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1. Introduction

During the summer of 2017 | have spent two
camp. This was not just my first time being abroad for a longer period of time, but also my first
time getting closer to nature orsaientific basis. Whenever | wanted to escape the hustle of

town | went North to experience the calmness of the Salfleetby Theddlethorpe National Nature

Reservdfig. 1.). | was hoping, that | could find out more about the story of the inanimate world.

Ob<erving the sand on the shore was a new, and unique experience for me.

Fig. 1. Sampling location: Saltfleetby Theddlethorpe National Nature Resi
England

1.1 Sampling

Lot of field studies on natural shapes have been carried outidtancejn a gypsum field in

New Mexico, abrasion and sorting of samdre measuredjuantitively [1] Although in our

case the material of the sand was much harder (quartz), we still first hoped to find correlation
between the spatial location of the sampling points and the morphology of the grains. As we
will describe, the truth turned out to be diffiete although even more interesting.

My sampling areahie Salfleetby Theddlethorpe National Nature Resewesists of several

rare habitats shaped by the sea, the tides and the wind. Theasacallectedrom 13 different
locations along a perpendiculane to the coagfig. 1.1). This sampling linevas approximately

120 metres long with 3 different types of landmark$; dandy area from mid tide line,i2

bushy area with smaller dunrms, 31 bigger dunes running from North to South.
Through the andy part | chose the sampling locations evenly in distance. Once hitting the
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dunes, the samples were collected from the dune crests in order not to mix the sea to land pattern

with an over a dune pattern.

Fig. 1.1.Prependicular samplg line to the shore, along which the :
samples were collecte

1.2. Observation

Thesesamples weréaken back taHungary andanalysed individually in the laboratory of the
Department of Mechanics, Materials and Structuaeghe University of Technology and

Economics in Budapest.

1. First photos of the grains were taken with a camera attached to a microscope
(fig. 1.2),

2. With a MATLAB software provided by the Department geometric daden ftheir

contours were obtained.

B ire -

Fig.1.2.Taking pictures of the grains with a camera attached to a microscope
Laboratory of the Department of Mechanics, Materials and Structure, Bud
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These geometric data included surface a#gacpnvexity C), isoperimetric ratiolj and axis

ratio R).

1. Area @A)
The amount of space insitlee boundary of a-dimensional shape

2. Convexity C)
C=(Ac-A)/A
whereA. stands for the area of the convex outline of the shap@ anthe area of the

shape.

3. Isoperimetric ratiol(
1=4 pAI?,
whereA is the area, anpthe perimeter of the shape.
We observe that for all shap8s1O Jandl=1 is only obtained for the circle.

4. Axis ratio(R)
R=e/f
the shorter axisg, divided by the longer axis$)(of the shape
We define the longer axis as the maximal diameter and the shorter axis as the diameter

orthogonal to the longer axis. Viéso observe that for all shag@sRO 1

Each of the sampling locations had betweerb@Guccessfully processed grain data, from

which | counted the mean value and the standard deviati@achof the sampling locations.

During the evaluation of the tig what made us cun is that the mean valueladndR almost
equalled to each other through the sampling locationg.he main goal of my researchts

explore this phenomenon with mathematical and geomorpholdgadal
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2. Field data

The mean alues and standard deviations AIC,I,R can be seen ifrigure 2.1. Fig. 2.2,
represents these data in a form of a diagram. One can realize how close the mean Values of

andR are to each other.

It is even more spectacularfigure2.3 where the two axeseR andl. We may observe that
for all measurements 0.74|R < 0.78, all the data points lie within square with area less than
0.2% of the area of the unit squaf@érough the rest of my research | would like to prove that
this may not be a pure caidence, in fact, | will argue that a plausible mathematical model
provides a surprising, yet appealing explanation for this phenomenon.

. I C R A
Sampling
location mean §t. _ mean §t. _ mean s_t. _ mean s_t. _
value | deviation| value | deviation| value |deviation| value deviation
D1 0,740 0,059 0,950 0,015 0,772 0,134 |91785,30629216,407
D2 0,767 0,042 0,956 0,016 0,782 0,104 |72631,964 25469,32¢
D3 0,763 0,046 0,956 0,014 0,786 0,116 |63168,12923831,464
D4 0,747 0,052 0,946 0,018 0,770 0,096 |62745,71721516,089
D5 0,765 0,046 0,956 0,016 0,758 0,103 |65236,79720525,037
B1 0,751 0,043 0,951 0,016 0,745 0,102 |72064,85( 27155,854
B2 0,752 0,050 0,954 0,016 0,760 0,131 |78822,345 26455,374
B3 0,751 0,043 0,950 0,018 0,769 0,104 |75054,53721031,677
B4 0,759 0,045 0,954 0,012 0,779 0,104 |67581,75€ 26091,709
H1 0,770 0,055 0,957 0,017 0,796 0,118 |69003,16( 17996,677
H2 0,774 0,053 0,961 0,015 0,770 0,102 |73904,49( 26021,29(
H3 0,772 0,054 0,955 0,024 0,769 0,095 |82216,59137137,3164
H4 0,772 0,044 0,960 0,012 0,777 0,117 |65834,98727258,661

Fig. 2.1 Table of the meavalues and standard deviations
I,C,R,Abelonging to the different sampling locatior
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Fig. 2.2 Diagram of the mean values and standard deviatioh€ &
belonging to the 13 different sampling locatior

0,10 0,20 0,30 040 050 060 0,70 080 0,90 1,00
axis ratio(R)- mean value

Fig.2.3 Diagram of the mean values Rfandl, emphasizing the
small range (0,70,78) within it values
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3. Mathematical modellig

3.1. The co evolution ofl andR under orthogonal affinity

To explain the coincidence of the two variadlesndR it appeared to be a natural idea to study

one parameter families of shapes.

For simpifying the case, | have examined the evolutiph) andR(/) in case of a twicell)
symmetric convex shap®, being transformed under linear affinity with parametgeparallel
to one of the symmetry axes . Conveniently, we car sgtfor R=1. Using ths convenient

scaling we can see immediately that for any choic® thfeevolutionR(/) will be identical
(1) if /<1 thenR(/)=/, otherwiseR(/)=1//

while the affine evolution of different shapes implies, in genatifierent evolutionsi(/).
Below, on dagram 3.1 we can see this genét@l) functiongiven in equation (1&nd the(/)

functiorsin case of a rnombus aadectangle.
&
1

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0 1 2 3 4 5 6 7 8 9 10 11 12

R 0 I(< tectangle I(< thombus

Fig. 3.1 Diagram ofR(<), [(<)rhombus andl(Srectangle
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We are interested in the valukes the intersection points @f/) andR(/), and whethesuch
intersectiorexistsfor all geometric shape families.

The intersection pointB(/)=I(/) can be cmputedeasilyfor the rhombus, the rectangle and

the ellipse

Computation ofintersection point&d'0/)=R(/)/
1. Ellipsei Circle

o Q
o) p
i “
c‘l £ p
2. Rectangle
0001
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el
p pQ/ /
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3. Rhombus
0001
LGQ/a
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(/4=-13,236)

Hegymegi Julia
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The above simple computations suggest that such intersection points may exist for arbitrary

choice ofS In particular, we propose the following

Theorem1: For an arbitrey convex curve&Sswith Do-symmetry, the one parameter famiy/ )
generated by orthogonal affinity in the direction of one of the symmetry axes will always
contain two shape8(/ 1), S¢ 2) with /1Q¥ 2 suchthathereR(/i)=I1(/;) and/1=/2 holds only ifS

is an ellipse.

Proof of Theorem 1:

Firstwe make the following

Remark 1:
m| gOl Y
The maximum value of both functions is 1. We know thaaches 1 only in case of a circle.

As cirde is an ideal form, and in Natushapes can nevezach the statef being perfect circles

we know for sure thdtwill never value 1.
In order to prove the presence of intersection points we have to prove the opposite side as well
Lemma 1:

In case of an arbitary twice symmetric convex sh&pégeing transformed undinear affinity

with parameter/ parallel to one of the symmetry axdbgere exists avalue of /, where
I(1)>R().

Proof of Lemma 1:

We start with

Remark 2:

(a) At a fixed axis raticS has its lower extreme of perimeter and area v8isra

rhombus.

10
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(b) At afixed axis ratioShas its upper extreme of perimeter and area \#igm
rectangle.

The square perimeter §?) and area/) of an arbitrary rhombus arad an

arbitrary rectangle:

rhombus (min) rectangle (max) e
p? (4aY=16(& >+€?) | (de+dé)’=16(+& 2+2€ ) | el
A 2e e=2¢ 4e*4d =4€

We set the half of the axis that is perpendicular to the direction of the
affinity to 1. (e=1)

We have 2 possibilities:

ft I p

caselm | p

Remark 3. Letx andy be two variable quantities. Q stands, the Q -

for all values ofx andy.
Based on Remarks 2 andv® can insert the datd the rhombus as the minima

for A, and the data of the rectangle as the maximp?for

/ " z¢l

peo |l
pep | gl Y
cl o ¢ A T

11
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T T TZzgqz ¢ *

| 1=0,2533
(I ,=-2,2533)

DOO0O, k6 fime@nidghere exists a value bfwhere the inequality is true.

case2. | p
i AT - P the worst possibility is the same as in case 1.
p ™ 2 ¢l
' pep I
cl ol ¢ al
¢ “ | il ¢ 1
| T T TC¢ “ ¢
¢qg °©
| 1=3,9477
(I 2=-0,4439
DOO0, k6 fimeénidghere existavalue ofl , where the inequality is true
Q.ed

Theorem 1 reveals that each fanfdy ) must carry this special ratio and this ratio would be
characteristic of that particular family, sp knowing the/; valuesbelonging tcO/)=a(/), we

may be able to draw conclusions for a shape. In particular, the obsevahaes in case of the
measured sand are in close vicinity for the values computed for the rectangle and the rhombus,

so this suggests that grain cam®may look like slightly elongated rectangles. In fact, at closer

12
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inspection this appears to be the case: most of them can be well approximated by these slightly

elorgated rectangles (cf. Figure 3.2.4

3.2 Fragmentation model

Fragmentation models ight provide a possible answer for tlméstory of shapesince they
represent the initial conditions for the evolution equatioftsere are general results about the
universal correspondence between size and elongation of fragf@gntsere our goal is
somewhatsimilar: we aim to describe some universal geometric features characterizing 2D
fragmentation.

A simplified, planar fragmentation model operating by splitting convex polygons into two parts
by random straight lines shows that, regardless of the initeeshafter sufficiently many
fragmentation events the average value of vertices (and edges) approaches 4. @aseaday,

on this simple model say that natural (planar) fragments tend to be quadrangles.

We can formbze our model as follows. Among a sdtamnvex polygonsS, letd denote the
number of polygons antdenote the total number of verticsbitrarily we choose one convex
polygon from the set and split it into two parts with an arbitrary straight line. Then we put the
newly obtained two polygtes back in the set.denotes the number, how many times this
operatiorhas beempplied Now we formulate

Theorem 2:

m
o-

iEoin— T

>
O

Proof of Theorem 2:

We prove this statement by a simple topological observation. If a convex polygon is intersected
by a straight line then there are always two intersection points and in a generic case none of

these will coincide wh a vertex of the original polygon. Since both intersection points will be

13
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vertices of both new polygons this implies that in each splitting event the number of total
vertices is increased by 4 and the number of polygons is increased by 1. Sosplténg
events we will have+1 polygons withn+4svertices, whera is the number of vertices of the
initial polygon. Clearly, ass tends to infinity, the ratiqn+4s)/(1+s) approaches 4. This

argument proves Theorem 2.

Q.e.d.

Remark 4

Not only the averagjof vertices will approach 4, but the obtained convex polygons will tend to
be quadrangles as wetheaning e standard deviation of the number of vertices will be in
close vicinity to 0lf n>4 the convex polygon has a higher probability of decreassmguimber

of vertices than increasing theffhese conver-gonswheren>4 are quite unstable, and the

presence of them will be negligible after many successful fragmentation events.

Thus,thissimplified, planar fragmentation modislable to explaithrough a geomorphological

process the quadranglesen in theontours. (fig. 3.2.4)

14
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Fig. 3.2.4  Some catours of the grains, depicting the slight
elongated rectangles with which, they can be approxim

15
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4. Conclusions

All'in all, the sand samples that | collected fromakt®nishinghore of England seem to reveal
much more by lHe geometric data coded in thethan | first expected they would.

| photographed the grains of sand with the help of a camera attached to a microscope and
analysed their contours in a MATLAB programme. Most of the processed grain pbatds

be approximated witlslightly elongated rectangle In the research,] cameup with two
mathematical modelsvhich provideappealingexplanatiors for this phenomenon.

Firstly, the mean value for botlandR through the 13 locations nadwithin the rangef 0,74
0,78.Theorem 1 provethat,to each oa-paramete(/), Do-symmetricfamily S(/) of convex

shapes there exists two critical parameter valu€¥ > such thaR(/i)=I(/i). The lowercritical
/icompued for the rectangle is 0,7744r the rhombus 0,7555 which aremarkablycloseto

the/ values for the measured sand. Since the rectangle and the rhombus are the only admissible

guadrangles in thisodel this suggests that the contours may indeed be close to quadrangles.

Beyond the ceevolution of | andR, there exists a completely independent argument supporting
that fragmented grains should have contours close to quadrahigiesargument reliesn a
simplified geometric fragmentation model and he®drem 4t is shownby a purely topological
methodthat aftersufficiently many successful fragmentation events of splitting 2D convex
polygons into two by random straight lines, the averagaberof the edgesvill be arbitrarily

close to4.

Both independdn theoretical arguments suggetitat fragment contours may be well
approximated by slightly elongated quadrangles. By looking at the images | found that this is
indeed the casgf. Fig 3.2.4.) This observation not only suggests that there may be indeed a
relation between these mathematical models and the behaviour of Nature experienced on the
coast but also offers a beautiful example where field work and matilsahmaasoning go hand

in sand

16
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6. Appendk

1. A special case of the fragmentation model explained before. Exatimnevolution of
one convex polygon.

Let n(P)denote the number of vertices of a con?eRy intersecting the polygoRo with
a straight line we split it into two convex polygoRs,1 and Pi2and we apply this

operation consecutively k times to eysuch obtained polygon to obtaifiglygonsPy,;
G =1, 5. Novwéw formulate

... B ¢t0j
| Ed
C

2. Figures indicating the way the simplified fragmentation operates
3
/ 3\/ \/4 \
3 4

3 5 Fig. 5.2.1 An evolution of a

/\ /\ /\ \ triangle highlighting the number ¢
3 4 5

/ vertices through 3 randonuf§icient
3 4 4 4 4 : '

. D Fig.52.2 A figure indicating

the possible results of th

simplified planar fragmentatiol
model in case of a triangle,
rectangle and a pentago
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3. The directphotosof grains recorded bihe camera and sent to the pc. The grains have

been photographed in a 2*2mm square in order to count their areas.

4. Sketchesnadeand usediuringfield work

e o

% }, ) 0 B
7 N :
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TECE

ROAD
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5. Further photos afamplingat Saltfleetby Theddlethorpe Natural Reserve
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