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Abstract

Buildings are responsible for more than 40 % 
of global CO2 emission and use approximately 
equally percentage of global energy. Therefore 
successes in this sector can support significant 
positive change in the total consumption and 
emission. Nowadays we can see the importance 
of having a tool for facilitating energy-efficient 
thinking at pre-design stage of retrofitting and in 
case of new buildings as well. In response to those 
global challenges, building energy modelling 
(BEM) is a continually developing discipline. 
Global, nation-wide, city and district scale models 
are having an increasingly important role, when 
the methodology is not focusing on detailed 
individual building energy models, but complete 
systems based on more buildings and synergies 
between them. This tool can support decision 
makers (in the field of utility development 
projects and development of support strategies) 
in retrofitting existing urban areas and designers 
in developing planning regulations and choosing 
between design options regarding to basic 
geometrical decisions, window-wall ratio on the 
facades, orientation. These urban models are 
divided into two main categories: “top-down” 
and “bottom-up” models. The aim of both 
approaches is channelling data sets which are the 
base of large scale models.“Top-down” building 
stock models link building energy demand and 
supply to macroeconomic variables and predict 
future energy use relying on statistical data. 
However, while using „bottom-up” methodology, 
single building energy demand and consumption 
are extended to group of buildings with similar 
geometrical and technical characteristics. 
Through the review of research literature, this 
paper is focusing on exploration of modelling 
methodologies and comparison of urban energy 
models and simulation platforms linked to them.

As a conclusion, those fields are presented 
which the existing methods could not deal with 
because of the lack of data input or too complex 
calculations. In this way, we explore the current 
technical shortcomings of the designated topic 
and the possible directions of further progress in 
the subject. 

In 2015 at the Paris climate conference (COP21), 
195 countries adopted a global climate deal. This 
was the first time when an universal, legally-
binding climate deal was applied.1 One of the 
aims is to keep the increase of global temperature 
well below 2°C. Until now 97 parties have ratified, 
and this agreement will enter into force in the 
fourth of November in 2016.2 According to the 
Hungarian national strategy the goal for 2020 is 
to reduce the energy consumption in Hungary 
by 18% (Hungarian Government, 2014). The 
building sector accounts for nearly 40% of the 
energy consumption worldwide (European 
Commission and Eurostat, 2013; Eurostat, 2015), 
and as occupants spend more time in their 
homes (Pérez-Lombard, Ortiz, and Pout, 2008) 
this will only increase. The building sector has 
the greatest potential, to reduce CO2 emission 
(UNEP, 2009). For reaching these numbers, it is an 
absolute necessity to construct accurate models, 
to help municipalities, and evaluate policies. To 
efficiently deal with these problems, such models 
are needed, which are dealing with energy 
consumption at urban level, but are capable 
to address energy reduction opportunities at 
building level. (Reinhart and Cerezo Davila, 2016)

1 EUROPEAN COMMISSION AVAILABLE: HTTP://
EC.EUROPA.EU/CLIMA/POLICIES/INTERNATIONAL/NEG-
OTIATIONS/PARIS/INDEX_EN.HTM [ACCESSED:26-OCTO-
BER-2016]
2  UNITED NATIONS   AVAILABLE: HTTP://UNFCCC.
INT/PARIS_AGREEMENT/ITEMS/9444.PHP [ACCESSED: 
26-OCTOBER-2016]

1. Introduction
1.1. Climate and urban dimensions
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The building energy modelling can be divided 
in two different investigation scales. One is the 
micro, and the other is the macro scale (Fabbri 
& Tarabusi, 2014). Macro scale generally means, 
that the indicators and the data are applied on 
an aggregated level, globally or continentally. The 
micro scale, however, reflects to a single device, or 
a single building unit. These scales were adopted 
from meteorology studies, where there is a third 
scale, which is in between the primary scales. 
Yamada and Koike (2011) state that the extension 
of this scale is between 100- 300 km (meso-scale 
alpha) and 40 km (meso-scale gamma). By means 
of building energy modelling, it can be interpreted 
as anything between micro and macro scale, or 
between continents and buildings, belongs here.
In the recent years there has been a significant 
growth in the number of energy models. Energy 
modelling started to grow approximately from 
the early 1970s. The beginning of the computer 
use in the 1960s indicated that more complicated 
calculation methods had been applied for different 
problems. At that time, the Top-down modelling 
was ahead of the Bottom-up modelling, because 
the simple simulation technologies, based on 
heat-mass balance equations, were developed 
in the 1970s too. The other big indicator was 
the Arab oil embargo at 1973. A lot of countries 
had to build new building energy policies in. The 
building sector was the biggest energy consuming 
sector, so models and ideas emerged here. 
The top-down-bottom-up debate first came into 
the view during the efficiency-gap debate in the 
80-90’s (Grubb, 1993). From the 1990s on, the 
bottom-up method started to gain more space. 
That had a lot to do with the rise of the PCs. As 
the computational performance progressed, 
the growth between building energy modelling 
software accelerated. It indicated the evolution 
of the bottom-up and the Hybrid models, 

1.2. Large scale modeling approaches with the exponentially bigger computational 
needs.

Fig.1. showing the distribution of papers depending on the year of 
appearance

The first search resulted in 2698 elements, the 
search for the Bottom-up resulted in 696, and the 
search for the Top-down resulted in 536 elements. 
The progress in the recent years is clearly visible in 
this and also in (Keirstead, Jennings, & Sivakumar, 
2012). The progress accelerated somewhere 
near 2003, and from 2009 it has become more 
gradient.
In 2014 it occurred, that no Top-down models 
were available. This is a strange result and for this 
reason, this would need further investigation.
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1.3. Energy modelling in building group 
scale

The approaches in BEM also differ with these 
scales. Goy and Finn (2015) claim, that there are 
two ways of investigating approaches: a small 
scale, and a large scale. The small scale reflects to 
less than five-, while the large scale to more than 
five buildings. For small scale the methodologies 
could be divided into three ways: white boxes, 
grey boxes, and black boxes. (Foucquier et al., 
2013)

1.3.1. White-box approach

By energy modelling in small scale which means 
less, than five buildings according to Goy and 
Finn (Goy & Finn, 2015), three merely different 
approaches can be separated. The first approach 
is the White-box modelling (Foucquier and Jay, 
2013; Li and Wen, 2014). This is a so-called forward 
modelling technique (Wang and Xiao, 2012), 
which means, it needs a big amount of physical 
data from the building envelope. As shown in 
Fig.2.  the icons in the small circles represent 
the different types of statistical data like energy 
consumption, number of occupants etc.. If this 
icon is pale grey, then it is not available, when it is 
black, it is available. This deterministic approach 
models the building with detailed physics-based 
mathematical equations. The model could either 
be dynamic, which are capable of modelling 
building dynamics like thermal dynamics of 
envelope, or system dynamics (Wang et al., 
2012), or steady-state, which is a static model, 
and only can calculate the dynamic effects, with 
correlation factors (Wang et al., 2012). Dynamic 
methods are more accurate, but they have more 
complex calculation methods, whereas steady-
state models are less accurate, but easier to

calculate (Li and Wen, 2014; Wang et al., 2012). 
A group of detailed physics based mathematical 
equations, create a simulation engine. For this 
engine, the typical input data includes four groups 
of parameters (Wang et al., 2012): weather 
data, detailed description of building, detailed 
description of building components, detailed 
description of systems. These datasets are from 
measurements, and traditionally this method do 
not use any statistical data. 
There are three main groups of simulation 
engines: CFD (Computational Fluid Dynamics), 
Zonal methods, and Nodal (also known as 
Multizonal) methods (Foucquier et al., 2013).

Fig.2. White-box model

 Some example of engines, by approaches are the 
following according to Foucquier et al. (2013).
CFD method: FLUENT; COMSOL Multiphysics; MIT-
CFD; PHOENICS-CFD. Zonal method: SimSPARK; 
POMA. Multi-zonal method: TRNSYS; EnergyPlus; 
IDA-ICE; ESP-r; Clim2000; BSim ; BUILDOPT-VIE.
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Fig.3. Black-box model Fig.4. Grey-box model

The most used computational techniques 
for Black box modelling are: Linear Multiple 
Regression (LMR); Artificial Neural Network (ANN) 
and Decision Trees (DT); Genetic Algorithms (GA); 
Support Vector Machines(SVM) (Foucquier et al., 
2013).

Nowadays, modelling urban energy systems is 
a continuously developing field (Christoph F. 
Reinhart & Cerezo Davila, 2016). The simulation 
of building energy use is no longer reliable and 
efficient enough assuming isolation from the 
urban context such as microclimatic impact and 
energy system in which the building operate.

1.3.2. Black-box approach 1.3.3. Grey-box approach

The Black-box method is another approach of 
modelling. This so-called inverse-modelling 
technique (Wang et al., 2012) uses some form 
of regression to calculate energy indicators. This 
model needs on-site measurements over a certain 
period of time, and over different conditions, to 
create representative, and trained model (Li and 
Wen, 2014). This method is mostly used when the 
physical parameters of a building is not known 
(Fig.3.). The great power of this method is that, 
it does not need heat transfer equations, and it 
needs less building parameters, than the white 
box approach does (Foucquier et al., 2013). 

The third method is the Grey box modelling. 
This approach is used, when the building 
characteristics are not well known, or it could also 
be used, to eliminate the weaknesses, of each 
previously mentioned model (Fig.4.) (Foucquier 
et al., 2013). This method is also referred as the 
hybrid method (Foucquier et al., 2013), for the 
simple reason, that it contains attributes of the 
white box model, and also the black box model. 
According to (Foucquier et al., 2013) there are 
several ways to couple these two approaches: 
Using machine learning, as physical input 
estimator; build a learning base, with White-
box approach, then use statistics, to implement 
a learning model; and to use statistical data in 
fields, where White-box data is less efficient.
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The model of an urban energy system is 
neither feasible nor useful without taking into 
consideration the buildings that it serves. Thus 
we are interested in exploring the state of the art 
of this area.

In our study we seek to answer the following 
questions. What are the capabilities of existing 
urban energy modelling tools ? What are the 
current technical shortcomings of these models? 
In which directions they should be further 
improved is order to cover all the energy related 
issues in city-scale modelling?

In order to have an accurate picture, the discussion 
of this study builds upon a literature review and a 
critical revision linked to comparative tables. (See 
the methodology on Fig.5) Firstly, a research of 
existing related city-wide models with the scope 
of energy modelling was done in the scientific 
database of ScienceDirect . Secondly, the 
collected studies distinguish approaches by their 
scale. There is access from building or building 
group scale and there is another way from 
large scale modelling as it is revealed from the 
literature review. In order to better understand 
the topic we explored both methodology, which 
is shown in the following sections. Building 
Energy models (BEM) are divided into three 
parts (white, black and grey boxes) while urban 
energy modelling platforms are further separated 
in two subgroups by their nature (top-down and 
bottom-up modelling approaches).  We present 
the application fields of white, grey and black box 
techniques in the Discussion. The comparative 
analysis of large scale models is presented in 
Section 2.2. Here, aspects of the comparison are 
defined, based on collection of viewpoints from

the workflow of each model, and list of aspects 
from the overview of literature. Results are stated 
in Section 3.0.
Finally, the most highly cited, diverse seven 
models has been separated for a deeper look at 
their capabilities and compared with each other 
by their input, workflow and abilities for satisfying 
energy related sustainable aspect we set up in 
Section 2.2.3. To sum up, the aim of the study 
is to demonstrate a critical review of current 
methodologies and their shortcoming in different 
layers in order to support the development of 
further efforts in this field of urban design. 

2. Methodology
2.1. Methodological summary

Fig 5. Research method
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As it is mentioned in the introduction, the top-
down method treats the building sector as a big 
black box. The most commonly-used indicators 
are macroeconomic indicators like: fuel prices, 
GDP, employment rates, annual mean income, 
etc.; climatic conditions, housing construction/
demolition/renovation rates, and data on 
technological appliances (Johnston, 2003; Swan 
and Ugursal, 2009).
 There are two ways of top-down modelling: 
econometric and technological. Econometric 
modelling is based on prices, incomes (Balaras 
et al., 2007; Coffey et al., 2009; De Santoli et 
al., 2014; Howard et al., 2012; Labandeira and 
Rodriguez, 2005; Siller and Imboden, 2007) while 
technological modelling is based on consumption, 
and life cycle stage of technological appliances 
(Young, 2008). Also, there are a few models, 
which use both ways (Swan and Ugursal, 2009; 
Tornberg and Thuvander, 2005) 
The top-down models investigate long-term 
changes and transition in the energy sector. They 
fit the historical data accordingly. Mostly, these 
models use some already existing databases, but 
it is not rare to estimate missing data, as well 
(Johnston, 2003; Kavgic et al., 2010; Swan and 
Ugursal, 2009)
The reliance on historical aggregated data can be 
either a positive or a negative attribute. Positive, 
because it provides inertia to the model, and 
simplicity to the calculations method. Also, it 
is easier to collect aggregated data, then non-
aggregated (Swan and Ugursal, 2009). Negative, 
because it assumes, that values in the future 
remain valid, which can cause big discrepancies 
(Hourcade and Ghersi, 2006). Although as Swan 
and Ugursal (Swan and Ugursal, 2009), 

housing sector rarely undergoes paradigm shifts, 
these errors may not be so significant. Further 
negative point is, that econometric models are 
not capable to model discontinuous advances in 
technology. The technological flexibility is much 
lower than in case of bottom-up models. Also, 
while constructing policies, policy makers are 
often pushed towards building specific aspects, 
like technology, or envelope, and top-down 
models face lack of details to identify these key 
areas.
In Table 1, we created a framework, based on 
the literature review. The following aspects were 
identified: „scale”;”building type”; „method”; 
„input data”; „validation”. Under the „scale” 
point, we specified scales from country, to 
neighbourhood. In the „building type” scale, 
residential, commercial and public, mixed use, 
industrial and other buildings were specified. 
The „method” category was split into two, 
econometric, and technological. Under „input 
data” occurred a so wide variety of inputs, 
that only simple inputs, and estimated data 
was identified as subgroups. In the last point 
„validation”, we investigated, whether or not the 
models was validated.

The data in the bottom-up method has to be non-
aggregated. We can only speak about this kind of 
approach, if the input data is given for a specific 
unit of the system. According to the available 
information, it is possible to separate three 
different groups of this method.
The first group is called the statistical method 
(Kavgic et al., 2010; Swan and Ugursal, 2009), 
also there are references for it as the data-driven 
method (T. Hong et al., 2016; Tardioli and Finn, 
2015).

2.2. Detailed methodology

2.2.1. Comparative analysis of top-down 

models

2.2.2. Comparative analysis of Bottom-up 

approach
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Tardioli and his co-workers states (Tardioli et 
al., 2015), that this kind of model is a black-
box approach (Fig.6.). Every building itself is 
a black-box, and the output of these boxes are 
used as input (energy consumption, energy bill 
information, meteorological data, energy price, 
building geometrical features, building thermal 
features) for calculating the result.
These type of historical data is used to aggregate 
energy consumption for the meso-scale. There 
are a few types of calculation methods which can 
be applied to process this data. 
Tardioli and his colleagues (Tardioli et al., 2015) 
made a literature review on this topic, in which 
they separated four mainly different calculation 
methods: statistical and regression based 
methods such as multiple linear regression (MLP) 
(Nouvel et al., 2015) ; Artificial Neural Networks 
(ANN) and Decision Trees (DT) (Hong et al., 2013; 
Wijaya et al., 2014) ;Support Vector Machines 
(SVM) (Humeau and Aberer, 2013; Shabunko, 
Lim and Mathew, 2014; Wijaya et al., 2014); and 
clustering based method (Arambula et al., 2014; 
Gao and Malkawi, 2014; Heidarinejad et al., 
2014). They also grouped these data according 
to the question they are entitled to answer: 
forecasting prediction, benchmarking, energy 
mapping and profiling.
According to this sample, the forecasting 
prediction can be done by all four above 
mentioned methods. As for benchmarking, the 
same can be stated. For energy mapping only 
the statistical and regression based, and the 
clustering based methods provides solution. As far 
as profiling is concerned, it is only the clustering 
based method. So the only calculation method, 
which can be used for all the above mentioned 
four tasks, is the clustering based method. This 
method is about making groups in a system, from 
its own elements, where the elements in a group 
have similar features, and they are different from 
the elements in other groups (Tardioli et al., 
2015). 

It is however, a big question, what is that amount 
of clusters that helps the method? Would it be 
better to calculate the results for every building, 
aggregate and then numerate them? In (Humeau 
et al., 2013; Wijaya et al., 2014) Humeau et.al. 
did two analysis on the percentage of errors with 
different numbers of clusters, and it occurred, 
that if every building is treated as a separate 
cluster, the percentage of errors is much higher, 
than in the case, when the whole sample is 
treated as one cluster. The optimal number of 
clusters is defined as approximately ten, but it is 
only true for these two models. It is also stated, 
that if the number of the sampled buildings is 
varying, this optimal number will also change 
(Humeau et al., 2013; Wijaya et al., 2014).

Fig 6. Statistical approach
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According to Hong and his colleagues (T. Hong 
et al., 2016) these methods have a major gap, 
when it comes to assessing the future Energy 
Conversion Measures (ECMs). The shortage is, 
that this kind of model cannot take integrated 
effects of ECMs into consideration.
The second group is the engineering method 
(Kavgic et al., 2010; Swan and Ugursal, 2009). 
There are references for this process as physics-
based method in the literature (T. Hong et 
al., 2016; Tardioli et al., 2015) and it is also 
mentioned as the analytical method (Fonseca 
and Schlueter, 2015). As this approach contains 
white-box modelling only (see on Fig.7.), it 
requires the most detailed inputs. By this process 
heat transfer and thermodynamic relationships 
in a building are calculated. Buildings are usually 
categorized by features, like the above mentioned 
clustering. Buildings with the same properties 
are represented by the same sets of inputs, in an 
archetype (Davila, Reinhart, and Bemis, 2016). 
Also there are two more techniques: calculation 
based on distribution, in which the end-uses 
are calculated separately, and calculation based 
on sampling. This allows for capturing a wide 
variety of houses in a neighbourhood, but this 
technique requires a large database (Swan & 
Ugursal, 2009). The most common inputs are the 
followings: efficiency of space heating systems, 
areas, and thermal characteristics of different 
dwelling elements, such as walls, doors and roof 
for instance. 
In this process the calculation is carried out by a 
simulation program which usually based on heat-
mass balance equations for example : EnergyPlus3  
, BREDEM (Anderson et al., 2008).
This approach has a lot of potential. According to 
Swan et.al.(Swan & Ugursal, 2009) the only way 
to evaluate impact of new technologies is this 
method.
 It is capable, unlike the other methods, to model 
on-site energy generation in both active, and 
passive ways. The greatest shortcoming of

this concept is the lacking information about 
occupancy behaviour.

To address the shortcomings of both statistical 
and engineering method, the so called hybrid 
method (Kavgic et al., 2010) or UBEM (Urban 
Building Energy Model) (Davila et al., 2016) had 
been made. These models combine the advances 
of both methods, they consists of a statistical, 
and a physics based component (see on Fig. 8.) 
The statistical part is used generally, for estimating 
the annual energy consumption data, and then 
the estimation of space heating, and cooling loads 
are accomplished with a simulation software. This 
way the first method is responsible to implement, 
and deal with the occupant behaviour, as this 
is aggregated from real historical data, and the 
second part is responsible to address the effect 
of implementing new technologies(Kavgic et al., 
2010)

Fig 7. Engeneering approach
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Fig 8. Hybrid approach

In the recent years, models with the best 
performance, and lowest level of uncertainty has 
been made with the concept such as (Davila et 
al., 2016; J. A. Fonseca, T. Nguyen, 2016; Swan, 
Ugursal, & Beausoleil-Morrison, 2013). For 
example in the Canadian Hybrid Residential End-
Use Energy and GHG Emissions Model (CHREM)
(Swan et al., 2013) for the statistical part, a 
calibrated neural network model was adapted 
to estimate the annual consumption of the loads 
mainly influenced by occupant presence. 
For modelling the space cooling, and heating load 
the ESP-r 1 simulation package was implemented. 
With this package the impact of technological 
progression has been assessed.
 To examine these models, Table 2 was created, 
where the different aspects was defined, by the 
literature review. Under the „scale” point, three 
different scales were identified: the City, the 
District, and the Neighbourhood. 
By „building type” Single, and Multi-family, 
Commercial and Public, Mixed use, Industrial, 
and Other buildings were specified. 
In the point „method” the above discussed 
Bottom-up, and further separated the Statistical, 
Analytical, and the Hybrid (Analytical and 
Statistical) methods were specified.
 The next point is the „geometrical data”. It was 
split into two categories, existing and self-built. 
Both have the same sub-categories, 
1     University  of Strathclyde, “ESP-r,” 2016.
[Online]. Available: http://www.esru.strath.ac.uk/Programs/ESP- r.htm. 
[Accessed: 23-October-2016].

which are the CityGML Levels of Details (Gröger 
& Plümer, 2012; Wate & Coors, 2015), Built 
Environment and Topography.
At the point „meteorological data” we examined 
which data file they use, and whether they 
calculate with microclimatic phenomena or not. 
Data files could be acquired from General-, or 
Regional Circulation Models (GCM,RCM)1, or 
from historical data like Typical Meteorological 
Year(Crawley, Huang, & Berkeley, 1997; 
Jentsch, James, Bourikas, & Bahaj, 2013) 
(TMY1,TMY2,TMY3) and Weather Year for Energy 
Calculations (Crawley et al., 1997) (WYEC) or any 
other format. 
From microclimatic phenomena the Urban 
Heat Island effect (UHI), the effect of green 
surfaces, and local wind patterns were taken into 
consideration. 
Under „building physics” we examined how the 
model handles the buildings: with archetypes or 
each building individually. 
In the next point, „building control”, we 
investigated whether to take, or not to take into 
consideration the building control like BMS, or 
the Occupant Behaviour(OB).
Next the „simulation platform” was assessed. 
Here, the main modelling software was defined 
like EnergyPlus, ESP-r,CitySim and Simstadt. 
According to the literature review, the „simulation 
type” could either be dynamic, or static(steady-
state). 
Last but not least, under the „validation” and 
„sensitivity analysis”, we examined, if the models 
carry out validation and sensitivity analysis, or 
not.

1 IPCC Intergovernmental Panel on Climate Change
    Available: http://www.ipcc-data.org/guidelines/pages/gcm_guide.html 
[Accessed:25-10-2016]
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Table 1. Comparison of top-down models
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Table 2. Comparison of bottom-up models
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2.2.4. Overview of the seven models

There has been an approach which states, that 
the Top-down, and the Bottom-up are not 
mutually exclusive approaches, but they are 
complementary approaches (Kim and Loch, 
2014). So an energy model could only be the best, 
if it contains the two approaches. Hourcade et.al. 
(Hourcade et al., 2006) pictures it in a 3 dimensional 
coordinate system, where the 3 dimensions are 
macroeconomic completeness, microeconomic 
realism, and technological explicitness. The pure 
Top-down models are moving in the plane created 
by the macroeconomic completeness axis, 
and the microeconomic realism axis. However, 
the pure Bottom-up models are moving in the 
plane created by macroeconomic realism, and 
technological explicitness. If a model changes 
just enough to move out from its original plane 
Fig.9., Hourcade et al. in (Hourcade et al., 2006) 
considers it as a hybrid model.
So according to their statement (Hourcade et 
al., 2006), there are four different hybrid models 
available:
1. Top-down based model, which abandons 
the conventional macroeconomist toolkit, and 
applies representation also for energy end-use 
technologies, and technology adaption, described 
by Bottom-up method.
2. Top-down based model, which is more 
disaggregated and uses Leontief (Lopes and 
Neder, 2016) fixed-input ratios to include some 
reduced form of a Bottom-up model.
3. Bottom-up based model, which includes 
top-down variables like: functions, for clear 
markets, final goods and services based on 
changes in cost of production, etc. (Hourcade et 
al., 2006)
4. The fourth is called by him as a „Holy Grail”. 
This type of model contains a fully developed Top-
down, and a fully developed Bottom-up models, 
with all of their characteristics. 

Davila et al. states in (Christoph F. Reinhart & 
Cerezo Davila, 2016) that Top-down modelling 
is less-suitable to examine more integrated 
scenarios, and Nouvel et al. states in (Nouvel et 
al., 2015) that this approach is inappropriate to 
model energy transition. Therefore for examining 
of the state of art, we picked seven models from 
the Bottom-up table for comparisons, and deeper 
analysis.

Fig. 9. Figure of the Hybrid models (Hourcade et al., 2006)

Reinhart states that urban building energy 
modelling tools have three main pillars: data 
input, thermal modelling and validation. 
(Christoph F. Reinhart & Cerezo Davila, 2016) 
According to the state of the art, there are 
models with individually developed workflows as 
stand-alone software, at the same time models 
based on existing simulation tools can be also 
found, where additional effort has to be made to 
harmonize the work of embedded platforms and 
process reliable simulation results. In our paper, 
the following design supporting city-scale energy 
modelling tools are highlighted from all the 
collection presented in previous tables as these 
are the most complex and profound platforms 
based on different concepts or even built on each 
other.
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Started in 2001 Project SUNtool, Sustainable 
Urban Neighbourhood Modelling tool, (D. 
Robinson et al., 2007) (see on Fig. 10.) was 
developed firstly, in order to help designers in 
the pre-design stage to create more sustainable 
urban neighbourhoods. Maintaining the scale 
of 50-500 buildings this framework is based on 
simulation of resource flows (energy, waste and 
water) taking into consideration the microclimate 
conditions (Darren Robinson & Stone, 2004) and 
the effect of human behaviour. (J. H. Kämpf & 
Robinson, 2007) SUNtool has been documented 
in several publications, applied in Greece and 
Switzerland, however, the software has not been 
officially published.(C.F. Reinhart et al., 2013)

As occupants’ behaviour has important impact 
on building’s energy balance, this model gives 
particular attention to this matter. Using quarter-
hourly profiles, occupants presence can be set. 
Much attention is paid to window openings, 
lights and shading devices, electrical and water 
appliances, as well. (D. Robinson et al., 2007)
There are two reasons why it is becoming 
interesting to model weekly waste flow with the 
help of statistical data. 
On one hand, it is a key indicator of sustainability, 
on the other hand energy can be produced 
through incineration.(D. Robinson et al., 2007) 

Fig. 10 Architecture of the SUNtool software (based onD. Robinson et al., 2007)
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Inside the Graphical User Interface there are 
optional settings. Here, the Fuel/Plant Library 
allows user to choose from, or even create fuels 
and those equipments belong to them. 
These properties have to be linked to building 
and district energy centres. 

This design support tool has a complex workflow. 
Firstly, the global location of the site has to be 
selected using the user interface (developed 
in Java). It is assigned to climate data and an 
intelligent default dataset, which includes 
detailed information of each building as age and 
type of use, that can be further detailed (such as 
default properties of built-in HVAC systems can 
be overridden). 
After this, building geometry has to be defined 
(rendered with Microsoft DirectX for Java3D). 
Decentralised or connected to a central energy 
centre, renewable sources and water processing 
technologies may also be chosen. Then from GUI 
containing all relevant data via XML files C++ 
objects can be generated and sent to the solver 
Fig.10.
For microclimate, thermal, stochastic (as user 
presence for instance) and plant models, an 
instance is created in order to store information 
for the internal connections of each model. The 
structure of the solver contains four layers for the 
four models with different workflows with distinct 
degree of complexity. The results of simulations 
of each four models are fed back to the GUI as an 
XML file.
SUNtool is the first integrated dynamic model 
which is based on physically rigorous analyses of 
communication between the urban environment 
and the building energy consumption. However, 
according to Robinson, it has several shortages 
discussed below. (D. Robinson et al., 2007) 
Meanwhile internal water appliances by buildings 
are modelled, neither rainwater storage, nor 
black or grey water flow are presented. The 
energy production of renewable sources are also 

not supported, as stated in the study. Life cycle 
cost analysis is not included. 

CITYSIM
The aim of the research project started in 2006, 
(J. Kämpf & Robinson, 2009) was to support the 
environmental design of urban master plans 
dealing with non-domestic buildings as well. This 
urban scale energy model uses SUNtool (Darren 
Robinson & Stone, 2004)
Fig.11. solver as a reduced dynamic thermal 
simulation platform. It applies properties of a 
shortwave and longwave radiation model which 
considers obstructions to both sun and sky as 
well as reflections from adjacent obstructions 
and uses them as input. The prediction of interior 
lightning rate and internal temperature, for 
instance, is meaningful information for calculating 
the occupants’ behaviour. CitySIM (J. H. Kämpf 
& Robinson, 2009) is a developed version of 
SUNtool (J. H. Kämpf & Robinson, 2007). It was 
found out to support a more reliable and more 
comprehensive city-wide simulation process, 
than SUNtool had had before.
To deal with the large number of parameters, 
such an optimised model should be taken into 
account, Kämpf and Robinson in 2008 developed 
a hybrid algorithm of the CMA-ES and HDE 
methods. Fig12 (J. Kämpf and Robinson, 2009).It 
has been used to manipulate the geometry of city 
blocks in order to optimize their form for active 
and passive solar energy utilization. CitySIM is 
based on the following three parts: a graphical 
user interface, a database containing technical 
specification of groups of buildings, and a solver.
The framework is similar to the previous version, 
(D. Robinson et al., 2007) however, this is more 
detailed. The GUI (graphical user interface) 
allows to draw and edit the new buildings’ 
geometry within an urban context in order to 
support designers in evaluating different massing 
concepts while the spatial opportunities on the
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and urban settlements are also taken into 
consideration.

In common with SUNtool the database contains 
default values related to technical characteristics 
including constructional and occupational 
information as well as appliance and system’s 
specification. After grouping all buildings into 
archetypes, there is a further opportunity to 
specify these settings in case of having more 
precise information or individual elements.

Fig. 11 CitySim solver (Darren Robinson, 2011)
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Figure 12 The hybrid algorithm, a coupling of CMA-ES and HDE—two 
distinct populations popHDE and popCMA-ES go through evolution process 
(red solid lines) exchanging individuals (blue dashed lines) (J. H. Kämpf & 
Robinson, 2009)

After that the building is associated with an 
Energy Centre according to its HVAC system, 
energy sources and appliances. It can also be an 
element of a District Energy Centre, which means 
more information is provided about heating, 
cooling and power demand. Location and climate 
information is set by the user.
The link between the information from GUI and 
the database is in an XML file, which contains all 
the values previously set as we could see by the 
previous model, SUNtool. The solver reads the 
XML file (defined by the C++ objects describing the 
buildings, zones and associated plant systems). 
The solver runs the simulation for each hour and 
each thermal zones. 
The result is described by an ASCII file and sent 
back to the GUI to graphically present it.
Urban scale modelling contains the necessity 
of computerised algorithms. Therefore through 
matching CitySIM structure with a hybrid method 

has the opportunity to reach relevant data. With 
developing the hybrid approach EA (evolutionary 
algorithm) (J. H. Kämpf & Robinson, 2009) the 
solver can infer the missing physical properties 
from the available data. At this stage the process 
uses a black box model. 
In the pilot project of the district of Matthäus in 
Basel, (J. Kämpf & Robinson, 2009) 13 parameters 
were described via EA, glazing ratio, window 
U-Value, position of the insulation of the walls and 
insulation thickness for instance. As a result, the 
ideal heating and cooling demands of the group 
of buildings (26 buildings in the above mentioned 
case study) has been calculated. Moreover, 20% 
demand reduction has been established in case 
of changing a small amount of design parameters. 
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Simstadt
The model from Nouvel et al. (Nouvel et al., 2015) 
is also a hybrid method based in Rotterdam. In 
their research paper they calculated the energy 
use with two different bottom-up methods. 
(statistical and hybrid.) The latter approach 
contains analytical, and statistical parts. The aim 
of this model was to develop a framework which 
could combine the statistical and the engineering 
(or analytical) model for improved predictions.
The gas consumption was calculated with a 
multiple linear regression to define the energy 
saving potentials. Although without dataset 
about refurbishment, the statistical model itself 
cannot predict the energy savings, it is estimated 
with benchmark values.
The analytical part is brought to effect with 
Simstadt urban energy simulation platform. This 
project is one of the reference studies for the 
platform.

The visualization is carried out in CityGML 3D in 
which there are five LoD-s (Level of Details).
 This platform calculates the heating demand 
based on quasi-static monthly energy balance, 
and every building is modelled as a single 
isothermal zone. Furthermore, this platform is 
able to simulate PV potential, and urban wind 
flows.
Also there is a new framework, which merges 
statistical, and analytical approaches on Fig 
13. The statistical approach is used to predict 
energy consumption at city level, to select the 
neighbourhood in which there is the biggest 
necessity of the energy saving. This data is also 
used as a validation at the end of the process. 
Then the analytical model is used to model the 
selected part of the city. So, basically with black 
boxes they allocate which zone uses the most 
energy, to this end data is assigned with zip codes 
to location, and then they model that zone with

Fig. 13. Structure of the hybrid model (Nouvel et al., 2015)
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white boxes. 
They measured MAPE (Mean Absolute Percentage 
Error) of the statistical, and the hybrid method. 
For the statistical process the deviation was 5% 
lower than the measured data, and the hybrid 
was 25% higher, (respectively 26% and 49%).

CityBES
The City Building Energy Saver (CityBES) web-
based platform is created by Hong and his 
colleagues. (Hong et al., 2016) The main focus of 
this platform is to help municipalities to assess 
possible city-scale energy saving programs. 
City BES was based on the CBES (Commercial 
Building Energy Saver) Toolkit, but it was extended 
with other commercial and also residential 
building types.
This tool is able to model more than 10000 
buildings, and also to identify deep energy savings 
up to 50%, with the heaps of ECM-s (Energy 
Conversion Measures) implemented in this 
framework. Shown on Fig.14. As it can be seen, 
the model operates at three different layers. 

To compute this extraordinary amount of data, 
they implemented parallel computing architecture 
to utilize high performance-computing clusters. 
One of the main attributes 

of this model is that it can compute a big amount 
of data relatively fast in a cloud-based process. 
CityGML was used for 3D visualization.
CityBES calculates city energy use from annual, 
monthly, and hourly energy usage data. With the 
help of the energy end uses data it can identify 
energy savings for different building systems. 
EnergyPlus was used to calculate the ECM-s, then 
it was applied to CityBES for retrofit analysis. 
CityBES also provides sensitivity analysis for the 
electricity consumption as a function for outdoor 
air temperature. The energy modelling was also 
carried out by the EnergyPlus software, using 
OpenStudio interface and an Automated Model 
Calibration was adopted as well. There were no 
test cases published, so the percentage of error 
of this model is yet to be made.

Fig. 14. Different layers of CityBES  (T. Hong et al., 2016)
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Umi
Urban modelling interface (Umi) (C.F. Reinhart et 
al., 2013) has been developed by the Sustainable 
Design Lab at the Massachusetts Institute of 
Technology. 
The goal of this urban modelling design tool is 
to improve the efficiency of new and existing 
neighbourhoods in terms of sustainability, 
in conjunction with operational energy use, 
daylighting, outdoor comfort and walkability.
This is a Rhinoceros-based system, which 
comprises the following four modules: the 
settings of the location and building information, 
simulations, result visualization. The urban 
context is set first -such as building volumes 
with glassed areas, streets, important elements 
of natural environment and most of the shading 
objects- in this Windows-based nurbs modeler, 
then each building is defined by an editable 
template of constructional data and usage 
schedules. 

Thermal properties are evaluated building by 
building with 
EnergyPlus solver and sent back to the platform 
of Rhinoceros to make the results visible in order 
to foster design interventions.
Daylighting and sustainable transportation 
workflows are integrated in additional expert 
toolsets of Grasshopper. Evaluations for 
daylighting runs in a solver called Daysim, which 
is a Radiance-based extension. Walkability 
calculations are relying on the density of 
amenities, number of intersections and block 
lengths. Python script is used in Umi to evaluate 
these values. On November 7th 2014 a second 
version was published containing embodied 
energy calculation module.

Boston’s UBEM
Nowadays the main focus of this field is on finding 
the adequate connection between modelling 
tools and the currently available datasets of the 
examined city, according to the paper of Reinhart 
et al. (Davila et al., 2016) There are several other 
hybrid models with the similar framework, we 
choose this one as the last model elaborated 
according to our researches. 
The urban energy model of Boston is based 
on three sub-stages: model characterization, 
model generation and model simulation. The 
workflow uses a Rhino based CAD environment 
applying GIS datasets actively maintained by the 
municipality for creating geometrical properties, 
ground elevation and urban context.
The model is automatically generated in 2.5D 
from this input, for further details Rhino plugin 
Grasshopper interface can be used. For the 
energy simulation, similarly to the process of Umi, 
EnergyPlus is handled. The calculation is based 
on the same method as mentioned previously by 
Umi’s workflow. The model is able to calculate 
yearly and hourly energy demand on building 
scale for the entire city as its input is supported 
by Boston’s datasets. 
The workflow of this city-wide model also contains 
a part dealing with scenario analysis strongly with 
the scope of energy demand and supply on the 
building and specific systems scale for supporting 
decision makers and designers (see Fig.15.)
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Fig. 15. Boston’s UBEM

CEA
City Energy Analyst (CEA) is based on the previous 
model of the authors. (Fonseca & Schlueter, 
2015) They developed a model, with the scope 
of determining spatiotemporal variability of the 
energy services in the future. This model was 
constructed by three main parts, which functioned 
separately Fig 15. Then it was aggregated, 
clustered, and visualized by a GIS framework. 
This itself was a hybrid method, which contains 
the following four main phases; statistical model 
(1), analytical model (2), aggregation (3) as well 
as clustering and visualization (4).The model was 
validated with a peer model and empirical data. 
The percentage of errors for the whole zone was 
1% and 19% for the neighbourhood and the city 
district. 
The black box method, was used to determine 
data from local building archetypes, then with 
the help of the determined data, distribution 
database, and spatial clustering algorithms, 
a calculation was carried out with white-box 
method. Based on this, Fonseca et. al. created a 
new model called CEA (J. A. Fonseca, T. Nguyen, 
2016)
This framework was created to analyse different 
urban scenarios by the energy, carbon emission, 
and financial point of view.

This framework was created to analyse different 
urban scenarios by the energy, carbon emission, 
and financial point of view.
This model was programmed in Python v2.7 
and built as an extension of the Geographic 
Information System ArcGIS v10.3. This model 
was built upon the previous one. This framework 
contains detailed models for forecasting the 
building demand, assessment of the availability of 
resources, simulation of conversion, storage and 
distribution technologies, bi-level optimization, 
multi-criteria assessment and four-dimensional 
visualization.
It has a more detailed model structure. CEA 
framework Fig. 16. (J. A. Fonseca, T. Nguyen, 
2016), consists of a demand module (1), a resource 
potential module (2), a systems technology 
module (3), a system optimization module (4), 
a decision module (5) and a spatiotemporal 
analysis module (6). The detailed features of 
each module are further discussed in the paper 
of Fonseca and Nguyen. (J. A. Fonseca, T. Nguyen, 
2016) The sensitivity analysis was conducted only 
by the decision module.
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Fig. 15. Model framework (Fonseca & Schlueter, 2015)

Fig. 16. Operating method of CEA framework (J. A. Fonseca, T. Nguyen, 2016)
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Here the prices of the different fuels were 
examined in relation with the Pareto optimal 
configuration. They also implemented here 
a Multi-criteria decision analysis approach 
(Hirschberg et al., 2004).
The test case was executed, where they examined 
the Swiss city of Zug. 
Four different scenarios were stated by the year 
of 2035. The percentage of error, the rME (relative 
mean error), and the RMSE (root mean square 
error) was between 2%- 5% (except radiation 
RMSE=14% and the demand model rME=32%) 
the latter is a common problem by the white-box 
demand modelling.
These seven urban energy modelling platforms, 
described below, have been compared in a table, 
which contains aspect related to energy flow in 
an urban environment. The aspects has been 
partly collected from the relevant abilities of each 
models containing the analysis of energy flow, 
future scenarios such as retrofit scenarios, climate 
change and renewable potential calculations and 
urban-scale synergies. See the comparion tables 
below. (Table 3. and 4.)

Table 3. Comparison of the selected seven models
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Table 4. Comparison of the selected seven models
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3. Results
3.1. Results of the investigated top-down 
models

3.2. Results of the investigated bottom-up 
models

In Table 1 five out of eight model was carried 
out at country scale: (Balaras et al., 2007; Coffey 
et al., 2009; Labandeira et al., 2005; Siller et al., 
2007; Young, 2008), and the remaining 3 at city 
scale:(De Santoli et al., 2014; Howard et al., 2012; 
Tornberg and Thuvander, 2005). 
By the building type point of view it occurred, 
that residential buildings were the focus in three 
out of eight models (Labandeira et al., 2005; Siller 
et al., 2007; Young, 2008) the whole building 
stock at three out of eight, (Balaras et al., 2007; 
Howard et al., 2012; Tornberg & Thuvander, 
2005), heritage buildings by one (De Santoli et 
al., 2014), and commercial and public buildings 
by another one (Coffey et al., 2009).
Only one out of eight model (Young, 2008), 
was technological, and the other seven were 
econometric model.
There occurred a wide variety of inputs in 
Table 1. The main clusters are however: 
microeconomic inputs, climatic conditions, 
housing construction/ demolition/ renovation 
rates, and the technological features of 
appliances. 
Only two models (Howard et al., 2012; Labandeira 
et al., 2005) implemented meteorological 
data, the other six model assumed, that 
aggregated statistical data already contains the 
meteorological effects. 
Each and every model collected data from 
already existing databases, surveys, and one even 
used the data from EPCs (Energy Performance 
Certificate) (De Santoli et al., 2014). 
Half of the models did not contained any 
validation, (De Santoli et al., 2014; Labandeira et 
al., 2005; Tornberg & Thuvander, 2005; Young, 
2008), however the other half of the models 
were validated (Balaras et al., 2007; Coffey et al., 
2009; Howard et al., 2012; Siller et al., 2007)

In Table 2 a total of 13 models were compared. In 
scale aspect, six of them dealt with city scale, four 
with district scale, but none of them directly with 
a neighbourhood scale. 
In „building type” seven of them had the scope on 
residential buildings, two on mixed use buildings, 
two of them only on single family houses, and 
the remaining two on all the above mentioned 
building types.
Under the point „method”, seven of them are 
hybrid (both analytical and statistical) models, 
further four were statistical models, while the 
remaining two analytical models. 
The next point is the „geometrical data” in the 
comparison, where is only one self-built model 
can be read, one is defined with archetypes, and 
about one is no data available. All the remaining 
are created using existing databases, like GIS, or 
CityGML. 
At the point „meteorological data” two of the 
models used data from Circulation Models, two 
of them use TMY (Crawley et al., 1997; Jentsch et 
al., 2013), one model applies some form of WYEC 
(Crawley et al., 1997), and four models used 
other datasets. There are four models which did 
not use weather files at all. From microclimatic 
phenomena only one of them deal with urban 
heat island effect (UHI) and another one with the 
impact of green surfaces and local wind patterns.
Under „building physics” can be read that all 
but one models used archetypes for defining 
the thermal properties of the building envelope. 
The one define parameters for every building 
individually. 
Under the next point, „building control”, nine of 
the models consider occupant behaviour, with 
either stochastic models, or statistical data, and 
four did not.
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3.3. Results of the investigation of the se-
lected seven UBEM tools

The following aspect in the line is „simulation 
platform”. From the applied energy modelling 
software three are Energy Plus, although ESP-r, 
CitySim, Simstadt solvers are also used. The 
remaining seven are working with self-built 
software or calculations.
By the column „simulation type” seven are 
dynamic, and the remaining items are steady-
state methods. 
The „validation” and the „sensitivity analysis” are 
also vital parts of modelling, all, but one models 
are validated, while sensitivity analysis are carried 
out by four models.

As it is summarized in both tables Table 3 and 
4, four (J. Kämpf & Robinson, 2009) (Planung et 
al., 2012) (Davila et al., 2016)(J. A. Fonseca, T. 
Nguyen, 2016) from the seven platforms base 
on the hybrid approach. There are two elements 
of the comparison (Reinhart et al., 2013) (D. 
Robinson et al., 2007) using strictly analytical 
methodology and one is founded on bottom-up 
statistical method (T. Hong et al., 2016).
Suntool solver is based on building physics related 
equations. It applies iDefaults datasets as input, 
which are editable by the user. CitySim builds upon 
the calculation method of Suntool that has been 
further improved with a hybrid algorithm. Both 
platform uses self-built solver. Simstadt is also a 
hybrid tool based on the combination of bottom-
up analytical and statistical methodologies. 
CityBES uses EnergyPlus for thermal building-by- 
building simulations, such as UBEM of Boston and 
Umi’s platform do. They rely on this continuously 
developing software. Umi and Boston’s UBEM 
are working in a Rhino based CAD environment. 
City Energy Analyst (CEA) also uses its own solver 
which is created with Python v2.7 open-source 
script.

Related to input parameters, this seven platforms 
have been already included in the bottom-up 
models’ comparison previously, nevertheless it 
is necessary to underline some properties. The 
following results can be stated. There are four of 
the underlined modelling platforms which take 
occupant presence into account (Davila et al., 
2016; T. Hong et al., 2016; J. A. Fonseca, T. Nguyen, 
2016; D. Robinson et al., 2007). While all of them 
build the model of urban context in geometrical 
level, or use existing datasets for this reason, only 
four of them deal with topography (T. Hong et al., 
2016; J. A. Fonseca, T. Nguyen, 2016; C.F. Reinhart 
et al., 2013; D. Robinson et al., 2007) and two 
of them predict results regarding to urban heat 
islands (J. A. Fonseca, T. Nguyen, 2016; C.F. 
Reinhart et al., 2013). As it is concluded, only one 
model is able to consider local wind patterns.(D. 
Robinson et al., 2007)

Regarding table 4. which indicates the capabilities 
of each models, it can be concluded that all tools 
satisfy their base target with providing results for 
diverse aspects of presenting the urban energy 
flow such as heating or cooling supply and 
demand of each building of the entire city.

Secondly, the most obvious lacking capabilities 
are also visible. They are connected to financial 
calculation and simulation of energy storage 
technologies, which are implicated in only one 
model of the seven (J. A. Fonseca, T. Nguyen, 
2016). From aspect of future scenarios, under 
retrofit evaluations five, while under climate 
change four models can be mentioned, however 
all but one provide opportunity to calculate 
renewable potential. Five (T. Hong et al., 2016; J. 
A. Fonseca, T. Nguyen, 2016; D. Robinson et al., 
2007) of the seven platforms deals with building 
related energy changes, two of them are counting 
also for non-building related energy changes such 
as streetlighting for instance.
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(J. A. Fonseca, T. Nguyen, 2016; D. Robinson et 
al., 2007) Each aspect also can be subdivided 
into diverse properties, however in the examined 
publications do not contain enough information 
to infer more detailed results.

As it is presented, micro scale modelling 
approaches included white, grey and black 
box methods. Each approach contains diverse 
calculation techniques, described in Section 
1.3. Through a literature review the following 
statements can be concluded. EnergyPlus solver 
which has been applied in 3 UBEM tools, is based 
on nodal method, which is a white-box technique. 
Its application field according to Foucquier and 
his co-workers (Foucquier et al., 2013) is the 
determination of total energy consumption, 
indoor average temperature and cooling or 
heating load. The nodal method is characterised 
by its reasonable computation time and easy 
implementation.
To sum up the statistical technique (also called as 
black box method), it can be concluded, that each 
sub-methods (CDA, GA, ANN, SVM) is able to 
forecast energy consumption. Genetic algorithm 
(GA) is also able to optimize equipment or load 
demand, however it needs a large amount of 
training data. 
The literatures separate meso-scale building 
energy modelling into two groups. Firstly, top-
down method manages the sample as a big 
black-box (Swan and Ugursal, 2009) and uses 
aggregated data on the level of the sample. This 
method calculates energy consumption, with 
some kind of regression.
The second approach is the bottom-up process, 
where disaggregated data is provided. According 
to the existing data, this method can further split 
into 3 methods: statistical, analytical, and hybrid.

The statistical bottom-up method handles every 
building in the sample as a black-box, and uses 
some form of regression to calculated the energy 
consumption. 
The analytical method handles the buildings as 
a white box, and calculates energy consumption 
with heat-mass balance equations with a 
software. 
The hybrid method can handle some of the 
buildings as white boxes, some as grey boxes, 
and some as black boxes. It is used to calculate 
building energy consumption, where some data 
is missing, or it can be also used to address 
shortcomings, of both statistical, and analytical 
methods.
See relations between these methods is in Fig.17
According to Section 2.2.3. top-down and 
bottom-up can also be combined. To do so, either 
a top-down model could implement bottom-up 
features, or the other way around.

4. Discussion
4.1. Existing methods
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Fig. 17. Relations of the approaches
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4.2. The seven assessed models

In the research presented here, urban energy 
models were revisioned from neighbourhood scale 
to the scope of an entire city. Neighbourhoods are 
the blocks of cities, where complex energy flows 
and synergies can be noticed controlled or in the 
best case scenario planned, in a bigger scale, than 
single building, in coherence with the surrounding 
environment and urban context. In order to 
better understand sustainable urban design and 
support decision-making, we need to pay more 
attention to make energy related changes and 
flows transparent and comprehensible.
Building modelling is linked to macroeconomic 
parameters such as population trends and 
economic activity by traditional top-down 
building stock models and mainly with the aim 
of predicting near future energy use foreseeing 
from the current state. (Howard et al., 2012) 
Thus they are limited when developing new 
technologies and they are not adequate for 
analysing interventions where demands need to 
be characterized at the scale of the building. The 
highlighted  above introduced methodologies 
also demonstrates that current philosophies 
are converging from bottom-up approaches as 
building scale understanding of the energy flows 
is the aim at the state of the art.
It is visible by the results in Section 3.3. that not 
all of the hybrid-based (which contains both 
statistical and analytical) bottom-up models have 
an extended power for foreseeing values of most 
of the energy related issues. 
From this statement, it can be drawn as inference 
that the determination of valuable proportion of 
the modelling subtasks is yet to be made, because 
there is no existing platform which would cover 
all the aspects.

Since these tools has been made to support 
municipalities and urban planners to understand 
spatiotemporal energy supply-demand patterns 
due to buildings and help them in decision-
making process, the main focus is on predicting 
interventions’ impacts on future scenarios. Some 
of the aspects connected to scenarios (retrofit 
scenarios, renewable potential calculation) 
are incorporated into the capabilities of most 
platforms, although the lack of financial 
calculation is a big problem.(Christoph F. 
Reinhart & Cerezo Davila, 2016) There is only one 
model which calculates financial background of 
retrofitting scenarios, however the methodology 
of it, is not clearly understandable.
For spatiotemporal analysis of demand patterns 
and potential infrastructure solutions the 
capability of modelling synergies between 
building user and the building itself, among 
examined buildings and their energy grid, as 
well as between each building and its urban and 
natural environment is indispensable. (Fonseca 
and. Nguyen, 2016)
 For modelling these phenomena , the following 
viewpoints have to be measured, calculated, 
estimated or predicted (Davila et al., 2016; 
Fonseca and Schlueter, 2015): the impact of 
building management system (BMS), occupant 
behaviour (OB), geometrical dataset such as built 
environment and topography, local wind patterns 
(LWP) and urban heat island effect (UHI effect) 
We can read from Table 4, that there is no model, 
which could perfectly model all of these aspects.
It can be concluded from the table, that CEA (J. A. 
Fonseca, T. Nguyen, 2016) is the best at modelling 
synergies and local systems  because it deals with 
infrastructure and performance patterns for 
selected configuration of scenarios. It is visible, 
that the set of viewpoints for synergies related 
to the comparison are not covered by current 
models. 
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Nevertheless, in our perspective it is one of 
the most important stages in case of urban 
modelling, because aspects considered under 
this phenomena mean the effect of urban context 
on each or groups of buildings or the other way 
round.
Another big shortage is the lack of conversion 
and storage technologies simulation, even if the 
calculation of renewable potential is covered 
in the future scenarios. There are only a few 
unclear mention of installing new micro grids 
into an existing urban context in the publications. 
Thus for reaching the aim of reliably supporting 
sustainable urban design in energy related issues, 
great efforts have to be made to bridge the 
current gaps.

Hybrid models are working well in numerous 
viewpoint. They can support analysing future 
scenarios including renewable potentials and 
interventions with new technologies with 
results including user behaviour -as it is based 
on statistical dataset. (Davila et al., 2016) For 
more details of the impact of hourly load profiles 
on different energy supply systems, these 
approaches can be further combined with special 
embedded modules. Because of the lack of data 
input, calculation difficulties or unrealistically 
time-consuming simulation processes, there 
are several gaps, which are not covered in any 
platform, however, the results, linked to them, 
would be essential for a comprehensive picture 
of city-wide energy flows.
The biggest remaining input-uncertainty is 
correlated with the definition and detailed 
description of archetypes which used by bottom-
up statistical and hybrid models to represent 
technical characteristics of a building stock such 
as construction year and U values by structure 
elements

 The main shortage by most of the tools is the 
lack of financial calculations. Since decision-
making is strongly influenced by financial aspects, 
especially if we talk about building sector and 
energy related issues, even in case of retrofitting 
processes or new building’s deployment. 
The problem affects LCC analysis, return on 
investment by implementing renewable sources 
in existing neighbourhood and financial benefit 
prediction by retrofitting for instance.
Another lacking element of the results of urban 
models’ is the evaluation of the climate change 
rate in future scenarios, although, this aspect 
is the scope of current policies   only four tools 
are able integrate climate change into future 
scenarios and among these four platform only 
one is considering embodied energy, which 
aspect is strongly connected to inferences of 
climate change.
With interlinking buildings into wider district 
systems synergetic connections will be created. So 
as to accomplish energy- conscious urban design, 
this process has to be planned. Understanding 
synergies energy modelling systems is another 
consequence of the need for urban-level analysis 
such as non-building related energy changes such 
as transportation or street lighting and ability to 
deal with conversion and storage technologies 
of energy. These elements are important to be 
modelled and simulated, especially in case of 
retrofitting, and more related if we talk about 
integrating renewable and/ or hybrid power 
supply technologies into existing neighbourhood. 
There are still many important challenges to be 
overcome in this field. However, it can be stated 
that key factors of development are further 
improving hybrid methods and reduction of data 
points, which could be interpreted as opening 
and maintaining statistical datasets instead of 
measuring data or calculations. Improvement 
of data collection even those maintained by 
municipalities is a good method to have reliable 
and accurate input. 

5. Conclusion
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All in all, towards the development of simulation 
workflows to estimate not only overall operational 
building energy use, but to deal with all kinds 
of the urban-scale related energy transitions, 
it is necessary to define the objectives of the 
calculations in advance. These objectives must 
be extended to the entire city to be able to 
examine synergies in all levels, and to understand 
and consider microclimatic properties as well. 
Regarding to future scenarios, climate change 
and financial issues are not negligible, these items 
must be covered in the near future development.
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