0, thus
the sti�ened gas EoS results in the ideal gas law and γg = 1.4 is the ratio of speci�c heats. The
speed of sound can be calculated from the parameters as,

c =

√
γl
p∞,l + p0

ρ0
. (2.11)

For the spherical validation γl = 4.4 and p∞,l = 6 · 108 Pa are adopted from the literature [34],
which corresponds to c = 1624.8m/s. The simulation settings are summarized in the Appendix
in Table 5.1 under column #1.
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(a) Boundary conditions

and dimensions in the axis-

symmetric setup (b) Simulation results at pA = 0.7 bar

Figure 2.1: Spherical validation (left) setup (right) a simulation result

As we know already ALPACA can be used for spherical bubble simulations if the following
conditions are met [35, 32]:

� The bubble resolution is large enough. Based on prior experiences, it has been established
that the error and mass dissipation at the bubble interface are proportional to the cell size
at the surface of the bubble. To attain the minimum cell size at the bubble interface, the
multiresolution meshing parameters in the simulations must be con�gured accordingly.
In the case of ALPACA, the interface can be meshed with the smallest cells if a low
tolerance is set; in practice, ε < 0.1 achieves the desired mesh. The bubble resolution can
be quanti�ed as

Dcell =
2R0

amin
, (2.12)

where R0 is the bubble radius and amin is the minimum cell size. Equation (2.12) ex-
presses the number of cells along the bubble diameter, assuming the smallest resolution is
used uniformly across the entire bubble. It is important to note that although resolution
jumps might occur within the bubble, what matters most is the number of cells along
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the circumference, which is always approximately πDcell. For optimal results in modeling
spherical dynamics, it is recommended to use Dcell ≥ 100. Additionally, it's worth noting
that mass loss is proportional to (D−2

cell), which means that doubling the resolution results
in only one-fourth of the mass being dissipated on average.

� The simulation domain must be large enough. Previous research, as documented in my
work [36], has indicated that in smaller domains, the standing wave can experience damp-
ing, particularly at high frequencies. In practice, it is advisable to set the width and length
of the simulation domain to be at least equal to one wavelength to avoid this damping
e�ect.

Based on the previous points, the bubble resolution was set to Dcell = 218 and the domain size
was 3λ× 3λ throughout the spherical validation.

2.1.2 Quanti�ng the non-sphericity

In my earlier research, the determination of a bubble's deviation from a perfect spherical shape
was primarily reliant on visual assessment. Nevertheless, more precise and objective methods
can be created for this purpose. The methods to quantify the non-sphericity of bubbles are
all based on the surface modes ai (see the �rst few modes in Figure 1.2). The overarching
concept is to compute a single metric from these surface modes, allowing for the quanti�cation
of sphericity. This sphericity can be quanti�ed using a variety of techniques.

1. Based on individual surface modes. The criterion for determining when a bubble can no
longer be considered spherical is based on the condition that if any dimensionless surface
mode amplitude surpasses a speci�ed threshold M , the spherical shape is considered lost
at a time t = t∗. Mathematically, this condition is expressed as,

âmax(t
∗) = max

i

(
ai(t

∗)

R(t∗)

)
≥ M, (2.13)

where ai/R is the dimensionless mode amplitude. This method is straightforward, but
it has a limitation. The drawback is that while it checks whether any individual mode
exceeds the threshold M , it may not account for situations where several modes are close
to M but none of them surpass it. As a result, a bubble can still be classi�ed as spherical,
even if it exhibits noticeable non-spherical characteristics. For example, as depicted in the
two bubble shapes on the right side of Figure 2.2, both have âmax = 0.5, but they display
distinct visual di�erences, with one appearing almost broken up despite having the same
âmax.

2. Based on the sum of the surface modes squared. In this case, all surface modes are taken
into consideration. The spherical shape is considered to be lost at time t = t∗ if

âavg(t
∗) =

√√√√ N∑
i=2

(
ai(t∗)

R(t∗)

)2

≥ M. (2.14)

This method correctly assigns a signi�cantly larger value to the bubble shape in the right
of Figure 2.2.
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âmax = 0.050 âmax = 0.090 âmax = 0.5 âmax = 0.5
âavg = 0.055 âavg = 0.145 âavg = 0.548 âavg = 0.707
âdev = 0.030 âdev = 0.080 âdev = 0.278 âdev = 0.402

Figure 2.2: Di�erent surface deformations and corresponding non-sphericity measures

3. Based on the deviation from the spherical shape. The bubble's surface can be described
as r(t, θ) (see. Equation (1.4)) and the deviation from the perfect spherical shape can be
represented as R− r(t, θ). Its square can be integrated in dimensionless form as

â2dev(t) =

∫ π

0

(
1− r(t, θ)

R(t)

)2

sin(θ)dθ, (2.15)

where sin(θ) is employed as a weighting factor. This choice means that near the axis (θ ≈ 0
and θ ≈ π) the weight is relatively small, while it approaches 1 near the largest extent
(θ = π/2). The de�nition of θ was previously illustrated in Figure 1.2d. Interestingly, âdev
can also be derived from the mode amplitudes

â2dev(t) =
∞∑
n=2

(
2

2n+ 1
â2n(t)

)
, (2.16)

since the Legendre polynomials form an orthogonal basis and the ai mode amplitudes
can be regarded as coe�cients of a generalized Fourier series. This also means that a
generalized form of Parseval's identity can be applied. The derivation of this formula,
along with a comprehensive explanation, is provided in Section 5.1 within the Appendix.
In that case the spherical shape is lost at t = t∗ if

âdev(t
∗) =

√√√√ ∞∑
n=2

2â2n(t
∗)

2n+ 1
≥ M. (2.17)

This approach also assumes that higher modes have progressively diminishing e�ects,
which is visually evident in Figure 2.3. As the mode number increases, the area between
the bubble's surface (continuous curve) and the ideal spherical shape (dashed line) be-
comes smaller. Therefore, it is apparent that a pure mode 4, for instance, causes less
deviation from the spherical shape compared to a pure mode 2 with the same amplitude.
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Mode 2, âdev = 0.158 Mode 4, âdev = 0.118 Mode 6, âdev = 0.098 Mode 8, âdev = 0.086

Figure 2.3: Pure bubble modes with âi = 0.25, i = 2, 4, 6, 8

Non-sphericity leads to a deviation from the Keller-Miksis equation, as this equation assumes
perfectly spherical bubbles. The relative error in this context can be de�ned as,

E(t) =
|R̃(t)−RKM(t)|

RKM(t)
, (2.18)

where R̃(t) is the equivalent radius in the ALPACA simulation and RKM(t) is the radius
predicted by the Keller-Miksis equation. The equivalent bubble radius is calculated from the
bubble volume Vb as

R̃(t) =
3

√
3Vb

4π
. (2.19)

With a clear de�nition for the error, all the necessary elements are in place to conduct simula-
tions and determine the limit of non-sphericity within which the Keller-Miksis equation remains
useful. To summarize, there are three methods to quantify non-sphericity, and examples of all
three can be observed in Figure 2.2, âavg is based on the square sum of the modes and âdev is
based on the integral of the weighted deviation from the spherical shape. The quantity âmax is
not used in the future as it cannot assess the non-sphericity properly.

Table 2.1: Time instances of reaching 10% error (t∗10%) and bubble split (tsplit) and the mass
lost at t10%

pA/bar 0.1 0.2 0.4 0.7 1.0 1.5

t∗10%/ms � � 0.0364 0.0273 0.0185 0.0202
tsplit/ms � � 0.0523 0.0285 0.0285 0.0273
m̂l(t10%) 0.61% 1.30% 1.26% 0.36% 0.50% 0.39%

2.1.3 Results

For the spherical validation, multiple cases were examined with di�erent frequencies and pres-
sure amplitudes. In the discussion that follows, we focus on a speci�c case where f = 120 kHz
and the pressure amplitude varies as pA = 0.1 bar . . . 1.5 bar. In Figure 2.1b snapshots of the
bubble can be seen, showing its expansion and subsequent collapse. Figure 2.4 displays the six
simulations conducted at f = 120 kHz with varying pressure amplitudes. The dashed black line
in the �gures represents the solution of the Keller-Miksis equation. Notably, for low pressure
amplitudes (pA ≤ 0.4 bar) there is a remarkable agreement between the simulations and the
Keller-Miksis equation. However, for higher pressure amplitudes, the simulation results start
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to deviate. This deviation occurs because the bubbles are no longer perfectly spherical, as ev-
idenced in Figure 2.1b at t = 0.018ms, while the Keller-Miksis equation assumes a spherical
bubble.
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Figure 2.4: Spherical validation results atf = 120 kHz. Dashed black line depicts Keller-Miksis,
vertical gray lines depict the 10% error threshold (t10), vertical dashed black lines show the
breakup of the bubbles (tsplit).
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Figure 2.5: Non-sphericity throughout the simulations based on both de�nitions (âavg and âdev),
the vertical gray and black lines show the 10% error and the split up times.

In the simulations the relative error E reaches 10% at the vertical gray lines in Figure 2.4,
these speci�c time instance are called t10%. Higher pressure amplitudes cause the bubble to
break up into pieces after a few cycles, the time of split-up is shown in Figure 2.4 with dashed
black lines, and these time instances are denoted as tsplit. Following the break-up the bubble
pieces still periodically expand and collapse, they can even coalesce again into a larger bubble.
When several small bubbles are present the total volume of all bubbles is used to calculate a
single equivalent bubble radius. The mentioned time instances, the average error until t10% and
the mass loss until t10% is summarized in Table 2.1. The mass lost m̂l is de�ned as

m̂l(t) = 1− m(t)

m0

, (2.20)
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where m0 is the starting mass and m(t) is the mass at time t. The mass loss is less than 1.3%
in each case as evidenced from the table.

The non-sphericity throughout the six simulations is depicted in Figure 2.5. In this �gure,
the red and blue lines represent the de�nitions of non-sphericity using âavg and âdev. It is evident
that for higher pressure amplitudes (pA ≥ 0.4 bar) the spherical shape is lost during bubble
collapses (t ≈ 0.01ms, t ≈ 0.02ms . . . ). During these instances, signi�cant spikes in the non-
sphericity can be observed according to both measures. However, if the spikes in â are not
excessively large, the deviation from the Keller-Miksis equation remains small. For instance,
consider the third bubble collapse at pA = 0.4 bar around t ≈ 0.028ms. This event results
in a spike of âavg = 0.29 and âdev = 0.14; however, this spike does not cause the error to
increase signi�cantly, and in the 4th cycle there is still good agreement between the Keller-
Miksis equation and the ALPACA simulation.

Based on the observations from Figure 2.5 it can be concluded that if the spikes in â during
a bubble collapse remain below the threshold

âavg < 0.2 and âdev < 0.1, (2.21)

then the subsequent expansion-collapse cycle can be accurately described by the Keller-Miksis
equation, which is a conservative estimate. In many cases even larger spikes in non-sphericity are
possible without exceeding a 10% error in the bubble radius. This implies that the Keller-Miksis
equation can e�ectively approximate the radial dynamics of an acoustically excited bubble, even
when the bubble is not perfectly spherical. This is because minor, stable surface oscillations do
not induce a signi�cant change in the radial dynamics.

(a) 1st simulation (t = 23.1 µs, t = 32.5 µs) (b) 1st measurement

(c) 2nd simulation (d) measurement (e) 3rd simulation (f) 3rd measurement

Figure 2.6: Modes forming in the ALPACA simulation and the measurement of Verluis. The
simulation results are colored based on the velocity magnitude, the pictures are taken by high-
speed cameras in the measurement.
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2.2 Non-spherical Validation

The validation of ALPACA for non-spherical bubble oscillations was previously discussed in a
TDK study, and it demonstrated good agreement between measurements and simulations in
terms of the bubble shape. Additionally, the dominant surface mode could be reliably deter-
mined [32]. Figure 2.6 provides a comparison between ALPACA simulations and measurements
by Verluis [37]. Each measurement and simulation used the same parameters, except for the
bubble radius. In the �rst case, with R0 = 36 µm, a 4th surface mode oscillation was observed
in both the measurement and simulation. Similarly, a good agreement can be found for the
3rd mode oscillation in the second simulation (R0 = 30 µm) and also in the third simulation
(R0 = 44 µm) for the 5th mode. Detailed information on the simulation parameters and settings
can be found in Appendix Table 5.1 column #2. These results demonstrate that ALPACA is ca-
pable of reproducing the measurements e�ectively, indicating its ability to accurately simulate
non-spherical bubbles.

2.3 Cross validation with ROM

Both ALPACA and the Reduced Order Model (ROM) have been validated using measurements.
The ROM, which consists of a coupled system of ordinary di�erential equations, is computa-
tionally e�cient and can simulate a single case in less than a minute. However, it is primarily
applicable for small surface perturbations. On the other hand, ALPACA simulations are more
computationally intensive and take hours to complete because they involve the full hydrody-
namics solution. Nevertheless, ALPACA can handle larger surface oscillations and even simulate
bubble breakups. The concept of cross-validation involves comparing the results obtained from
both the ROM and ALPACA. By creating a small initial perturbation in both methods, several
observations can be made:

1. If the bubble is spherically stable, the initial perturbation gradually damps down, this
behavior allows us to observe the spherical stability limit.

2. Surface mode oscillations that remain stable can occur beyond the spherical stability
limit. These cases can be categorized based on their dominant modes.

3. Surface oscillations can become unstable, this leads to a bubble breakup. By monitoring
this behavior, we can also determine the limit at which breakup occurs.

2.3.1 Initial shape in ALPACA

The bubble must be initiated from a perturbed state with a small perturbation. The most
challenging aspect is con�guring the level-set function. Let the initial level-set function be,

ϕ0(x, y) = −ρ ·R0 +
√

x2 + β · x · (y − y0) + α · (y − y0)2, (2.22)

where α, β are parameters to control the even and odd mode amplitudes, while ρ must be
determined to ensure that the initial volume V0 matches that of a sphere with a radius R0

(V0 = 4R3
0π/3). Based on the initial level-set the surface mode amplitudes can be calculated

for t = t0, and α, β can be tuned to achieve the desired perturbation. The level-set de�nes the
initial interface ϕ0 = 0 as

ρ2R2
0 = x2 + βx · (y − y0) + α(y − y0)

2. (2.23)
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A coordinate transform to the polar coordinates centered in y0 is the following,

x = r · sin(θ) and y = y0 − r · cos(θ). (2.24)

Applying the transformation to Equation (2.23), the r(θ) function can be found,

r(θ) =
ρR0√

sin2(θ) + α cos2(θ)− β sin(θ) cos(θ)
. (2.25)

A valid set of parameters to describe small initial deformations is,

α = 0.92, β = 0.3 and ρ = 0.9781. (2.26)

The bubble surface r(θ) is determined as shown in Equation (2.25). Using this information, the
mode amplitudes can be calculated, and the formula for deriving these mode amplitudes can
be found in the Appendix in Equation (5.8). Table 2.2 lists the dimensionless mode amplitudes
for the above-mentioned parameters. This initial perturbation results in a non-sphericity of the
initial shape, with âavg = 0.062 and âdev = 0.034, therefore, the perturbation can be considered
small.

Table 2.2: Dimensionless modes amplitudes, âi = ai/R

â0 â2 â3 â4 â5 â6 â7 â8
0.99651 0.03142 -0.04999 -0.00768 -0.01618 -0.00054 -0.00673 0.00003

2.3.2 Simulation settings

Three parameter studies were conducted, and the common parameters for each can be found
in column #3 of Table 5.1. In each parameter study, the frequency was held constant while the
bubble radius and pressure amplitude were adjusted in the ranges speci�ed in Table 2.3. The
output data from the ROM simulation was provided by Peter Kalmar, the data was further
process by myself. For each combination of parameters the dominant mode had to be identi�ed.
The dominant mode is the one with the largest amplitude. If the dominant mode amplitude
does not reach âi = 0.001, then the bubble is considered spherically stable.

Table 2.3: Parameters used in the studies

Frequency f Equivalent radius RE Pressure amplitude pA
30 kHz/120 kHz/480 kHz 0 µm . . . 80 µm 0kPa . . . 150 kPa

The dominant modes are plotted in the (R, pA) plane for the f = 30 kHz case in Figure 2.7.
The various colors correspond to the di�erent modes, as indicated in the legend. The gray line
shows the limit of spherical stability, below which the bubble is considered spherical according
to the ROM. Above the spherical stability line, where there is no color in the plot the bubble
undergoes breakup.

2.3.3 Results

Using the ROM results as a reference, several ALPACA simulations are conducted and com-
pared. The radius�time and mode amplitude�time curves for several pressure amplitude and
R0 = 47.5 µm are presented in Figure 2.8. From these simulations the following observations
can be made:
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1. For a low pressure amplitude (pA = 10 kPa) the initial perturbation in the modes damp
down as illustrated in Figure 2.8b. The bubble is considered spherically stable in that case,
and a gray point is marked in Figure 2.7 at the coordinates (R = 47.5 µm, pA = 10 kPa).
This point falls below the spherical stability limit, aligning with the ROM results.

2. For pressure amplitudes pA = 32 kPa and pA = 36 kPa, there is an initial large mode
3 oscillation observed during the �rst few acoustic cycles. However, this dampens down
and a stable mode 2 oscillation remains. The ROM predicts a dominant mode 2 for
pA = 32 kPa and a dominant mode 4 for pA = 36 kPa, which di�ers from ALPACA
results in the second case.

3. For a high pressure amplitude (pA = 42 kPa), the initial perturbation grows, leading to
bubble breakup at tsplit = 0.072ms. This breakup event is indicated by a vertical dashed
line in Figure 2.8h. For this particular parameter combination the ROM also predicts a
breakup.
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Figure 2.7: Parameter study results at f = 30 kHz, the background is colored based on the
ROM results and the dots show the ALPACA results.

In Figure 2.8 the radial dynamics is also depicted, and a remarkable agreement can be
found between the ALPACA (red line) and the ROM (black dashed line). The same classi�ca-
tion process was applied to all ALPACA simulations. In total, 62 ALPACA simulations were
conducted, with each simulation running for 24 hours on the SUPERMUC-NG supercomputer,
utilizing 1 compute node with 36 cores. In most cases, this computing time was su�cient to
run the simulations for at least 10 acoustic cycles, as shown in Figure 2.8, enabling the analysis
of long-term behavior. For lower frequencies, simulating the same number of acoustic cycles
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requires more time, as the period time is longer, and more time steps are necessary. Simulating
smaller bubbles necessitates a reduction in cell size, and in accordance with the CFL condition,
the time step size is also reduced. To account for these factors, the simulations were extended
for an additional 24 hours in the case of low frequencies and small bubbles.

The results of the simulations are presented in Figure 2.7, 2.9 and 2.10 overlaid on the ROM
results. Below the spherical stability limit, as determined by the ROM (gray line), the bubbles
in the ALPACA simulation also exhibit spherical stability. Slightly above the stability limit,
the surface mode oscillations remain small and cannot be seen in the ALPACA simulations in
some cases. For example in Figure 2.7, at (R = 57.5 µm, pA = 15 kPa), the modes amplitudes
are so small that they cannot be resolved by ALPACA with the given settings.

The stable surface mode oscillations generally show good agreement between the ROM and
the ALPACA simulations. However, there are some cases where discrepancies occur, particularly
for higher surface modes, as exempli�ed in Figure 2.9 at (R = 42.5 µm, pA = 25 kPa) and Figure
2.10 at (R = 18.6 µm, pA = 120 kPa). Additionally, cases with high surface mode amplitudes
above the validity limit can also exhibit di�erences, such as â2 > 0.3 in Figure 2.9 at (R =
17.5 µm, pA = 60 kPa). It is important to note that bubble breakup consistently occurs above
the region of stable surface oscillations. However, there are instances where the bubble does
not break up, although predicted by the ROM (e.g. Figure 2.10, R = 10.5 µm, pA = 80 kPa).
This can be attributed to the validity limit, as it assumes small perturbations in the surface
and may not accurately capture the behavior in cases with signi�cant surface perturbations.

Out of the 62 ALPACA simulations, 54 of them, or 87%, align with the ROM predictions.
The simulation results are summarized in Table 5.2 in the Appendix. Based on these obser-
vations, it can be concluded that the spherical stability limit and the stable surface mode
oscillations are accurately predicted by the reduced order model, as long as the validity limit
of the ROM is not exceeded. Currently, the reduced order model is known to provide good
agreement with measurements up to âi ≈ 0.2, meaning that the mode amplitudes should be at
most 20% of the bubble radius [16]. In summary, these results mean that ALPACA can indeed
be used for non-spherical bubble oscillations, as the spherical stability limit and stable surface
mode oscillations are predicted well in most cases.
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Figure 2.8: Radius and mode amplitudes for R0 = 47.5 µm in ALPACA (Black dashed: ROM)
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Figure 2.10: Parameter study results at f = 480 kHz
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3 Multi-bubble systems

In the previous section, it became evident that ALPACA is well-suited for accurately simulating
individual bubbles. However, single bubble simulations in ALPACA, in most instances, do not
yield new insights, as simpler models like the Keller-Miksis equation or the ROM can e�ectively
describe the behavior of individual bubbles. Conversely, systems composed of multiple bubbles
are considerably more challenging to model using these simpler approaches, and ALPACA can
be a powerful tool for analyzing such complex scenarios. The objective of this section is to
determine the point at which bubbles have minimal in�uence on each other, as this threshold
holds practical signi�cance for approximating the maximum number of bubbles in a reactor.
By establishing this maximum number, it becomes possible to predict the chemical output of
a reactor, as the output of a single-bubble is already known [38].

3.1 Setup

The axisymmetric model is kept to mitigate computational costs, but this choice limits the
study to a row of bubbles. While using standing waves for validation made sense in single bubble
simulations, as many experiments also employ standing waves [23], for future applications, the
need for a standing wave might not be imperative. The most signi�cant bubble collapse typically
occurs within the �rst few acoustic cycles, and chemical equilibrium is usually reached after a
few signi�cant collapses [38]. At this point, no further useful output product is generated. It
may su�ce to employ a traveling acoustic wave with only a few cycles for future applications.
In the upcoming multi-bubble simulations, only a single acoustic cycle is used.

Figure 3.1a illustrates the simulation setup, featuring two bubbles of the same size situated
within a domain of length l = 2λ and width b. The initial equilibrium bubble radius R0 is
the same for both bubbles, while the distance between the centers of the bubbles is referred to
as D, and the gap between the bubble surfaces is labeled as d = D − 2R0. The center of the
southern bubble is precisely located at y = λ+R0. Based on the previously de�ned quantities
a dimensionless bubble distance D∗ can be derived as

D∗ =
D

R0

. (3.1)

Initially, the bubbles are in a state of equilibrium, and the �elds are set up as described in
Equation (2.6)-(2.9). Boundary conditions are applied as follows: a symmetry boundary con-
dition on the west, and zero-gradient type boundary conditions on all other sides. The initial
conditions in the liquid phase are de�ned piecewise. In the north side (domain one), the liquid
is at rest,

pl,1(x, y) = p0, (3.2)

ul,1(x, y) = 0, (3.3)

vl,1(x, y) = 0 and (3.4)

ρl,1(x, y) = ρ0. (3.5)

where pl,1, ul,1, vl,1 and ρl,1 denote the pressure, x, y-directional velocity and the density in
the �rst domain, respectively. In second domain, an acoustic wave is de�ned to travel to the
north. The equations for traveling waves are derived from the continuity and the Navier-Stokes
equation in 1D in the Appendix (see Section 5.2). The wave is set according to Figure 3.1a.
First, the negative pressure reaches the bubble, causing it to expand. Then, during the positive
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pressure part, the bubble collapses swiftly. By setting t = 0 in Equation (5.32)-(5.34), the initial
conditions are as follows,

pl,2(x, y) = p0 + pA sin
(
ky
)
, (3.6)

ul,2(x, y) = 0, (3.7)

vl,2(x, y) =
pA
cρ0

sin
(
ky
)
and (3.8)

ρl,2(x, y) = ρ0 +
pA
c2

sin
(
ky
)
, (3.9)

where c is the speed of sound, pA is the pressure amplitude and k = 2π/λ. The initial pressure in
the simulation is illustrated in Figure 3.1b for pA = 1.5 bar. It is also evident that the simulation
domain is signi�cantly larger than the bubble size in each direction. The parameters for the
simulations can be found in Table 5.1 in column #4 in the Appendix.

symmetry

zero-
gradient

1

2

(a) Boundary and initial conditions. The

bubble radii are R0 and D is the distance

between the centers. The boundary con-

ditions and the initial pressure are also

denoted.

(b) Initial pressure in the do-

main. The coloring is according

to the pressure based on the

colorbar in the left. The region

around the bubbles is magni�ed.

Figure 3.1: Boundary and initial conditions in the multi-bubble simulations

Typical results of multi-bubble simulations are depicted in Figure 3.2. The top row shows the
acoustic wave traveling north, while the bottom row illustrate the bubbles. It can be observed
that the bubbles expand during the negative pressure phase of the excitation. For example, the
bubbles have a much larger radius at t = 11.62 µs than initially. During the positive pressure
phase, the bubbles collapse, as seen at t = 16.83 µs. The bottom bubble is already collapsed,
as the acoustic wave reaches it �rst. During the collapse, a pressure wave is emitted from the
bubbles, and these waves can be observed at t = 22.33 µs. The strength of the collapse, the
amplitude of the emitted pressure wave, and the shape of the bubble after collapse all depend
on the distance between the bubbles.

28



(a) t = 0 µs (b) t = 6.54 µs (c) t = 11.62 µs (d) t = 16.83 µs (e) t = 22.33 µs

Figure 3.2: Typical result of multi-bubble simulations at f = 50 kHz

3.2 Convergence

It is known that single-bubble simulations converge as the resolution is increased. A similar
study was conducted for a multi-bubble system, starting with a coarse mesh characterized by
Dcell = 88 and a maximum multiresolution level of lmax = 8. Two R0 = 40 µm bubbles were
placed D = 180 µm away from each other, resulting in D∗ = 4.5, the rest of the settings were
already described in the previous section. The maximum resolution level was then increased to
lmax = 9, which resulted in the halving of the cell size at the bubble interface. Finally, lmax was
increased to 10. This mesh re�nement approach focuses exclusively on enhancing the resolution
near the bubble interface, while maintaining the same resolution in regions farther away. Table
3.1 provides an overview of the mesh statistics for all three cases. As the number of levels is
increased, the bubble resolution doubles, and the cell size at the interface is halved with the
introduction of each additional level. However, it is worth noting that the total cell count does
not even double. Figure 3.3 illustrates the meshes in proximity to the bubble. In the case of the
coarse mesh, the entire bubble is uniformly resolved with the same cell size. As we transition
to higher resolutions, only the bubble's interface is resolved with the minimum cell size, and
there are noticeable resolution jumps within the interior of the bubble.

Table 3.1: Mesh statistics for di�erent resolutions

Resolution lmax Dcell #Cells #Cells in bubbles

Coarse 8 88 51 712 6 036
Medium 9 175 90 112 20 278

Fine 10 350 159 232 51 134
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(a) Coarse (b) Medium (c) Fine

Figure 3.3: Di�erent mesh resolutions near the bubble

The snapshots from the simulations are presented in Figure 3.4. Up to the moment of
the �rst bubble collapse, the results appear visually identical, with no notable di�erence. At
approximately t ≈ 12 µs, the bubble undergoes a collapse, and a liquid jet penetrates both
bubbles. In the case of coarse resolution, the liquid jet cannot be resolved adequately and fails
to penetrate the bubble. For medium and �ne resolutions, similar bubble shapes are observed
after the jetting. However, the �ne resolution o�ers more intricate details, such as some gas
being carried by the jet, and the formation of a bubble tail.

Figure 3.5 presents the surface modes, equivalent bubble radius, and bubble mass. The
top bubble is represented by a continuous line, while the bottom bubble is represented by a
dashed line, with di�erent colors denoting di�erent resolutions, as indicated in the legend. The
�rst mode corresponds to the translational motion of the bubble, the top bubble initially moves
slightly upwards as shown by the continuous curves in Sub�gure (a). Negative a1 values indicate
an upward motion based on the polar coordinate transformation de�ned earlier in Figure 1.2d.
During the collapse, the top bubble starts moving downward towards the other bubble, and
this motion remains consistent across di�erent resolutions. In contrast, the bottom bubble � as
indicated by the dashed curves in Sub�gure (a) � moves downward and then upward. Here, the
coarse resolution (red line) deviates more, but overall, a clear trend of convergence is observed.
For modes 2 to 4 (Sub�gure (b) to (d)), increasing the resolution leads to convergence. In
each case, there is a signi�cant di�erence between the coarse and medium results compared to
the medium and �ne results. This behavior strongly indicates the convergence of the surface
modes. For higher surface modes, the coarse resolution performs much worse, as in these cases,
the mode amplitudes are comparable to the cell size, with a

(coarse)
min = 0.91 µm.
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Figure 3.4: Simulation results at di�erent resolutions
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Figure 3.5: Surface mode amplitudes, bubble radius and mass of the top and bottom bubble
using di�erent resolutions (continuous line: top bubble, dashed line: bottom bubble).

The equivalent bubble radius remains consistent across all resolutions until the bubble
collapse occurs around t ≈ 0.012ms. Sub�gure (e) reveals that during the second cycle, the
results start to deviate. Sub�gure (f) illustrates that the bubble mass remains nearly constant
until the moment of collapse, indicating dissipation levels of less than 0.5%. However, during
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the collapse phase between t ≈ 0.010ms and t ≈ 0.012ms, the bubble mass decreases. Notably,
higher resolutions exhibit a slower decrease in mass. It's important to clarify that this mass
dissipation is not a physical phenomenon but rather an artifact caused by the insu�cient
resolution of the bubble's surface. Based on the convergence study, the following observations
can be made:

� The coarse resolution is su�cient if the primary goal is to calculate integral quantities like
the bubble radius. However, this resolution does not capture the surface details accurately,
resulting in di�erences in surface modes, and it fails to simulate the formation of a bubble
jet.

� The medium resolution, on the other hand, provides reasonably similar mode amplitudes
to the �ne resolution until bubble collapse. It also successfully captures the formation of
a bubble jet at the same time instance. In the long term, some deviation occurs due to
mass loss and lower surface resolution.

In the following simulations, a medium resolution is considered adequate since the long-term
behavior is not the primary focus. The main objective is to determine the bubbles' e�ect on each
other for a relevant sonochemistry case. As previously mentioned, achieving the peak chemical
output requires only a few expansion-collapse cycles. While toroidal bubbles forming following
a jet align with theoretical and experimental �ndings, it's important to note that these cases
inherently involve three-dimensional phenomena, like the circulation ring around the bubble
[39], which cannot be captured by the axisymmetric assumption. Consequently, the �ne details
of bubble jet formation are not of primary interest, and medium resolution su�ces to determine
whether jetting occurs. Medium resolution simulations also run quickly, meaning the simulation
of a single acoustic cycle take approximately 2 hours on 4 CPU cores.

3.3 E�ect of distance

The distance between the bubbles for a bubble radius of R0 = 40 µm was varied from D∗ = 2 to
80 (for the de�nition of D∗ refer to Equation (3.1)). In the simulations, a traveling wave passed
through the bubbles, after which the simulation continued for at least one more expansion-
collapse cycle. The following quantities were monitored:

� The maximum pressure inside the bubble at the �rst bubble collapse, denoted as pB,max.
This represents the average bubble pressure in the collapsed state. Generally, the pres-
sure distribution inside the bubble remains fairly homogeneous, even for highly deformed
bubbles, and the maximum deviation stays below 1%.

� The rate of bubble collapse, de�ned as the size di�erence between the maximally expanded
and collapsed state during the �rst cycle,

∆Rmax = Rexpanded −Rcollapsed, (3.10)

where R refers to the equivalent bubble radius. The equivalent bubble radius is derived
from the bubble volume, as mentioned before.

� Time of jetting: When bubbles are in proximity they collapse in an aspherical way, similar
to a bubble near a wall, and a bubble jet forms along the symmetry axis. The jet cuts
through the bubble, leaving behind a toroidal shape. The time when the jet reaches the
other side, and a toroidal shape is formed, is denoted as tjet.
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� The non-sphericity until the start of collapse is assessed using the âavg metric. This di-
mensionless measure has a local maxima in the expanded state. It's worth noting that
âdev can also be employed to quantify non-sphericity, and the results are consistent in
both cases. The âavg metric is selected for its simplicity.

Radius-time curves for various D∗ values are presented for the bottom bubble in Figure
3.6a. The Keller-Miksis solution for a single bubble is also indicated by a dashed black line.
In each case, the bubble reaches its maximum size around t ≈ 0.007ms and collapses around
t ≈ 0.0011ms. It is evident that when the bubbles are in close proximity (D∗ is small), the
collapse is delayed. The farther apart the bubbles are, the better the Keller-Miksis equation
approximates the radius-time curve. When the bubbles are in�nitely far away, representing a
single bubble, the Keller-Miksis equation aligns with the ALPACA simulation until the �rst
collapse.

In Figure 3.6b, the non-sphericity âavg is illustrated. The non-sphericity exhibits a local
maximum in the expanded state at around t ≈ 0.007ms, and during the collapse, non-sphericity
spikes. For D∗ < 6, a bubble jet occurs at the time of the collapse. The local maxima in non-
sphericity are also more pronounced when the bubbles are closer together. Even in the case
of a single bubble (D∗ = ∞), there is a spike in the non-sphericity with âavg > 0.2, because
the traveling wave results in slightly asymmetric pressures between the top and bottom of the
bubble. Based on the validation in Section 2.1.3, it is expected that for such signi�cant spikes,
the Keller-Miksis equation loses validity. Consequently, the radius already deviates in the next
expansion cycle.
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Figure 3.6: Radius and non-sphericity of the bottom bubble in the �rst 2 acoustic cycles for
selected D∗ values, colored according to the legend.

A large-scale study was conducted involving 24 ALPACA simulations, the parameters and
observations are summarized in Table 5.3 in the Appendix. The results are summarized in Figure
3.7. Sub�gure (a) illustrates the maximum bubble pressure in both bubbles as a function of
the dimensionless distance D∗. The dashed black line represents the maximum pressure for
the D∗ = ∞ case, where the pressure inside the bubble reached pB = 37.5 bar. Sub�gure (b)
shows the maximum collapse, ∆Rmax. It is noticeable that the bottom bubble experiences less
compression compared to the top one. For closely spaced bubbles (D∗ ≤ 4), the bubble pressure
does not even reach half of the single-bubble case, indicating that the bubbles have a strong
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negative in�uence on each other. This negative e�ect persists until D∗ = 40. However, for
D∗ ≥ 20, the pressure decrease is less than 15%.
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Figure 3.7: E�ect of dimensionless distance D∗ between bubbles on the bubble pressure, maxi-
mum collapse, jetting time and non-sphericity. The values for both the top and bottom bubble
are presented according to the legend.

For closely spaced bubbles, the loss of compression can be attributed to bubble jetting. As
shown in Sub�gure (c), a bubble jet cuts through the top bubble until D∗ = 6 and the bottom
one until D∗ = 8. The jet of the top bubble is consistently slightly delayed because the acoustic
wave reaches it later. This time di�erence is already accounted for in the �gure by subtracting
∆tjet = D/c from the measured jetting time, ensuring a perfect overlap in the jetting time of the
top and bottom bubbles until D∗ = 4. For D∗ = 4 . . . 6, the top bubble jets exponentially later
as the distance increases, because the bubble jet's velocity gets lower as the bubble expansion
is more spherical. In the range D∗ = 6 . . . 8, the bottom bubble also jets later while the top
bubble does not jet anymore. At D∗ = 8, the non-sphericity of the bubble is already minimal,
as depicted in Sub�gure (d). The maximal non-sphericity during the �rst cycle decreases as
the bubbles move farther apart, as observed already in Figure 3.6b. Altogether, six di�erent
phenomena can be classi�ed as shown in Figure 3.8:

1. Coalescence D∗ ≤ 2.025: During the expansion phase the bubbles merge together, and
then during collapse a bubble jet forms.
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2. Symmetric jets 2 < D∗ < 4: Following a highly non-spherical expansion, the top and
bottom bubbles jet at the same time, with the time delay accounted for by the propagation
of sound.

3. Delayed top jet 4 < D∗ < 6: The non-sphericity of the expansion is small, and the top
bubble jets exponentially later. However, this delay is not caused by the speed of sound.

4. Only bottom jet 6 < D∗ < 8: The top bubble does not jet in the �rst cycle anymore,
but the bottom one still does.

5. No jet, but large e�ect 8 < D∗ < 20: The bubbles have a signi�cant e�ect on each
other, and the compression is still not optimal. However, bubble jetting and a signi�cant
loss of sphericity do not occur anymore. The loss of compression is mainly the result of
the damping of the acoustic wave.

6. Diminishing e�ect 20 < D∗: The bubbles' e�ect on each other is small, and the bubble
pressure is near the single-bubble case. At D∗ ≈ 40, the bottom bubble even has a
seemingly positive e�ect on the top one, as the top bubble experiences a larger compression
than the single-bubble case, similar situation can be observed around D∗ ≈ 80 (see Figure
3.7a). It should be noted, that the temporal resolution is not high enough to capture the
maximum pressure exactly as it persists only for a fraction of a microsecond during an
extreme collapse.

These phenomena will be investigated in detail in the following section.

coalescence symmetric jet bottom jet
  

delayed top jet
  

no jet
 

diminishing effect
  

Figure 3.8: Qualitative e�ect of bubbles on each other as function of the bubble distance D∗.
The snapshots below the graph depict the before and after collapse states of the bubbles.
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3.4 Interaction phenomena

3.4.1 Coalescence in the expansion phase

Coalescence in the expansion phase occurs when the bubble interfaces are in close proximity.
Merger during the �rst acoustic cycle was observed only at D∗ = 2.025, meaning that the initial
distance between the bubble interfaces was d = 1 µm. According to the theory, as adjacent
bubbles expand, a pressure �lm forms between them. Further expansion causes the drainage of
this �lm until a critical �lm thickness of around 0.1 µm is reached, leading to the coalescence
of the bubbles due to attractive Van der Waals forces [27].

The process of bubble coalescence is illustrated in Figure 3.9. The expansion is highly
non-spherical, and a liquid �lm remains between the bubbles, as observed at t = 5.0 µs. As
the bubble continues to expand, this liquid �lm drains, causing a signi�cant drop in pressure
(p ≪ pB ≪ p0). By t = 7.5 µs, the bubbles have already coalesced. It is important to note that
the critical �lm thickness is smaller than the minimum cell size, and Van der Waals forces are
not simulated. However, coalescence still occurs. In the simulation, the pressure before merger
drops to almost 0 bar in the liquid, compared to the bubble pressure of 0.3 bar. This low pressure
essentially pulls the bubble interfaces together and leads to their merger.

(a) t = 0 µs (b) t = 2.5 µs (c) t = 5.0 µs (d) t = 7.5 µs

Figure 3.9: Bubble coalescence in the D∗ = 2.025 case

3.4.2 Non-spherical expansion

If the initial distance between the bubble interfaces is greater than d = 1 µm, the bubbles do not
coalesce during the �rst expansion. However, the bubbles remain highly non-spherical, and the
surfaces facing each other become �attened. This �attening is a well-known phenomenon that is
observed when bubbles collide and can also be extended to expanding bubbles [27]. According
to theory, �attening occurs when the liquid inertia is greater than the capillary pressure caused
by surface tension. Flattening takes place when the Weber number exceeds a threshold of 0.5.
The Weber number for expanding bubbles is [27]

We =
ρv2

σ
Rm

, (3.11)
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where ρ is the density of liquid, σ is the surface tension and Rm is the mean radius de�ned as

2

Rm

=
1

R1

+
1

R2

. (3.12)

The velocity, denoted as v, is determined by the sum of the bubble expansion velocities, which
can be expressed as v = Ṙ1 + Ṙ2. As shown in Figure 3.10, the bubbles, which start with the
same initial radius, have approximately the same radius at later times. Therefore, the mean
radius can be considered as Rm = R. Assuming a constant expansion from the initial radius of
R = 40 µm to the maximum size of R = 57 µm at t = 7 µs, the velocity can be approximated
as follows,

Ṙ =
57 µm− 40 µm

7 µs
≈ 2.5m/s, (3.13)

meaning v ≈ 5m/s. This results in a Weber number ranging from 13 to 20 throughout the
expansion, indicating that the bubble interfaces should �atten out. This �attening phenomenon
can be observed in the ALPACA simulation, as illustrated in Figure 3.10. The Weber number
criteria for expanding bubbles does not include the distance between the bubbles in any way.
However, based on the ALPACA simulations, it is known that �attening persists until D∗ ≈ 4,
although with diminishing e�ects.

(a) t = 0 µs (b) t = 2.5 µs (c) t = 5.0 µs (d) t = 7.5 µs

Figure 3.10: Flattening in the D∗ = 2.075 case

3.4.3 Symmetric jets

As already known, proximate bubbles expand non-spherically due to �attening. According to
theory, a non-spherical bubble during collapse produces a high-velocity jet if a pressure gradient
is present during the collapse [25]. Figure 3.11 illustrates the rapid collapse and the bubble jet
for the D∗ = 2.25 simulation. Due to the �attening in the expanded state, non-sphericity is
already present. The pressure gradient is the result of �lm drainage between the bubbles and
pressure inhomogeneities caused by surface tension due to the non-spherical shape. At the start
of jetting at t = 11.2 µs, the pressure gradient between the north and south sides of the bubbles
reaches almost 3 bar. The velocity of the liquid jet reaches around 120m/s according to the
simulation. The jets then collide in the middle, causing a radial (x-directional) �ow directed
outwards that widens the conical hole in the toroidal bubbles, as seen at t = 11.8 µs.
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The jets are roughly symmetric, meaning that they have similar velocities and cut through
the bubble at the same time instance, except for the ∆tjet = D/c time delay caused by the
propagation of sound. For instance in the D∗ = 3.875 case, the jetting times are as follows,

tbot.jet = 11.7 µs and ttopjet = 11.8 µs. (3.14)

The time delay in this case is

∆tjet =
D

c
=

155 µm

1496m/s
≈ 0.1 µs, (3.15)

meaning that the delayed jetting comes from the fact that information reaches the top bubble
with the speed of sound. The jets are symmetric until D∗ ≈ 4, which coincides with the limit
for �attening as well.

(a) t = 11.0 µs (b) t = 11.2 µs (c) t = 11.4 µs (d) t = 11.6 µs (e) t = 11.8 µs

Figure 3.11: Symmetric jets penetrating the bubble along the axis in the D∗ = 2.25 simulation

3.4.4 Delayed jets

As D∗ is increased from 4 to 6, the initiation of jetting in the top bubble occurs later. This
delay is a consequence of reduced pressure gradients and, consequently, diminished jet velocities.
The simulation for D∗ = 5.5 is depicted in Figure 3.12. It can be observed that at the onset
of jetting at t = 11.0 µs, the bubbles exhibit less distortion compared to previous instances
(refer to Figure 3.11 for comparison). Additionally, �attening no longer occurs, leading to lower
pressure gradients. The pressure gradient across the bubbles is not visible in the �gure, as
the pressure surrounding the bubbles exceeds 12 bar due to the intense collapse. The pressure
gradient across the bubble can be measured using Paraview, and at the start of the jetting,

∆pbot. = 1.41 bar and ∆ptop = 1.16 bar, (3.16)

indicating that the top bubble experiences a smaller gradient, resulting in a slower jet. The jet's
velocity is not su�cient to completely penetrate the top bubble in its collapsed state, and the
bubble begins to expand during the jetting phase, as evidenced at t = 12 µs. Despite the jet's
deceleration due to the expanding bubble, it ultimately manages to cut the bubble by t = 13 µs.
The precise jetting times and the time delay caused by the speed of sound are as follows,

tbot.jet = 11.9 µs, ttopjet = 12.7 µs and ∆tjet =
D

c
≈ 0.15 µs, (3.17)
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implying that the delay in jetting cannot be attributed to the limited speed of sound. These
scenarios are categorized as asymmetric jets because the jetting velocities di�er between the top
and bottom bubbles, and the shape of the bubbles during jetting also di�ers. As the distance
increases, non-sphericity diminishes in the expanded state (refer to Figure 3.7d from earlier),
resulting in progressively smaller pressure gradients and jetting velocities. Consequently, more
time is required for the jet to penetrate the bubble. As the jet proceeds more slowly in the top
bubble, signi�cant shape deformations appear at a later stage, allowing for a greater degree
of compression. At t = 11.5 µs, the top bubble exhibits a smaller volume, and consequently, a
smaller equivalent radius. The equivalent radii in the collapsed state are as follows,

Rbot.(11.5 µs) = 22.1 µm and Rtop(11.5 µs) = 18.4 µm, (3.18)

indicating a more substantial compression of the top bubble. With this, it becomes clear why
the top bubble attains a higher maximum pressure upon collapse as observed previously is
Figure 3.7a. Simply put, the smaller initial pressure gradient across the bubble results in a
more spherical collapse.

(a) t = 11.0 µs (b) t = 11.5 µs (c) t = 12 µs (d) t = 12.5 µs (e) t = 13 µs

Figure 3.12: Asymmetric jets penetrating the bubble along the axis in the D∗ = 5.5 simulation

3.4.5 Halting jets

As the separation distance between bubbles increases, the jet velocity decreases. Additionally,
jets gradually lose speed as they traverse through the bubble and may even come to a halt at
certain points. Figure 3.13 illustrates the top bubble in the simulation with D∗ = 6.25. At t =
12 µs, the jet's velocity only reaches 25m/s, signi�cantly lower than the 120m/s jetting velocity
observed for symmetric jets at D∗ = 2.25. As the bubble expands, the jet decelerates even
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further, and by t = 15 µs, the jet has already stopped, creating an opening in the bubble from
the top. The critical distance at which the top bubble is not penetrated by the jet completely
is approximately D∗

crit ≈ 6, while the critical distance for the bottom bubble is approximately
D∗

crit ≈ 8. Beyond D∗ > 8, the bubbles still signi�cantly a�ect each other in an adverse manner,
although jets do not occur anymore.

(a) t = 11 µs (b) t = 12 µs (c) t = 13 µs (d) t = 14 µs (e) t = 15 µs

Figure 3.13: Bubble jet halting during the expansion in the D∗ = 6.25 simulation
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Figure 3.14: The e�ect of bubbles on the surrounding pressure. The bottom bubble is placed
at y0 = 15mm while the top bubble is at y0 +D∗ · R0. The di�erent colors represent di�erent
D∗ values according to the legend.

3.4.6 E�ects through the pressure �eld

For larger distances, speci�callyD∗ > 8, jetting and non-sphericity caused by �attening does not
occur. Nevertheless, the bubbles still in�uence each other from a distance through the damping
of the acoustic �eld. In the simulations, the bottom bubble is positioned at y0 = 15mm, and
the minimum pressure of the traveling wave reaches the bottom bubble at t = 2.5 µs. The
pressure along the y axis is presented in Figure 3.14a. If no bubble is present in the domain,
the pressure at y0 = 15mm should be p0 − pA = −0.5 bar, as indicated by the dashed black
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line. When a single-bubble is introduced into the domain, i.e., D∗ = ∞, the pressure around
the bubble is higher, approximately around 0.2 bar, as depicted by the orange curve. The closer
another bubble is placed in the domain, the higher the pressure becomes around the bubble;
for D∗ = 5.5, it is nearly 0.3 bar (see the red curve). Elevated pressures during the expansion
phase are disadvantageous because they lead to reduced expansion.

Similarly, the pressure around the bubble is depicted after the peak of the wave has reached
the bubble at t = 8.5 µs. In this case, the pressure around the bubble decreases as the bub-
bles are closer. For instance, the pressure experienced by the bottom bubble at D∗ = 5.5 is
approximately 0.1 bar lower than in the D∗ = ∞ scenario. Lower pressures around the bubble
in this phase are also undesirable because they result in a smaller collapse. Close bubbles ef-
fectively experience a reduced pressure amplitude throughout the expansion-collapse cycle, but
this e�ect diminishes with increasing distance.

(a) t = 10.5 µs (b) t = 11.5 µs (c) t = 12.5 µs (d) t = 13.5 µs

Figure 3.15: Shockwave from the bubble collapse in the D∗ = 39.5 simulation
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Figure 3.16: Propagation and decay of the shockwave

3.4.7 Pressure wave emission

It is a well-established fact that cavitating bubbles emit shockwaves [40]. In Figure 3.15 the
D∗ = 39.5 simulation results are depicted, showing the emission of a shockwave from the bottom
bubble at approximately t = 10.5 µs. This shockwave then propagates radially outward and
interacts with the top bubble during its collapse. However, its impact is relatively limited, given
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that the amplitude of the shock is around 1 bar, while the pressure of the bubble reaches 37 bar.
Figure 3.16a displays pressure data along the y-axis, illustrating the shockwave's progression
in the negative y direction, along with its gradual decay. According to theoretical expectations,
the pressure front should decay with a rate of r−1.5, where r represents the distance from the
bubble. In Figure 3.16b, pressure values are plotted at 10 di�erent time instances, and they
conform to an enveloping curve resembling 1.06 bar + 0.80 · r−1.5.

The top bubble emits a pressure wave around t = 11.5 µs, and similarly, it decays with a rate
of r−1.5. This decay is also evident in Figure 3.15. In this particular case, the shockwave's e�ect
on the bubble is relatively minor due to the small amplitudes, but more substantial collapses
can generate even larger shockwaves.
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Figure 3.17: D∗ = 3 simulation snapshots with various parameters in given time instances.

3.5 In�uence of parameters

It was found D∗ ≈ 20 is the threshold beyond which the in�uence of bubbles on each other
becomes negligible. However, adjusting other parameters may alter this threshold. With the
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current setup using two bubbles of the same size, there are three parameters to control:

1. Bubble size R0: In smaller bubbles, the e�ect of surface tension is more pronounced.

2. Frequency f : Lowering the frequency results in longer acoustic cycles, allowing more time
for the expansion of the bubble and a more vigorous collapse.

3. Pressure amplitude pA: Higher pressure amplitudes also lead to more powerful collapses.

The impact of distance is explored with larger bubbles and lower frequencies. In the �rst case,
the original con�guration investigated thus far, with R0 = 40 µm and f = 100 kHz is considered
and used as a reference. In the second case, the bubble size was increased to R0 = 80 µm,
while keeping all other parameters the same. In the third case, the frequency was reduced to
f = 50 kHz. To compare the cases a dimensionless time is introduced as

t̂ = t · f. (3.19)

According to the initial conditions, the minimum pressure point of the traveling acoustic wave
reaches the bottom bubble at t̂ = 0.25, the maximum pressure point at t̂ = 0.75 and the
excitation ends at t̂ = 1. In Figure 3.17, the qualitative e�ects of the parameters for a distance
of D∗ = 3 can be observed. In the second case, where the bubble size was increased, jetting does
not occur during the collapse. Furthermore, the larger bubble compresses much less compared to
the smaller bubble, and the pressure in the larger bubble only reaches 2.8 bar during the collapse,
in contrast to the 16 bar pressure reached in the smaller bubble. In the third case, the lower
frequency results in a more substantial bubble collapse with jetting, where the pressure reaches
12 bar. Notably, the bubbles even coalesce during jetting. Based on the �gure, it is evident that
changing parameters such as the radii and frequency has a signi�cant impact on the behavior of
the bubbles. The same jetting limits cannot be identi�ed for modi�ed parameters because the
behavior is inherently di�erent. In the second case, not even adjacent bubbles exhibit jetting,
whereas in the third case, jetting occurs even when a single bubble is placed in the domain.

The maximum di�erence in radius throughout the �rst cycle (i.e. maximum collapse), de-
noted as ∆Rmax and de�ned in Equation (3.10), is employed to compare each case. This value
represents the variation in the equivalent radius at maximum expansion and at collapse. The
equivalent radius is determined based on volume, thus ∆Rmax e�ectively characterizes the vol-
ume change. Alternatively, the maximum pressure change could be used as a metric. However,
during the collapsed state, pressure changes extremely rapidly. For instance, consider the fol-
lowing parameters:

f = 50 kHz, R0 = 40 µm and D∗ = 34.

These parameters result in a pressure change inside the bubble of 183 bar during a time step
of ∆t = 0.125 µs at the end of the collapse. The pressure change in the subsequent time step
is already −148 bar. The temporal gradient is so high that a much higher sampling rate is
required to accurately capture the maximum pressure. However, the ALPACA simulation saves
data only at each macro time step. The multiresolution algorithm in ALPACA employs di�erent
time steps on each resolution level. This means a minimum micro time step size of 0.125 µs/2lmax .
Given that, in the collapsed state, the entire bubble is resolved using the highest level, which
is lmax = 10, the step size within the bubble is actually 0.122 ns. Consequently, the simulation
results are expected to remain accurate, and too large steps sizes do not pose a signi�cant issue.
However, it's important to note that, without modifying the source code of ALPACA, it is not
feasible to write out the micro time steps. Currently, higher sampling rates are only achievable
by reducing the Courant number, which leads to much slower simulations. Therefore, the use
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of the equivalent radius as a metric is preferred, as its gradient is considerably smaller, and
sampling introduces a smaller error.

The maximum collapse, denoted as ∆Rmax, is presented in Figure 3.18a as a function of the
dimensionless distance D∗ in the second case. The maximum collapse of a single bubble with the
same parameters is represented by a horizontal dashed line. As the distance between the bubbles
increases, the e�ect becomes smaller, and the results approach those of the maximum collapse
in the single-bubble case. Similar to initial case (as shown in Figure 3.7b), the top bubble
experiences a signi�cant collapse, and this di�erence diminishes at around D∗ ≈ 30. Figure
3.18b depicts the maximum collapse in third case. The maximal collapse similarly approaches
the single-bubble case as the distance is increased.
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40 µm, f = 50 kHz

Figure 3.18: Maximum collapse in second a third case. The dashed black line denotes the
maximum collapse of a single-bubble (D∗ = ∞) with the same parameters.

The trends of maximal collapse as a function of D∗ are notably similar in each case. To
facilitate comparisons among the cases, the dimensionless deviation from the single-bubble
case is introduced, denoted as R̂dev, which is:

R̂dev =
∆R∞ −∆Rmax

∆R∞
, (3.20)

where ∆R∞ is the maximum collapse of a single bubble using the same parameters. This
deviation can be computed for both the top and the bottom bubble (R̂

(top)
dev and R̂

(bot.)
dev ). Utilizing

this deviation from the optimal single-bubble case, we can de�ne the collapse e�ciency as:

η = 1− R̂
(top)
dev + R̂

(bot.)
dev

2
. (3.21)

This e�ciency metric o�ers a measure of how e�ectively the bubbles collapse, taking into
account both the top and bottom bubbles in the comparison.

The compression e�ciency is depicted as a function of distance in Figure 3.19. Interestingly,
the e�ciency's dependence on D∗ is quite consistent for bubbles of the same size. This can
be attributed to the fact that D∗ accurately captures the mutual in�uence of the bubbles but
does not consider the variation in the e�ect of surface tension, which also changes with size.
In each case, the e�ciency experiences a rapid increase when D∗ < 10. In this region, the
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e�ect of bubbles on each other is notably signi�cant. As 10 < D∗ < 20, there is a transitional
phase where the collapse e�ciency surpasses 95%. Beyond D∗ > 20, the e�ect diminishes and
gradually approaches the behavior observed in the single-bubble case (η = 1).
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1 40 100
2 80 100
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Figure 3.19: The e�ect of the bubbles on each other in di�erent scenarios

3.6 Adding more bubbles

Some simulations were conducted based on the �rst case (R0 = 40 µm, f = 100 kHz), but with
an additional bubble placed above the two previous bubbles at the same distance. In the �rst
simulation, a value of D∗ = 2.25 was selected. According to the �ndings from the two-bubble
scenario, one would expect to observe the �attening and jetting of the bubbles. Figure 3.20
provides a visualization of the �attening and collapse of all three bubbles. The middle bubble
undergoes �attening on both sides, as observed at t = 11 µs, and jetting initiates in the top
and bottom bubbles at t = 12 µs. The middle bubble does not experience a signi�cant pressure
gradient since the conditions on its south and north sides are similar, which explains the absence
of jets during its collapse. However, high-velocity jets, with speeds of approximately v ≈ 70m/s,
originated from the bottom and top bubble reach and penetrate the middle bubble. In the end,
three toroidal bubbles are formed at t = 14 µs. At a distance of D∗ = 4.5, a similar scenario
unfolds, with the top and bottom bubble jetting during the collapse, and consequently e�ecting
the middle bubble.

As the distance between the bubbles increases, the in�uence of the bubbles on each other
diminishes. Figure 3.21a displays the maximum collapse of each bubble in the three-bubble
simulation. With increasing distance, the maximum collapse also approaches the optimal col-
lapse of a single-bubble. This three-bubble scenario is directly compared to the two-bubble case
in Figure 3.21b, where the average e�ciency η is presented as a function of the dimensionless
distance D∗. In each case, the e�ciency is slightly reduced in comparison to the two-bubble
case. However, the overall trend remains similar, and the threshold of 95% e�ciency is attained
at around D∗ ≈ 20. This suggests that the threshold of D∗ ≈ 20 remains applicable even in
scenarios involving more bubbles. However, it's worth noting that when dealing with a signif-
icantly larger number of bubbles, additional factors such as the damping of the acoustic wave
may also become signi�cant.
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(a) t = 9 µs (b) t = 10 µs (c) t = 11 µs (d) t = 12 µs (e) t = 13 µs (f) t = 14 µs

Figure 3.20: Flattening and jetting in the D∗ = 2.25 case with 3 bubbles.
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Figure 3.21: Summary of results in the 3 bubble simulation as a function of the dimensionless
bubble distance D∗
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4 Conclusion

4.1 Validation

The �rst objective was to validate the ALPACA software for sonochemical simulations. Numer-
ous simulations were conducted, encompassing both spherical and non-spherical scenarios, and
they exhibited remarkable agreement with other models and experimental measurements. Some
of these �ndings were previously reported, however this study presented several new discover-
ies, while established results were utilized, including the requirement for a bubble resolution
exceeding Dcell > 100 and the necessity of a su�ciently large simulation domain, particularly
for high-frequency cases to prevent acoustic wave dampening.

The primary new discovery was the validity limit of the Keller-Miksis equation for non-
spherical bubble oscillations, based on the amplitudes of surface modes. The Keller-Miksis
equation is formulated for spherical bubbles; however, it was observed that the radial dynamics
of bubbles do not signi�cantly deviate even when their spherical shape is lost. Two metrics
were introduced to characterize the non-sphericity of the bubbles: one is the sum of the squares
of dimensionless mode amplitudes, denoted as âavg, and the other measures the sectional area
deviation from a spherical shape, denoted as âdev. Additionally, a metric E to quantify the error
caused by non-sphericity was introduced. The crucial �nding was that, as long as a bubble's
non-sphericity remains below a speci�c threshold in the collapsed state, the radial
dynamics in the subsequent expansion-collapse cycle can be accurately described
by the Keller-Miksis equation. If the non-sphericity exceeds the threshold, accuracy is not
guaranteed, and the error can surpass 10% during the following cycle. The speci�c threshold
values are de�ned as:

âavg = 0.2 and âdev = 0.1. (4.1)

This validity limit was found to hold even in the case of multi-bubble simulations, as illustrated
in Figure 3.6b.

4.2 Reduced Order Model (ROM)

An extensive comparison was conducted between the reduced order model and ALPACA. The
ROM simulations were executed by Peter Kalmar, while the classi�cation of dominant modes
was performed by myself. Furthermore, the 62 conducted ALPACA simulations and the sub-
sequent comparison are my individual work. Previously, both ALPACA and the ROM were
validated using only a limited number of measurements, as not many are available in the lit-
erature. This is due to the challenging nature of obtaining precise measurements of surface
modes. The comparison between ALPACA and ROM reveals that, in most cases, both models
can accurately predict surface oscillations and bubble breakup, resulting in an impressive 87%
agreement. To achieve these results in ALPACA, a bubble resolution of Dcell ≈ 300 was applied
in each case. Instances where the models exhibited deviations were primarily associated with

� the amplitude of surface mode oscillations falling within the sub-grid resolution of AL-
PACA, or

� the dimensionless amplitudes exceeding the validity limit of the ROM (âi > 0.2).

The most important conclusion drawn from this study is that both ALPACA and ROM are
e�ective tools for simulating surface mode oscillations. Additionally, both models
accurately predict the spherical stability limit. However, it is essential to note that bubble
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breakup in ROM does not always translate to breakup in ALPACA. For bubble breakup to
occur, it necessitates large mode amplitudes that exceed the validity limit of ROM. Even in
cases where this limit is exceeded, ROM continues to accurately predict bubble breakup in most
scenarios. Based on these �ndings, we can con�dently employ both ROM and ALPACA for the
investigation of non-spherical bubbles, taking into consideration their respective validity limits.

4.3 Multi-bubble systems

This study showcased a setup involving multi-bubble systems that were acoustically excited
with a traveling wave. The bubbles were placed along the symmetry axis. To ensure the accu-
racy of results, a convergence study was conducted using three numerical meshing settings to
determine the necessary resolution. The study revealed that, even with a coarse mesh, integral
quantities could be accurately described during the initial expansion-collapse cycle. However,
to accurately capture surface modes, a resolution of approximately Dcell ≈ 175 was employed.
This resolution level made possible the simulation of bubble jets while maintaining a reasonable
runtime, allowing for the execution of a substantial number of simulations.

A comprehensive study was conducted, consisting of an initial set of 24 simulations to
investigate the impact of the distance between bubbles in an acoustic �eld. Subsequently, an
additional set of 22 simulations was introduced, incorporating various parameters to explore the
dependency of the initial �ndings on these parameters. The parameters of the simulations are
summarized in Table 5.3 in the Appendix. In this study, several interactions between bubbles
in an acoustic �eld were identi�ed using ALPACA:

� Coalescence during expansion: This phenomenon occurs when the bubble interfaces
are in close proximity. During the expansion of neighboring bubbles, a liquid �lm forms
between them. As expansion continues, the pressure in the �lm drops, leading to a merger
of the interfaces. This was observed in the initial simulation and was found to hold for
other parameters, but only in situations where the bubbles were extremely close, with
D∗ ≤ 2.025.

� Non-spherical expansion: Non-spherical expansion is triggered by the �attening of the
facing surfaces of bubbles. It is explained by a high Weber number during expansion,
signifying that liquid inertia between the bubbles surpasses the surface tension's capillary
pressure, causing the surfaces to �atten. A visible �attening e�ect persists until D∗ ≈ 4
in the initial simulation, and this limit was found to be applicable to other parameter
combinations as well.

� Symmetric jets at collapse: Non-spherical shapes before collapse lead to substantial
pressure gradients, resulting in the formation of bubble jets. These jets penetrate the
bubble along the symmetry axis, resulting in the creation of toroidal bubbles. They are
called "symmetric" because both the top and bottom bubbles exhibit a similar shape, and
the jet velocities are identical. Symmetric jetting in the �rst case occured untilD∗ ≈ 4, but
this threshold may not be directly applied to other parameter combinations. Nevertheless,
similar symmetric jetting is observed for three bubbles with the same threshold of D∗ ≈ 4,
where the middle bubble does not produce a jet, but two jets impact its surface.

� Delayed jets: In the initial set of simulations, as the bubbles experience reduced pressure
gradients, the jet velocities are smaller, resulting in the delayed penetration of the bubble.
This delay initially occurs at the top bubble forD∗ > 4 and similarly at the bottom bubble
for D∗ > 6. At some point, the velocities become so small that the jet halts inside the
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bubble. This behavior is speci�c for the initial set of parameters (see the �rst case in
Section 3.5).

� E�ects through the pressure �eld: Bubbles signi�cantly in�uence the pressure of the
surrounding acoustic wave. Nearby bubbles have a mutual impact on each other, leading to
elevated surrounding pressure during the expansion phase and reduced pressure during the
collapse phase. As a result, bubbles e�ectively experience a reduced pressure amplitude.

� Pressure wave emission: Cavitating bubbles emit a shockwave, and the amplitude of
this shockwave decreases with the distance (−1.5 power). Although the pressure wave
can a�ect other bubbles, the speci�c setup used in this study did not produce amplitudes
signi�cant enough to result in a considerable e�ect on other bubbles.

While certain phenomena, like jetting, are indeed speci�c to particular parameters, it was
discovered that the interactions between bubbles can be e�ectively characterized by D∗. The
qualitative graph of the maximal collapse is found to be largely independent of various pa-
rameters. The e�ciency of collapse provides a parameter-independent description of
the e�ect of bubble distance. This metric is based on the di�erence between the maximal
expanded bubble radius and the collapsed bubble radius, compared to the single-bubble case.
Based on the value of D∗ scenarios can be categorized into three groups

1. D∗ < 10: In this range, the bubbles exert a signi�cant in�uence on each other through
non-spherical expansion and highly damped pressure amplitudes. The e�ciency of collapse
remains below 95% in each case.

2. 10 < D∗ < 20: This represents a transitional phase with a notably larger collapse of the
top bubble in each case. Direct e�ects like non-spherical expansion are less prominent,
but the damping of pressure amplitudes is still signi�cant.

3. D∗ > 20: Here, the mutual e�ect diminishes and eventually becomes negligible. The
e�ciency of collapse reaches 95% in each case and slowly converges to 100%.

In conclusion, it can be deduced that the e�ciency loss attributed to other bubbles does not
exceed 5% as long as D∗ = D/R0 > 20, where D represents the distance between the center of
the bubbles, and R0 is the initial equilibrium bubble radius. This threshold is independent of
various parameters, such as frequency and bubble size, and it is also found to be unrelated to
the number of bubbles involved, as long as the number of bubbles is small.

4.4 Improvement points

There are several potential areas for improving the current work. Most notably, the estab-
lishment of the D∗ = 20 threshold was based on only three sets of parameters. To ensure a
reliable threshold, further testing with a variety of parameter sets and arrangements is essen-
tial. However, this endeavor demands increased computational resources. For instance, under
the current settings, with f = 100 kHz and R0 = 40 µm, a full length simulation would require
approximately 4 hours to run on a typical data center CPU. For each set of parameters, roughly
10 simulations should be conducted. The challenge lies in the fact that halving the frequency
(f) doubles the simulation time, and similarly, halving the bubble size (R0) also doubles the
simulation time. For instance, running a simulation at f = 20 kHz and R0 = 20 µm would take
approximately 40 hours. The plan moving forward is to draft a new proposal for supercom-
puting resources based on the results of this study. This will provide access to the additional
computational resources needed for the expanded and comprehensive parameter exploration.
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There are additional points that require attention. As previously mentioned, signi�cant
collapses can result in rapid pressure changes within the bubbles. However, the current version
of ALPACA lacks the capability to employ a su�ciently high sampling rate to resolve these
collapses in time, without the need for reducing the Courant number. Given that ALPACA is an
open-source software, the code can be modi�ed to record the bubble pressure during micro time
steps. By implementing source code modi�cations, it is also possible to address mass dissipation
through the arti�cial increase in bubble mass at each step. This adjustment would enable the
execution of long-term simulations, extending beyond the limitations of just 10 acoustic cycles.
A similar solution has already been successfully employed by researchers in OpenFOAM [17].

Acknowledgment

Thanks to Dr. Ferenc Heged¶s for his ideas, suggestions and theoretical help. I also thank Péter
Kalmar for the explanation of the Reduced Order Model and the data provided. Thanks to
the Nanoshock research group for providing pre-release access to the new version of ALPACA.
The author gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-
centre.eu) for funding this project by providing computing time on the GCS Supercomputer
SuperMUC-NG at Leibniz Supercomputing Centre (www.lrz.de). Supported by theÚNKP-23-
2-III-BME-50 New National Excellence Program of the Ministry for Culture and Innovation
from the source of the National Research, Development and Innovation Fund.

51



References

[1] Timothy J Mason. �Sonochemistry and the environment�Providing a �green� link between
chemistry, physics and engineering�. In: Ultrasonics sonochemistry 14.4 (2007), pp. 476�
483.

[2] Sangyeon Cho and Seok Hyun Yun. �Structure and optical properties of perovskite-
embedded dual-phase microcrystals synthesized by sonochemistry�. In: Communications
Chemistry 3.1 (2020), pp. 1�7.

[3] JL Silva Junior et al. �Copper molybdate synthesized by sonochemistry route at room
temperature as an e�cient solid catalyst for esteri�cation of oleic acid�. In: Ultrasonics
sonochemistry 73 (2021), p. 105541.

[4] Amir Hassanjani-Roshan et al. �Synthesis of iron oxide nanoparticles via sonochemical
method and their characterization�. In: Particuology 9.1 (2011), pp. 95�99.

[5] Mohammed Ali Dheyab et al. �Mechanisms of e�ective gold shell on Fe3O4 core nanopar-
ticles formation using sonochemistry method�. In: Ultrasonics sonochemistry 64 (2020),
p. 104865.

[6] Sonja Lauterborn and Wilhelm Urban. �Ultrasonic cleaning of submerged membranes
for drinking water applications�. In: Journal of the Acoustical Society of America 123.5
(2008), pp. 3291�3291.

[7] TJ Mason, AP Newman, and SS Phull. �Sonochemistry in water treatment�. In: Division
of Chemistry, Coventry University, Convetry CVI 5FB (1994), pp. 3927�3933.

[8] Werner Lauterborn and Thomas Kurz. �Physics of bubble oscillations�. In: Reports on
progress in physics 73.10 (2010), p. 106501.

[9] Ruo Feng et al. �Enhancement of ultrasonic cavitation yield by multi-frequency sonica-
tion�. In: Ultrasonics sonochemistry 9.5 (2002), pp. 231�236.

[10] Ryuzi Katoh et al. �Sonochemical production of a carbon nanotube�. In: Ultrasonics
Sonochemistry 6.4 (1999), pp. 185�187.

[11] Alfred Vogel, S Busch, and U Parlitz. �Shock wave emission and cavitation bubble gen-
eration by picosecond and nanosecond optical breakdown in water�. In: The Journal of
the Acoustical Society of America 100.1 (1996), pp. 148�165.

[12] Forrest R Gilmore. �The growth or collapse of a spherical bubble in a viscous compressible
liquid�. In: (1952).

[13] Joseph B Keller and Michael Miksis. �Bubble oscillations of large amplitude�. In: The
Journal of the Acoustical Society of America 68.2 (1980), pp. 628�633.

[14] Stephen J Shaw. �Translation and oscillation of a bubble under axisymmetric deforma-
tion�. In: Physics of Fluids 18.7 (2006), p. 072104.

[15] Stephen J Shaw. �The stability of a bubble in a weakly viscous liquid subject to an
acoustic traveling wave�. In: Physics of Fluids 21.2 (2009), p. 022104.

[16] Péter Kalmár et al. �Memory-friendly �xed-point iteration method for nonlinear surface
mode oscillations of acoustically driven bubbles: from the perspective of high-performance
GPU programming�. In: Ultrasonics Sonochemistry 99 (2023), p. 106546.

[17] Max Koch et al. �Numerical modeling of laser generated cavitation bubbles with the
�nite volume and volume of �uid method, using OpenFOAM�. In: Computers & Fluids
126 (2016), pp. 71�90.

52



[18] Jinsen Hu et al. �Numerical and experimental investigations on the jet and shock wave
dynamics during the cavitation bubble collapsing near spherical particles based on Open-
FOAM�. In: Ultrasonics Sonochemistry 99 (2023), p. 106576.

[19] Benedikt Biller et al. �Jetting mechanisms in bubble-pair interactions�. In: Physics of
Fluids 34.7 (2022).

[20] Takuya Yamamoto, Shin-ichi Hatanaka, and Sergey V. Komarov. �Fragmentation of cav-
itation bubble in ultrasound �eld under small pressure amplitude�. In: Ultrasonics Sono-
chemistry 58 (2019), p. 104684.

[21] Nils Hoppe et al. �ALPACA - a level-set based sharp-interface multiresolution solver for
conservation laws�. In: Computer Physics Communications 272 (2022), p. 108246.

[22] Vinay R Gopala and Berend Gm Van Wachem. �Volume of �uid methods for immiscible-
�uid and free-surface �ows�. In: Chemical Engineering Journal 141.1-3 (2008), pp. 204�
221.

[23] Sarah Cleve et al. �Microstreaming induced by acoustically trapped, non-spherically os-
cillating microbubbles�. In: Journal of Fluid Mechanics 875 (2019), pp. 597�621.

[24] Matthieu Guédra and Claude Inserra. �Bubble shape oscillations of �nite amplitude�. In:
Journal of Fluid Mechanics 857 (2018), pp. 681�703.

[25] Juan Manuel Rosselló et al. �Acoustically induced bubble jets�. In: Physics of Fluids 30.12
(2018).

[26] Alexander A Doinikov. �Translational motion of two interacting bubbles in a strong acous-
tic �eld�. In: Physical review E 64.2 (2001), p. 026301.

[27] Michiel Postema et al. �Ultrasound-induced encapsulated microbubble phenomena�. In:
Ultrasound in medicine & biology 30.6 (2004), pp. 827�840.

[28] Yang Shen et al. �The role of the bubble�bubble interaction on radial pulsations of bub-
bles�. In: Ultrasonics Sonochemistry 73 (2021), p. 105535.

[29] Lin Fu, Xiangyu Y Hu, and Nikolaus A Adams. �A family of high-order targeted ENO
schemes for compressible-�uid simulations�. In: Journal of Computational Physics 305
(2016), pp. 333�359.

[30] Nils Hoppe, Stefan Adami, and Nikolaus A. Adams. �A parallel modular computing en-
vironment for three-dimensional multiresolution simulations of compressible �ows�. In:
Computer Methods in Applied Mechanics and Engineering 391 (), p. 114486.

[31] Robert R Nourgaliev and Theo G Theofanous. �High-�delity interface tracking in com-
pressible �ows: unlimited anchored adaptive level set�. In: Journal of Computational
Physics 224.2 (2007), pp. 836�866.

[32] Dániel Nagy. �Az ALPACA szoftvercsomag validációja nem gömbszimmetrikus buborékok
szimulációjára�. In: BME-GPK TDK Konferencia (2022).

[33] Francis H Harlow and Anthony A Amsden. Fluid Dynamics. A LASL Monograph. Tech.
rep. Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 1971.

[34] JWJ Kaiser, S Adami, and NA Adams. �Three-dimensional direct numerical simulation
of shock-induced bubble collapse near gelatin�. In: 11th International Symposium on Tur-
bulence and Shear Flow Phenomena, TSFP 2019. 2019.

[35] Dániel Nagy. �Akusztikusan gerjesztett buborékok többfázisú numerikus szimulációja ko-
rszer¶ véges térfogat módszerrel�. In: BME-GPK TDK Konferencia (2021).

53



[36] Dániel Nagy and Ferenc Heged¶s. �Az ALPACA szoftver validációja akusztikusan ger-
jesztett gázbuborékok szimulációjára: Validation of ALPACA for the simulation of acous-
tically excited gas bubbles�. In: Nemzetközi Gépészeti Konferencia�OGÉT (2023), pp. 360�
365.

[37] Michel Versluis et al. �Microbubble shape oscillations excited through ultrasonic para-
metric driving�. In: Physical review E 82.2 (2010), p. 026321.

[38] Csanád Kalmár, Kálmán Klapcsik, and Ferenc Heged¶s. �Relationship between the radial
dynamics and the chemical production of a harmonically driven spherical bubble�. In:
Ultrasonics sonochemistry 64 (2020), p. 104989.

[39] YL Zhang et al. �3D jet impact and toroidal bubbles�. In: Journal of Computational
Physics 166.2 (2001), pp. 336�360.

[40] Emil-Alexandru Brujan, T Ikeda, and Yoichiro Matsumoto. �On the pressure of cavitation
bubbles�. In: Experimental Thermal and Fluid Science 32.5 (2008), pp. 1188�1191.

[41] Matthieu Guédra et al. �Experimental evidence of nonlinear mode coupling between
spherical and nonspherical oscillations of microbubbles�. In: Physical Review E 94.5
(2016), p. 053115.

5 Appendix

5.1 Legendre polynomials and surface modes

The nth Legendre polynomial is Pn(x), the �rst few are

P0(x) = 1, (5.1)

P1(x) = x, (5.2)

P2(x) =
1

2
(3x2 − 1), (5.3)

and . . . .

The Legendre polynomials also form a basis on the [−1, 1] interval, meaning they are orthogonal
to each other. The orthogonality of integrable functions can be de�ned based on a generalized
scalar product

⟨f, g⟩ =
∫ 1

−1

f(x)g(x)w(x)dx, (5.4)

where w(x) is a weighting function. For Legendre polynomials w(x) = 1 and

⟨Pn, Pm⟩ =
∫ 1

−1

Pn(x)Pm(x)dx =

{
2

2n+1
if n = m

0 if n ̸= m
, (5.5)

thus, they form a basis. To describe the modes shapes let x = cos θ, then dx = − sin θdθ and
after substitution,

⟨Pn(cos θ), Pm(cos θ)⟩ =
∫ π

0

Pn(cos θ)Pm(cos θ) sin(θ)dθ =

{
2

2n+1
if n = m

0 if n ̸= m
(5.6)

Equation (5.6) shows that the mode shapes also form an orthogonal basis, using the weight
w(θ) = sin θ. The bubble surface r(θ) can be described as a generalized Fourier series in the
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Pn(cos θ) basis

r(θ) =
∞∑
n=0

anPn(cos θ), (5.7)

where a0 = R. The an Fourier coe�cients can be calculated as

an =
⟨Pn(cos θ), r(θ)⟩

⟨Pn(cos θ), Pn(cos θ)⟩
=

2n+ 1

2

∫ π

0

Pn(cos θ) · r(θ) · sin(θ)dθ, (5.8)

which formula can be found in many papers about non-spherical bubbles [14, 23, 24, 41],
however none of them considers the bubble shape expansion as a generalized Fourier-series.
This consideration opens up a new way to classify the sphericity of the bubble using Parseval's
theorem,

∞∑
n=0

2|an|2

2n+ 1
=

∫ π

0

r(θ)2 sin(θ)dθ. (5.9)

Let us calculate the square of the deviation from the spherical shape,∫ π

0

(
R− r(θ)

)2
sin(θ)dθ =

∫ π

0

(
R2 + r(θ)2 − 2Rr(θ)

)
sin(θ)dθ. (5.10)

From Equation (5.8) it can be seen that, by setting n = 0

2a0 = 2R =

∫ π

0

r(θ) sin(θ)dθ, (5.11)

then Equation (5.10) is∫ π

0

(
R− r(θ)

)2
sin(θ)dθ = 2R2 +

∞∑
n=0

| 2|an|
2

2n+ 1
− 4R2 = −2R2 + 2R2 +

∞∑
n=2

2|an|2

2n+ 1
. (5.12)

Finally, we can see that

∞∑
n=2

2|an|2

2n+ 1
=

∫ π

0

(
R− r(θ)

)2
sin(θ)dθ, (5.13)

and this gives integral of the deviation squared from the spherical shape, which is a possibility
to characterize the non-sphericity of the bubble. Using the dimensionless mode coe�cients

∞∑
n=2

2|ân|2

2n+ 1
=

∫ π

0

(
1− r(θ)

R

)2

sin(θ)dθ. (5.14)

5.2 Derivation of standing and traveling waves

In a standing wave the pressure is

p(t, y) = p0 + pA sin
(
ωt
)
cos
(
ky
)

(5.15)

and in a traveling wave
p(t, y) = p0 + pA sin

(
ky − ωt

)
, (5.16)

where pA is the pressure amplitude, ω = 2πf is the angular frequency and k = 2π/λ is the spatial
frequency. To derive the density and velocity in acoustic waves from a prescribed pressure �rst
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the compressible continuity and Navier-Stokes equations have to be simpli�ed. The governing
equations of compressible �ow in 1D are,

continuity:
∂ρ

∂t
+

∂(ρv)

∂y
= 0 and (5.17)

Navier-Stokes:
∂(ρv)

∂t
+

∂(ρv2)

∂y
= −∂p

∂y
+ ν

∂2v

∂y2
, (5.18)

where v is the velocity in y direction, ρ is the density, p is the pressure and ν is the kinematic
viscosity. In the equations v, p, ρ are all scalar �elds depending on t and y. In the derivation
the following assumptions are used:

1. The viscosity can be neglected.

2. The velocity v is much smaller than the speed of sound c, i.e. v ≪ c.

3. The change of density is small, thus ρ ≈ ρ0 and even the change of density can be neglected
when compared to the change of velocity.

Let us start the derivation by using the product rule in Equation (5.17),

∂ρ

∂t
+ v

∂ρ

∂y
+ ρ

∂v

∂y
= 0, (5.19)

and notice that from the 3rd assumption

v
∂ρ

∂y
≪ ρ

∂v

∂y
. (5.20)

Then we get the following connection between the density and the velocity,

∂ρ

∂t
+ ρ0

∂v

∂y
= 0. (5.21)

In the Navier-Stokes equation the viscosity is neglected, and the product rule is used on the
left-hand side,

v
∂ρ

∂t
+ ρ

∂v

∂t
+ 2ρv

∂v

∂y
+ v2

∂ρ

∂y
= −∂p

∂y
, (5.22)

again the derivative of ρ can be neglected as they are compared to the much large derivatives
of v. Then using ρ ≈ ρ0,

ρ0
∂v

∂t
+ 2ρ0v

∂v

∂y
= −∂p

∂y
. (5.23)

Let us compare the magnitude of terms on the left-hand side, it can be assumed that a sinusoidal
change in pressure results in a sinusoidal change in the velocity, that is the angular and spatial
frequency is the same and v(t, y) = vA sin(ky − ωt+ ϕ) with the amplitude vA and phase shift
ϕ. Then ∣∣∣∣∂v∂t

∣∣∣∣ ≫?

∣∣∣∣2v∂v∂y
∣∣∣∣ (5.24)

vAω ≫? 2vvAk (5.25)

2πf ≫? 2v
2πf

c
(5.26)

c ≫ 2v, (5.27)
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which is true based on the second assumption, meaning that the change with respect to y can
be neglected. The resulting equation is

ρ0
∂v

∂t
= −∂p

∂y
. (5.28)

The determination of the v and ρ �elds are easy from here. First Equation (5.28) is used, and
the velocity can be calculated by derivation with respect to y and then integration with respect
to t. Finally, Equation (5.21) is used, and the density can be determined. The standing wave
solution is

p(t, y) = p0 + pA sin
(
ωt
)
cos
(
ky
)
, (5.29)

v(t, y) = − pA
cρ0

cos
(
ωt
)
sin
(
ky
)
and (5.30)

ρ(t, y) = ρ0 +
pA
c2

sin
(
ωt
)
cos
(
ky
)
. (5.31)

The traveling wave solution is

p(t, y) = p0 + pA sin
(
ky − ωt

)
, (5.32)

v(t, y) =
pA
cρ0

sin
(
ky − ωt

)
and (5.33)

ρ(t, y) = ρ0 +
pA
c2

sin
(
ky − ωt

)
. (5.34)

These equations are used to set up the initial conditions in ALPACA.

5.3 Simulation settings

Table 5.1: The simulation setting

Simulation #1 #2 #3 #4

Initial radius R0 = RE 30 µm varying varying 40 µm
Frequency f 120 kHz 130 kHz varying 100 kHz

Pressure amplitude pA varying 1.2 bar varying 1.5 bar
Ambient pressure p0 1 bar 1 bar 1 bar 1 bar
Density of liquid ρ0 1000 kg/m3 1000 kg/m3 1000 kg/m3 1000 kg/m3

Dyn. viscosity (liquid) µl 0.001Pa · s 0.001Pa · s 0.001Pa · s 0.001Pa · s
Surface tension σ 0.0728N/m 0.067N/m 0.0728N/m 0.0728N/m

EoS parameter (liquid) γl 4.4 4.4 4.4 4.4
EoS parameter (liquid) p∞,l 6 · 108 Pa 6 · 108 Pa 6 · 108 Pa 5.0854 · 108 Pa

Speed of sound cl 1624.8m/s 1624.8m/s 1624.8m/s 1496m/s
EoS parameter (gas) γg 1.4 1.4 1.4 1.4
EoS parameter (gas) p∞,g 0 0 0 0

Domain length l 3λ λ 3λ 2λ
Domain width b 3λ λ/5 1.5λ λ/2

l0 mesh b× l 144× 144 16× 80 varying 32× 128
Re�nement levels lmax 10 9 varying 9
Re�nement tol. ε 0.01 0.01 0.01 0.01

Bubble resolution Dcell 218 ≈ 236 ≈ 300 175

Courant number 0.85 0.85 0.85 0.85
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Table 5.2: Comparison of ALPACA simulation results to ROM

Simulation f/kHz R/µm pA/kPa Dominant (ALPACA) Dominant (ROM)

1/01 30 47.5 10 none none
1/02 30 47.5 25 2 2
1/03 30 47.5 32 2 2
1/04 30 47.5 36 2 3
1/05 30 47.5 42 breakup breakup
1/06 30 47.5 60 breakup breakup
1/07 30 75 25 3 3
1/08 30 75 25 breakup breakup
1/09 30 57.5 10 none none
1/10 30 57.5 16 4 4
1/11 30 57.5 21 4 4
1/12 30 57.5 23.5 4 4
1/13 30 57.5 30 breakup breakup
1/14 30 23 62 3 3
1/15 30 23 75 breakup breakup
1/16 30 30 10 none none
1/17 30 30 10 none none
1/18 30 30 10 none none
1/19 30 30 10 4 breakup
1/20 30 30 10 breakup breakup
1/21 30 30 10 breakup breakup

2/01 130 17.5 15 none none
2/02 130 17.5 25 none none
2/03 130 17.5 40 2 2
2/04 130 17.5 55 2 3
2/05 130 17.5 60 2 3
2/06 130 17.5 70 breakup breakup
2/07 130 27 5 3 3
2/08 130 27 10 breakup breakup
2/09 130 27 15 breakup breakup
2/10 130 45 26 none none
2/11 130 20 30 2 2
2/12 130 29 12.5 3 3
2/13 130 35 18.5 4 4
2/14 130 42.5 25 none 5
2/15 130 42.5 30 5 5
2/16 130 45 33 5 5
2/17 130 10 60 none none
2/18 130 60 30 none none

3/01 480 17.5 80 none none
3/02 480 17.5 94 5 5
3/03 480 17.5 98 5 5
3/04 480 17.5 120 5 5
3/05 480 17.5 140 5 5
3/06 480 18.6 120 none 5
3/07 480 20 120 none none
3/08 480 22 120 none none
3/09 480 10.5 50 3 3
3/10 480 10.5 80 3 break
3/11 480 7.5 15 2 2
3/12 480 12.6 60 none none
3/13 480 13.4 60 4 break
3/14 480 14.1 60 4 2
3/15 480 15 60 none none
3/16 480 3 140 none none
3/17 480 3 140 4 4
3/18 480 30 10 none none
3/19 480 30 20 none none
3/20 480 30 40 none none
3/21 480 30 70 none none
3/22 480 30 100 none none
3/23 480 30 150 none none



Table 5.3: Multi-bubble simulation settings and results

# D∗ ∆R
(top)
max /µm ∆R

(bot.)
max /µm Observed phenomena (in order)

Case 1, f = 100 kHz, pA = 1.5 bar, R0 = 40µm
1/01 2.025 34.09 33.69 Flattening, Coalescence, Jet
1/02 2.05 34.75 34.79 Flattening, Symmetric jetting
1/03 2.075 34.62 34.92 Flattening, Symmetric jetting
1/04 2.15 34.92 35.02 Flattening, Symmetric jetting
1/05 2.25 35.46 34.86 Flattening, Symmetric jetting
1/06 2.375 35.95 34.77 Flattening, Symmetric jetting
1/07 2.5 36.37 34.71 Flattening, Symmetric jetting
1/08 2.75 37.03 34.71 Flattening, Symmetric jetting
1/09 3. 37.61 35.08 Flattening, Symmetric jetting
1/10 3.25 38.08 35.52 Flattening, Symmetric jetting
1/11 3.875 39.12 36.61 Flattening, Symmetric jetting
1/12 4.5 39.96 37.68 Bottom jet, Top jet
1/13 5.5 40.71 38.83 Bottom jet, Top jet
1/14 5.875 41.09 38.90 Bottom jet, Top jet
1/15 6.25 41.32 39.39 Bottom jet, Top jet halts
1/16 7.625 41.91 40.23 Delayed bottom jet
1/17 8. 41.91 40.34 Delayed bottom jet
1/18 8.5 42.06 40.65 Bottom jet halts
1/19 9.5 42.28 41.01 �
1/20 14.5 42.91 42.11 �
1/21 20.75 43.13 42.80 �
1/22 39.5 44.00 43.68 �
1/23 77. 44.03 44.54 �
1/24 ∞ � 44.24 �

Case 2, f = 100 kHz, pA = 1.5 bar, R0 = 80µm
2/01 2.025 30.76 28.68 Flattening, Coalescence
2/02 3. 32.42 30.53 Flattening
2/03 4. 33.72 31.99 �
2/04 6. 35.14 33.82 �
2/05 10. 36.55 35.53 �
2/06 16. 37.40 36.70 �
2/07 27. 38.05 37.76 �
2/08 42. 38.37 38.53 �
2/09 ∞ � 39.21 �

Case 3, f = 50 kHz, pA = 1.5 bar, R0 = 40µm
3/01 2.025. 62.32 61.92 Coalescence, Flattening, Jet
3/02 3. 62.06 62.26 Flattening, Symmetric jet
3/03 4. 67.04 61.68 Flattening, Symmetric jet
3/04 6. 69.64 65.12 Bottom jet, Top jet
3/05 10. 71.83 69.49 Bottom jet, Top jet

3/06 18. 71.17 68.68
Bottom jet, Top jet

Too low temporal resolution

3/07 22 73.30 72.40
Bottom jet, Top jet
Fixed, Courant=0.2

3/08 34. 69.23 70.61
Bottom jet, Top jet

Too low temporal resolution

3/09 ∞ � 74.77
Jet

Fixed, Courant=0.2

Case 4, f = 100 kHz, pA = 1.5 bar, R0 = 40µm, 3 bubbles
4/01 2.25 32.58 30.14 Symmetric jet, Impact on middle bubble
4/02 4.5 36.98 34.74 Symmetric jet, Impact on middle bubble
4/03 9 40.77 39.18 �
4/04 20.75 43.05 42.22 �
4/05 52. 43.91 44.23 �
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