Tudományos Diákköri Konferencia

Mándoki Réka, Ther Péter Pál, Tomasovszky Péter III. éves építész hallgatók

CSONKOLÁSOK, CSILLAGOK

Konzulens: Dr. Domokos Gábor egyetemi tanár a Magyar Tudományos Akadémia rendes tagja

A dolgozat elkészítését az OTKA 104601-es kutatási témája támogatta.

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM SZILÁRDSÁGTANI ÉS TARTÓSZERKEZETI TANSZÉK

2014.

Tartalomjegyzék

Bevezetés3
Háromszögek vizsgálata4
Háromszögek egyensúlyi helyzetei4
Háromszögek csonkolása
Négyszögek csonkolása10
Téglalapok10
Rombuszok
"Szabályos" sokszögek csonkolása13
Szabályos konvex sokszögek
Szabályos konkáv-konvex sokszögek (Csillagok)16
A feladatok programozásáról18
Összefoglalás19
Irodalomjegyzék19

Bevezetés

Dolgozatunkban egyparaméteres $S(\lambda)$ sokszögcsaládot vágunk ketté súlyponton átmenő, meghatározott iránnyal δ szöget bezáró egyenesekkel, majd darabjait homogén, merev testnek tekintve egyensúlyi helyzeteik *N* számát vizsgáljuk. Kiértékelésként a kapott *N*(λ , δ) eredményeket a λ - δ síkon ábrázoljuk.

Az $S(\lambda)$ sokszög egy λ paramétertől függő, zárt törtvonal által határolt homogén, merev testnek tekintett sokszögcsalád. $S(\lambda)$ lehet háromszög, rombusz, téglalap, szabályos sokszög és csillag is.

A λ - δ sík a λ és δ paraméterek által meghatározott koordináta sík, ahol az $N(\lambda, \delta)$ egész értékű függvényt ($R^2 \rightarrow Z^*$) ábrázolva az egyes pontok $S(\lambda, \delta)$ síkidomokat jellemeznek egyensúlyi helyzeteik N számával.

Az $N(\lambda, \delta)$ függvény N érték ugrásai görbéket határoznak meg. Ezen görbék ábrázolásával lehetőség nyílik arra, hogy $N(\lambda, \delta)$ függvényt leképezzük a λ - δ síkra különböző N értékű tartományokat ábrázolva. Ahol a görbék metszik egymást, un. bifurkációs pontok jönnek létre. Ezen pontok kis környezetében a ponthoz tartozó síkidomok geometriája végtelenül érzékennyé válik.

A háromszögek vizsgálata során meghatároztuk, hogy hogyan függ egyensúlyi helyzeteik száma az oldalak arányától, valamint a derékszögű háromszögeket csonkolva megfigyelhetjük, hogy számunkra váratlan módon e háromszögek λ - δ diagramja (egyensúlyi térképe) periodicitást mutat.

A téglalapok sokszögcsaládját csonkolva már elágazások (un. bifurkációs pontok) jelennek meg az egyensúlyi térképen, a nagyobb csúcsszámmal rendelkező síkidomok esetében pedig egyre sűrűbb elágazásrendszert figyelhetünk meg. Ezen pontok kis környezetének modellezése, vizsgálata, sokat segíthet statikai-geometriai intuíciónk fejlesztésében, kibontakoztatásában.

A fenti egyensúly-elágazásokkal analóg jelenséggel találkoztunk mechanikai tanulmányainkban, amikor a rugalmas stabilitásvesztés jelenségét vizsgáltuk. Itt azt mutatjuk be, hogy matematikailag és mechanikailag is szorosan kapcsolódó jelenséggel ennél sokkal egyszerűbb feladatokban is találkozhatunk. Reményeink szerint ez közelebb vihet a rugalmas stabilitás jobb megértéséhez.

A dolgozatunkban bemutatott egyensúly-elágazások abban is segíthetnek, hogy közelebbről megérthessük a természetben zajló fizikai alakfejlődés folyamatait, melyek során hasonló jelenségek játszódnak le.

A különböző problémák tanulmányozáshoz saját magunk által írt programokat használtunk fel.

Háromszögek vizsgálata

Háromszögek esetében kétféle eljárást is alkalmazunk. Egyrészt megvizsgáljuk a háromszögek teljes családját egyensúlyi helyzeteik száma szerint, másrészt csonkolással generálunk háromszögekből különböző három-, illetve négyszögeket.

Az előbbi vizsgálat algebrai úton történik, utóbbit az általunk írt programokkal végezzük el. Alapvetően mindkét vizsgálat a háromszögek bizonyos csoportosítását mutatja, de míg az egyik az összes háromszöget osztályozza, addig a másik - egy más szempont alapján – csak a háromszögek egy bizonyos csoportját.

Háromszögek egyensúlyi helyzetei

A háromszögek teljes családját vizsgálva belátható, hogy egy háromszögnek 2 vagy 3 egyensúlyi helyzete van. Az általánosság megszorítása nélkül feltételezhetjük, hogy a háromszög a,b,c oldalaira teljesül $a = 1 \ge b \ge c$, továbbá az a oldal C, B végpontjainak (x,y) koordinátái rendre (+0,5; 0), (-0,5; 0) (1.ábra). Így az x és y tengelyek pozitív része egyértelműen határolja azt a tartományt, ahova A csúcs kerülhet.

Ha *a* a leghosszabb oldal és *b* a második leghosszabb, a tartomány újabb határoló görbéje az $(x+0,5)^2+y^2=1$ egyenletű körív. Ezen belül bármely $(A_x;A_y)$ -t felvéve különböző háromszöget kapunk.

 ábra: A vizsgált háromszögek elhelyezkedése az (xy) koordináta-rendszerben: Az összes háromszöget ábrázolva "B", "C" csúcsok koordinátái rendre (+0.5, 0), (-0,5; 0) míg "A" csúcs a pozitív x és y tengelyek, valamint a (x+0,5)²+y²=1 egyenletű körív által határolt tartományba esik.

Ezek alapján mindig *c* lesz a legrövidebb oldal, tehát csak e mentén dőlhet el a háromszög. Ezt az értelmezési tartományt és értékkészletet használva felállíthatunk egy egyenletrendszert, mely megmutatja a 2 illetve 3 egyensúlyi helyzettel rendelkező háromszögek csoportját.

A háromszög súlypontja a következőképpen kapható meg:

$$S_x = \frac{A_x + B_x + C_x}{3} = \frac{x + \frac{1}{2} + (-\frac{1}{2})}{3} = \frac{x}{3}$$
$$S_y = \frac{A_y + B_y + C_y}{3} = \frac{y + \frac{1}{2} + (-\frac{1}{2})}{3} = \frac{y}{3}$$

Mivel a két tartomány határvonalát akarjuk meghatározni belátható, hogy az *S* pont merőleges vetületét keressük a *c* oldal egyenesén. Ha ez egybeesik A-val, akkor határhelyzetben vagyunk. Ezzel egyenértékű az is, hogy *A* illetve *S* pontokon átmenő, *c* oldalra merőleges egyenesek metszéspontját keressük az *y* tengellyel (Y_A , Y_S).

$$\begin{cases} Y_A = \frac{\left(\frac{1}{2} - A_x\right) * (-A_x)}{A_y} + A_y = \frac{\left(\frac{1}{2} - x\right) * (-x)}{y} + y \\ Y_S = \frac{\left(\frac{1}{2} - A_x\right) * (-S_x)}{A_y} + S_y = \frac{\left(\frac{1}{2} - x\right) * (-\frac{x}{3})}{x} + \frac{y}{3} \\ Y_A = Y_S \end{cases}$$

Az egyenletrendszer megoldása:

$$\frac{\left(\frac{1}{2}-x\right)*\left(-x\right)}{y}+y=\frac{\left(\frac{1}{2}-x\right)*\left(-\frac{x}{3}\right)}{y}+\frac{y}{3}$$

$$\left(\frac{1}{2}-x\right)*\left(-x\right)+y^{2}=\left(\frac{1}{2}-x\right)*\left(-\frac{x}{3}\right)+\frac{y^{2}}{3}$$

$$\left(-\frac{x}{2}\right)+x^{2}+y^{2}=\left(-\frac{x}{6}\right)+\frac{x^{2}}{3}+\frac{y^{2}}{3}$$

$$\left(-\frac{x}{3}\right)+\frac{2x^{2}}{3}+\frac{2y^{2}}{3}=0$$

$$\left(-x\right)+2x^{2}+2y^{2}=0$$

$$\left(-x\right)+2x^{2}+y^{2}=0$$

$$\left(x-\frac{1}{4}\right)^{2}-\left(\frac{1}{4}\right)^{2}+y^{2}=0$$

$$\left(x-\frac{1}{4}\right)^{2}+y^{2}=\left(\frac{1}{4}\right)^{2}$$

Tehát a fentiekben meghatározott értelmezési tartományon belül a 2 és 3 egyensúlyi helyzettel rendelkező háromszögek közti határvonal a (0,25; 0) középpontú 0,25 egység sugarú félkör.

Első tétel:

Amennyiben a háromszögek teljes családját vizsgáljuk, és a háromszögek egyik oldala fix és egységnyi, belátható, hogy a nem fix csúcs csak az oldal, az oldalfelező merőleges, és az egyik fix csúcsból húzott egységnyi sugarú körív által határolt tartományba eshet. A tartományon belül a hegyes-, és tompaszögű háromszögek területét a *Thalesz*-negyedkör határolja (sugara fél egységnyi). Továbbá bizonyítható, hogy a tartományon belül a három és két egyensúlyi helyzettel rendelkező háromszögek területét a fix oldal negyedelő pontjából húzott negyed egység sugarú félkör határolja. Mind a három körív középpontja a fix oldalra esik, és egyetlen pontban érintik egymást (2. ábra).

2. ábra: Az első tétel illusztrációja:

kör határolja a fent bemutatott 3 tartományt, mely körök középpontja az "a" oldalra esik, és egy pontban érintik egymást (0,5; 0).

A fenti feladatot egy kicsit máshogy vizsgálva kiolvasható, hogy mekkora részt kell eltávolítani egy bizonyos háromszögből, hogy az egyensúlyi helyzete csökkenjen eggyel. Ezzel foglalkozik az irodalomjegyzékben feltüntetett cikk is. [1]

Háromszögek csonkolása

A továbbiakban csonkolással hozunk létre síkidomokat, melyeket a bevezetőben említett módon vizsgálhatunk.

Derékszögű háromszögek

Az $S(\lambda)$ sokszögcsalád itt a derékszögű háromszögek halmaza. A feltételezhetjük, hogy a derékszögű háromszög a, b, c oldalaira teljesül a $a^2 + b^2 = c^2$, továbbá $b = 1 \le a \le c$, így a-t növelve a az összes derékszögű háromszög megkapható. Paraméterünk tehát $0 < \lambda = b/a \le 1$. A háromszöget a súlyponton átmenő, a oldallal δ szöget bezáró egyenessel csonkoljuk. A csonkolás után mindkét létrejött $S(\lambda, \delta)$ sokszöget vizsgáljuk.

A λ - δ diagramot λ = 1-ig ábrázoljuk, ugyanis 1-től a térkép csak ismétli önmagát, mert minden rögzített λ értékhez ugyanazok a δ tartományok tartoznak, mint ami 1 / λ értékhez, valamint 0° $\leq \delta \leq$ 180°, mert a térkép tükrös δ = 180°-ra. Az, hogy a derékszögű háromszögnek mely csúcsai fogják a

keletkezendő négy- vagy háromszög egy-egy pontját alkotni, három tartományra osztja a térképeket. Ezeknél a váltásoknál a metsző egyenes különböző oldalán létrejövő síkidomot vizsgáljuk, így lehetőségünk van az azonos csúcsszámú síkidomok térképeinek kirajzolására. A különböző tartományokat szaggatott vonallal választjuk el.

ábra: Derékszögű háromszögek csonkolása:
 Az összes derékszögű háromszöget ábrázolva a² + b² = c², továbbá b = 1 ≤ a ≤ c.
 Az "a" oldalt növelve 0 < λ = b/a ≤ 1, a súlyponton át metsző egyenes pedig δ szöget zár be

 ábra: Derékszögű háromszögek csonkolásával kapott háromszögek egyensúlyi térképe. A szaggatott vonal azt jelenti, hogy a metsző egyenes épp egy csúcsot talált el, innentől a másik oldalra esik a háromszög tehát δ értéke valójában 180°+δ.

A csonkolás során három-, illetve négyszögek jönnek létre.

Háromszögek esetén az egyensúlyi helyzetek száma 2 illetve 3 lehet.

Első sejtés:

Derékszögű háromszögek csonkolásánál a referencia iránnyal δ szöget bezáró súlyponton átmenő metsző egyenes, és a $\delta + \pi/2$ szögű metsző egyenes esetén a keletkezett háromszögek azonos *N* számú egyensúlyi helyzettel rendelkeznek.

5. ábra: derékszögű háromszögek csonkolásával kapott négyszögek egyensúlyi térképe. A szaggatott vonal itt is tartományhatárt jelöl.

Négyszögek esetén az egyensúlyi helyzetek száma 2, 3 és 4 is lehet.

- A térkép vizsgálata során számunkra váratlan alakot mutatott az N = 4 egyensúlyi helyzettel rendelkező síkidomok tartománya, ugyanis ez a terület két különálló N = 3 egyensúlyi helyzettel rendelkező tartományt is körülvesz.
- Továbbá λ = 0 közelében mindegyik tartomány vesz fel 0°, vagy 180° körüli δ értéket (a két szög a csonkolás szempontjából egy és ugyanaz, ugyanis a metsző egyenes mindkét esetben párhuzamos *a*-val)
- A háromszögek esetén is hasonló alakú parabolaszerű görbe határolta a különböző egyensúlyi helyzeteket megjelölő tartományokat. Ebből arra következtethetünk, hogy az egyensúlyi helyzetek változását jobban befolyásolják a kezdeti feltételek, mint a keletkezett síkidom oldalszáma.

Tompaszögű háromszögek

Az $S(\lambda)$ sokszögcsalád itt a bizonyos tompaszögű háromszögek halmaza. Ezen háromszögekre igaz, hogy $a = 1 \le c < b$, $\beta \ge 90^{\circ}$ valamint $m_a = 1$. Paraméterünk b oldal növelésével $0 < \lambda = a/b' \le 1$, ahol b'a b oldal a-val párhuzamos vetülete. A háromszöget súlyponton átmenő, a oldallal δ szöget bezáró egyenessel csonkoljuk. A csonkolás után csak a létrejött $S(\lambda, \delta)$ háromszögeket vizsgáljuk.

A λ - δ diagramot λ = 1-ig ábrázoljuk, ugyanis 1-től a térkép már hegyesszögű S(λ) háromszögeket is mutat, – tehát nem teljesülne a $\beta \ge 90^{\circ}$ feltétel – valamint $0^{\circ} \le \delta \le 180^{\circ}$, mert a térkép tükrös $\delta = 180^{\circ}$ -ra.

6. ábra: Hegyesszögű háromszögek csonkolása:

Hegyesszögű háromszögek azonos területű csoportját ábrázolva $a = 1 \le c < b, \beta \ge 90^{\circ}$ valamint $m_a = 1$. A "b" oldalt növelve $0 < \lambda = a/b' \le 1$, ahol b' a b oldal a-val párhuzamos vetülete, a súlyponton át metsző egyenes pedig δ szöget zár be "a" oldallal

A csonkolás során tehát három- és négyszögek jönnek létre.

A létrejött **háromszögek** egyensúlyi helyzeteinek száma 2 illetve 3 lehet. A létrejött háromszögek egyik csúcsa mindig az eredeti háromszög egyik csúcsa. Ennek megfelelően nevezzük el a létrejött tartományokat, mely a különböző háromszögekre vonatkozik. Az 1. tartomány *A*-hoz, a 2. tartomány *B*-hez és a 3. tartomány *C*-hez tartozik, e tartományok váltása a diagramon szaggatott vonallal jelenik meg. Az átláthatóság kedvéért a diagramon az *A* csúcshoz tartozó tartományt egy helyre vontuk össze.

7. ábra: A létrejött háromszögek szögtartományai

8. ábra: Azonos területű tompaszögű háromszögek csonkolásával létrejött háromszögek egyensúlyi térképe

A diagramot elemezve az alábbi következtetéseket vontuk le:

- a különböző csúcsokhoz tartozó tartományhatárok függetlenek egymástól
- az A csúcshoz tartozó háromszögek esetében van olyan rögzített λ, ahol a háromszög δ függvényében nem csak kétszer, hanem négyszer vált egyensúlyi helyzetet (pl.: λ = 0,4)
- B és C csúcshoz tartozó háromszögek esetében ez nem igaz
- ahogy $\lambda \rightarrow 0$ a *B* és *C* csúcshoz tartozó háromszögek csak 180° körüli δ mellett jelennek meg

Második tétel:

Ha $\lambda \rightarrow 0$, az A csúcshoz tartozó háromszögek esetén csak akkor lesz 3 egyensúlyi, helyzet, ha δ merőleges S_a -ra (a oldalhoz tartozó súlyvonalra).

Ha $\lambda \rightarrow 0$, akkor $b' \rightarrow \infty$, tehát *b* a végtelenben metszi az *a*-val párhuzamos, attól m_a távolságra lévő egyenest, így párhuzamossá válik az *a*-val. A háromszög S_a súlyvonala is párhuzamos lesz *a*-val, az arra merőleges metsző egyenes egyenlőszárú, *A* csúcshoz tartozó háromszöget hoz létre. Egyenlőszárú háromszögeknek pedig minden esetben 3 egyensúlyi oldala van.

Négyszögek csonkolása

Téglalapok

Az $S(\lambda)$ sokszögcsalád itt a téglalapok halmaza. Az általánosság megszorítása nélkül feltételezhetjük, hogy a téglalap minden belső szöge derékszög, a és b oldalaira teljesül, hogy $a = 1 \le b$, így b-t növelve az összes téglalap megkapható. Paraméterünk tehát $0 < \lambda = a/b \le 1$. A téglalapot a súlyponton átmenő, *b* oldallal δ szöget bezáró egyenessel csonkoljuk. A csonkolás után csak az egyik létrejött $S(\lambda,\delta)$ síkidomot vizsgáljuk az egybevágóság miatt.

A λ - δ diagramot $\lambda = 1$ -ig ábrázoljuk, ugyanis 1-től a térkép csak ismétli önmagát, mert minden rögzített λ értékhez ugyanazok a δ tartományok tartoznak, mint ami 1 / λ értékhez, valamint $0^{\circ} \le \delta \le 90^{\circ}$, mert a térkép tükrös $\delta = 90^{\circ}$ -ra.

9. ábra: Téglalapok csonkolása:

Az összes téglalapot ábrázolva minden belső szög 90°, a = $1 \le b$. A "b" oldalt növelve $0 < \lambda = a/b \le 1$, a súlyponton át metsző egyenes pedig δ szöget zár be "b" oldallal.

Mivel a csonkolás után derékszögű háromszögek, vagy -trapézok keletkeznek, az egyensúlyi helyzeteik száma 3 és 4 lehet.

10. ábra: Téglalapok csonkolásával létrehozott trapézok egyensúlyi térképe.

A diagramokat elemezve az alábbiakat tapasztalhatunk:

van olyan rögzített λ arány, ahol δ szög függvényében az egyensúlyi helyzetek száma nem csak kétszer, hanem négyszer is változik (pl.: λ=0,2)

• ahogy $\lambda \rightarrow 0$ a létrejött síkidomnak már csak 0° és 90° foknál lesz 4 egyensúlyi helyzete

Egy rögzített λ esetén létrejövő különböző síkidomokat vizsgálva első ránézésre nem könnyű megállapítani egyensúlyi helyzeteinek számát (11. ábra).

11. ábra: Rögzített 0 < $\lambda \le$ 0,24 esetén létrejövő síkidomok a δ szög függvényében.

Harmadik sejtés:

A $\lambda \approx 0,24$ -nél lezáruló tartomány határoló görbéje parabola. A parabola paramétere $\approx 1,55$.

Rombuszok

Az $S(\lambda)$ sokszögcsalád itt a rombuszok halmaza. Az általánosság megszorítása nélkül feltételezhetjük, hogy a rombusz e és f átlói derékszögben felezik egymást, valamint $e = 1 \le f$, így f átlót növelve az összes rombusz megkapható. Paraméterünk tehát $0 < \lambda = e/f \le 1$. A rombuszt súlyponton átmenő egyik rombuszoldallal δ szöget bezáró egyenessel csonkoljuk.

A λ - δ diagramot $\lambda = 1$ -ig ábrázoljuk, ugyanis 1-től a térkép csak ismétli önmagát, mert minden rögzített λ értékhez ugyanazok a δ tartományok tartoznak, mint ami 1 / λ értékhez, valamint $0^{\circ} \le \delta \le 90^{\circ}$, mert a térkép tükrös $\delta = 90^{\circ}$ -ra.

12. ábra: Rombuszok csonkolása:

Az összes rombuszt ábrázolva "e" és "f" átlók derékszögben felezik egymást, valamint $e = 1 \le f$. Az "f" átlót növelve $0 < \lambda = e/f \le 1$, a súlyponton át metsző egyenes pedig δ szöget zár be az egyik oldallal.

Mivel a csonkolás után egyenlőszárú háromszögek, vagy trapézok keletkeznek, az egyensúlyi helyzetek száma 2, 3 illetve 4 lehet.

13. ábra: Rombuszok csonkolásával létrehozott síkidomok egyensúlyi térképe

A $N(\lambda, \delta)$ már valódi bifurkációt mutat, ahol mindhárom tartomány 1 pontban érinti egymást.

- Ez az első olyan elágazás, amely valódi hasonlóságokat mutat az *Euler*-féle stabilitásvesztési (kihajlási) görbével.
- Ebben a pontban ugyanúgy nem értelmezhető a síkidom stabilitása, ahogy a határvonal egyetlen pontján sem, viszont tudjuk, hogy mi van a pontban. $S(\lambda, \delta)$ egy paralelogramma, melynek szögei 60° illetve 120°-osak. Belátható, hogy a súlypont rövidebb oldalakra vonatkoztatott vetülete pont csúcsokra esik. Fizikailag végtelenül instabil a test (szimmetria miatt), de mégis megáll mind a 4 oldalán. Ez az az ellentét, amit az $N(\lambda, \delta)$ függvény nem tud kezelni (*14. ábra*).

14. ábra: A bifurkációs pontban létrejövő trapéz

"Szabályos" sokszögek csonkolása

Szabályos sokszögeknek tekintünk dolgozatunkban minden olyan n csúcsú sokszöget, melynek minden oldala egyenlő, minimum n/2 szimmetriatengelye van, és csúcsaik maximum két koncentrikus súlyponti középpontú körön helyezkednek el felváltva.

Szabályos konvex sokszögek

Szabályos sokszögek csúcsai egyetlen körön helyezkednek el. Az $S(\lambda)$ sokszögek λ paramétere tehát a csúcsok *n* száma. A metsző egyenes δ szöge 0° , ha egy oldal felezőpontján megy át, és az α oldalhoz tartozó középponti szög függvényében $0 \le \delta \le \alpha/2$ (ismétlődés elkerülése). A csonkolás után páros λ esetén csak az egyik síkidomot vizsgáltuk (szimmetria), páratlan λ esetén pedig mindkettőt.

15. ábra: Szabályos konvex sokszög:

"n"darab csúcsa egy körön helyezkedik el, oldalai egyenlők, egy oldalhoz tartozó középponti szög α . Az "n" csúcsszámot növelve $\lambda = n$, a súlyponton át metsző egyenes pedig δ szöget zár be az egyik oldalfelező merőlegessel.

Ebben az esetben sem λ , sem δ nem úgy viselkedik, ahogy az előzőekben. Előbbi csak és kizárólag egész értékeket vehet fel (csúcsszám), utóbbi pedig egyre kisebb maximális értékeket vehet csak föl, mert a csúcsszám növekedésével csökken a középponti szög, ezért az egyensúlyi térképen δ helyett a δ/α arányt vizsgáljuk.

A kezdeti diagramon megfigyelt oszcillálást figyeltünk meg, ugyanis az, hogy honnan mérjük a metsző egyenes szögét az egyensúlyi helyzetek száma különböző tartományokban változik, viszont aránya a középponti szöghöz képest λ növelésével folytonosan növekszik. A páros és páratlan eseteket külön vettük.

16. ábra: Szabályos konvex sokszögek csonkolásával létrejött egyensúlyi altérkép, ahol λ páros

17. ábra: Szabályos konvex sokszögek csonkolásával létrejött egyensúlyi altérkép, ahol λ páratlan.

Szabályos konkáv-konvex sokszögek (Csillagok)

Konkáv-konkáv sokszögeket két *n* csúcsú, koncentrikus, az α középponti szög felével egymáshoz képest elforgatott szabályos konvex sokszögből képzünk úgy, hogy minden külső csúcsot, a hozzá legközelebb eső 2 belső csúcshoz kötünk. Így minden létrejövő síkidomra igaz, hogy oldalaik egyenlők. Ha a külső kör *r* sugara egységnyi, a belső kör λ sugarát növelve $0 \le \lambda \le 1$. A sokszöget súlyponton átmenő, súlyponton, és egy csúcson átmenő egyenessel δ szöget bezáró egyenes metszi. A csonkolás után csak az egyik létrejött $S(\lambda, \delta)$ sokszöget vizsgáljuk, mert az mindkét fél alakját felveszi δ függvényében.

A λ - δ diagramot $\lambda = 1$ -ig ábrázoljuk, ugyanis 1-től a térkép csak ismétli önmagát, mert minden rögzített λ értékhez ugyanazok a δ tartományok tartoznak, mint ami $1/\lambda$ értékhez, valamint $0^{o} \le \delta \le \alpha$, mert a térkép tükrös $\delta = \alpha$ -ra.

18. ábra: Szabályos konvex-konkáv sokszög: 2n darab csúcsa két koncentrikus körön helyezkedik el, kisebbik kör sugara "λ", nagyobbik kör sugara r = 1, oldalai egyenlők, két oldalhoz tartozó középponti szöge α. Az "λ" sugarat növelve 0 < λ ≤ 1, a súlyponton át metsző egyenes pedig δ szöget zár be egy csúcsot és súlypontot összekötő egyenessel.

Az $S(\lambda)$ sokszögek tehát egy-egy csillag halmazt jellemeznek a kiinduló sokszög *n* csúcsszáma alapján, a λ paraméter változtatásával a síkidom először konkáv, aztán konvex sokszög lesz (pl.: ötszög esetén: konkáv tízszög \rightarrow szabályos ötszög \rightarrow konvex tízszög \rightarrow szabályos konvex tízszög). (21. ábra)

19. ábra: Konkáv és konvex csillagok

A konkáv csillagok, csonkolt darabjaik is konkávok sokszögek lesznek. Stabilitási szempontból azonban a konvex burkot vesszük figyelembe, így egyensúlyi helyzeteik csak két külső csúcson támaszkodva, vagy a metszésben résztvevő élek mentén jöhetnek létre.

A metszés után keletkezett konvex buroknak 3 típusú oldala lehet:

- A. Konvex burkot létrehozó, két, nem szomszédos csúcsot összekötő oldal
- B. Eredeti oldal, vagy annak metszett szakasza
- C. A metsző egyenes által létrehozott oldal

20. ábra: Konkáv csillag csonkolásánál létrejött oldaltípusok: A – konkáv burkot konvexszé tevő oldal B – elmetszett eredeti oldal C – metsző egyenes által létrehozott oldal

Ha *n* páros *B* és *C* típusú oldalakból 1-1 keletkezik. Ha *n* osztható néggyel, *A* típusú oldalakból páros-, ha nem, páratlan sok keletkezik.

Ötödik sejtés:

Ha λ páros és tart a végtelenhez, a λ - δ diagram 2 féle eloszláshoz konvergál. Az egyik eloszlás a néggyel osztható, a másik pedig a néggyel nem osztható λ -k esete.

Ha *n* páratlan, *C* típusú oldalból 1, *B* típusúból 0, vagy 2 (50-50%), *A* típusú oldalból páros és páratlan (50-50%) is keletkezhet. A létrejött síkidomok λ - δ diagramjai hasonlóságot mutatnak az *n*-1 *n*+1 síkidomok diagramjaival az *A* oldalak paritásának függvényében. Belátható az is, hogy a keletkezett síkidomok konvex csúcsszáma *n* illetve *n*-1.

Az egyes $S(\lambda, \delta)$ sokszögeket *n*-enként vizsgálva a következő diagramokat kaptuk:

21. ábra: Három ágú csillag (n = 3)

23. ábra: Hat ágú csillag (n=6)

A feladatok programozásáról

A feladatokat külön programokkal vizsgáltuk. A kevésbé összetett feladatokat Excel Makrók segítségével, az összetetteket C++ programnyelv használatával.

A program menete általában a következő volt:

- 1. Az S(λ) sokszög geometriájának meghatározása a koordinátarendszerben.
- 2. Az S(λ) sokszög súlypontjának meghatározása.
- 3. A λ és δ változók definiálása.
- 4. A metsző egyenes által létrehozott síkidom geometriájának meghatározása.
- 5. A metsző egyenes által létrehozott síkidom súlypontjának kiszámolása.
- 6. A súlypont oldalakra merőleges vetületeinek meghatározása.
- 7. Az eredmény kiértékelése (az oldal egyensúlyi oldal-e vagy sem)
- 8. Újabb δ választása, amíg a tartomány végére nem érünk.
- 9. Újabb λ választása, amíg a tartomány végére nem érünk.
- 10. A kapott adatok ábrázolása.

Összefoglalás

Dolgozatunkban sokféle síkidomot generáltunk és vizsgáltunk. A generálás két fő eszköze volt a hasonló síkidomok bizonyos arányainak folyamatos változtatása, valamint kettévágásuk különböző beesési szögű, súlyponton átmenő egyenesekkel. Ezek segítségével 2 dimenziós térképeket alkottunk. A 2 dimenzió oka az imént felsorolt két módszer, valamint az ábrázolhatóság. Az utóbbi szempontot főleg ott kellett figyelembe venni, ahol kézenfekvő lett volna egy harmadik paraméter változtatása is (pl.: tompaszögű háromszögek).

A térképeken különféle bifurkációs pontok keletkeztek már igen egyszerű modellek esetén is. Ez azonban távol áll mindenfajta természetben előforduló bifurkációtól, ugyanis mind a paramétereket, mind a kezdeti feltételeket teljesen önkényesen választottuk.

A vizsgálatok során több *sejtést* és *tételt* fogalmaztunk meg. A *tételeket* algebrai vagy könnyen belátható geometriai módon bizonyítottuk, a *sejtéseket* közelítő mérések, szerkesztések, geometriai megfontolások alapján fogalmaztuk meg.

Irodalomjegyzék

[1] Domokos G., Langi Z. : THE ROBUSTNESS OF EQUILIBRIA ON CONVEX SOLIDS. Mathematika / Volume 60 / Issue 01 / January 2014, pp 237-256 (*Forrás: http://arxiv.org/abs/1301.4031*)