Építőmérnöki kar

TDK dolgozat, Tartószerkezeti szekció

Kísérlettel támogatott méretezési eljárás kidolgozása speciális kialakítású és keresztmetszetű vékonyfalú acél szerkezeti elemre

Szedlák Máté, BSc hallgató

Konzulensek: Dr. Joó Attila László, Dr. Ádány Sándor

Budapest, 2014. 10. 20.

Tartalomjegyzék

1.	В	evezet	tés	2
	1.1.	Fog	alommagyarázat	3
2.	S	zerkez	eti kialakítás	5
	2.1.	Rác	srudak típusai	5
	2	.1.1.	Szimpla szelvény	6
	2	.1.2.	Dupla szelvény	6
	2	.1.3.	Dupla szelvény csavarokkal	7
	2.2.	Any	vagminőség	8
3.	К	ísérlet	ek és kísérleti eredmények	9
	3.1.	Kíse	érleti elrendezés	9
	3	.1.1.	Terhelő keret	9
	3	.1.2.	Zwick Roell Z400	12
	3.2.	Kíse	érleti program	13
	3.3.	Kíse	érletek kiértékelése	16
4.	A	nalitik	us számítások	19
	4.1.	Eff€	ektív keresztmetszetek	19
	4	.1.1.	Eredeti keresztmetszet	19
	4	.1.2.	Övmerevítők elhagyása	20
	4	.1.3.	Effektív keresztmetszet az egyik övmerevítő elhagyása után	20
	4	.1.4.	Torzulásos horpadás figyelembevétele	21
	4.2.	Ine	rcia táblázatok	22
	4.3.	Ana	ilitikus számítás menete	23
	4	.3.1.	Síkbeli kihajlás	23
	4	.3.2.	Térbeli elcsavarodó kihajlás	24
	4	.3.3.	Keresztmetszeti ellenállás	24
	4	.3.4.	Kapcsolat ellenállása	24
5.	E	redmé	nyek összehasonlítása	25
	5.1.	Szir	npla szelvény	25
	5.2.	Dup	bla szelvény	29
	5.3.	Dup	bla-csavarozott szelvény	33
6.	Ö	sszefc	glalás	
7.	Ir	odalo	njegyzék	
8.	F	üggelé	k	

1. Bevezetés

Az acélnak, mint építőanyagnak a fő előnye a vasbetonnal és egyéb anyagokkal szemben az, hogy kis keresztmetszet és kis fajlagos önsúly mellett viszonylag nagy teherbírás érhető el. A gyártástechnológia fejlődésével ezen tulajdonságok még jobban kiemelhetőek, beszéljünk akár a folyáshatár növelésével létrejövő nagyszilárdságú acélokról, vagy a falvastagság csökkentésével létrejövő vékonyfalú acélszelvényekről. Utóbbinak napjainkban a magasépítésben jelentős szerepe van. A könnyű szerelhetőség és átépíthetőség miatt mind akár a szárazépítésben elfoglalt helye, mind akár a könnyűszerkezetes építményekben betöltött szerepe is kiemelkedő.

A fent említett okok miatt a vékonyfalú acélszelvények gyártása egyre szélesebb körben vált elterjedtebbé. Ma már számos gyártó rengeteg terméke érhető el. Annak érdekében, hogy ezek a szerkezeti elemek méretezhetőek legyenek, szabványos eljárások készültek. Ezek a szabványok természetesen nem tökéletesen univerzálisak, számos megkötést tartalmaznak. A legtöbb, forgalomban kapható elem besorolható valamilyen, a szabvány által részletesen tárgyalt kategóriába, de számtalan olyan helyzet előfordulhat, melyre a szabványos eljárások alkalmazása nem vagy csak nagyon erős korlátozásokkal alkalmazható. Szabványos eljárás alatt az irodalomjegyzékben hivatkozott Eurocode fejezeteket értjük minden esetben [1]-[4]. Természetesen az ilyen esetekben van lehetőség egyéb megoldások alkalmazására. Az egyik lehetőség a kellően nagy számban végzett kísérletek elvégzése, amelynek a módját és a kapott eredmények feldolgozását a szabvány szintén tartalmazza. A másik lehetőség numerikus modellek alkalmazása.

Jelen dolgozat témája annak a bemutatása, hogy a Scottsdale Construction Systems Ltd. által gyártott, az alább bemutatott rácsos tartókban alkalmazandó szelvény (1. ábra) teherbírását hogyan határoztuk meg kísérleti úton, nem szokványos kialakítás mellett, illetve hogy a szabványos eljárásokat milyen paraméterek mellett tudtuk a kísérletek által mutatott

1. ábra - C szelvény

tapasztalatokkal összhangba hozni. A feladat különlegességét az adja, hogy a szelvényből kialakított dupla szelvényt is vizsgáltunk. A dolgozat beadásakor numerikus modellek építése is folyamatban volt, ám ennek bemutatását itt nem taglaljuk.

Felhívom a figyelmet, hogy a kísérlet és a kísérleti dokumentáció angol nyelven készült, így előfordul, hogy egyes ábrák vagy jelölések illetve rövidítések angol nyelven maradtak.

1.1. Fogalommagyarázat

Az itt felmerülő fogalmakat a dolgozatban részletesebben kifejtettem. Itt csak a legfontosabb kifejezéseket mutatom be röviden.

Szimpla szelvény (ld. 2.1.1):

A 1. ábra egy ilyen szelvényt ábrázol. Jellemzője, hogy aszimmetrikusak a gerincei, így az inercia főirányai az ábrához képest nem a függőleges és vízszintes tengelyek lesznek.

Dupla szelvény (ld. 2.1.2):

Az 5. ábra alapján látható, hogy két szimpla szelvény egymásba forgatásával azok összeilleszthetőek egy úgynevezett dupla szelvénnyé. Ezek a szelvények a gyártási pontatlanságból eredően enyhén egymásnak feszülnek, köztük elegendő súrlódás van, hogy szerelés közben ne csússzanak meg. Ez a súrlódás a terhelés közben viszont elenyésző.

Dupla szelvény – "Press fitted" (ld. 2.1.3):

Az eredeti elképzelések szerint a gyártás során a szelvényeket egymásba illesztést követően egymásnak feszítik, hogy így biztosítsanak még könnyebb szerelhetőséget, illetve az érintkező gerincek és övek kölcsönös megtámasztását elősegítsék. A kísérletekhez ilyen elemeket nem kaptunk, az így vélhetően jelentkező hatásokat máshogy kellett modelleznünk. Alternatívaként megalkottuk az úgynevezett csavarozott dupla szelvényeket.

Csavarozott dupla szelvény (ld. 2.1.3):

Mivel a "press fitted" szelvényeket nem tudtuk közvetlenül vizsgálni, ezért a vélt hatásokat máshogy kellett modellezni. Ennek eredményeképpen bizonyos konfigurációk esetén a duplaszelvényeket különböző csavarkiosztásban összecsavaroztuk (2. ábra).

A csavarok egyrészt nyíróerőt vesznek fel, amely analóg a fellépő súrlódással, illetve a gerinceket együtt dolgoztatják (a gerincek egymásnak feszülése miatt azok nehezebben válnak el, az együttdolgozás jobban biztosított, megakadályozza а torzulásos horpadás kialakulását).

Hálózati hossz:

2. ábra - Csavarozott dupla szelvény

Hálózati hossz alatt az erőátadások helyéhez mért távolságot értjük. Ez nem feltétlenül azonos az elemek névleges hosszával, ugyanis a síkcsuklós és gömbcsuklós megtámasztásoknál a csavarok lesznek az erőátadási helyek, így a hálózati hossz rövidebb lesz a névleges hossznál, míg befogásnál az erőátadás az elemek végkeresztmetszetén történik, így a hálózati hossz azonos lesz a névleges hosszal.

Falvastagság:

Az elemek falvastagságánál figyelembe kell venni, hogy azok horganyzottak, így a vastagságot ennek megfelelően csökkenteni kell az acél valódi vastagságára.

2. Szerkezeti kialakítás

A megbízó cég célja az új termékkel olyan rácsos tartók kialakítása, melyek övei olyan kalapszelvények, melyeknek a belső mérete a dupla szelvény külméretével azonos vagy attól kicsivel nagyobb, míg rácsrúdjai szimpla, dupla vagy dupla press-fitted szelvények. Értelemszerűen a szelvények terhei elsősorban központos nyomó- illetve húzóerő lehetnek.

3. ábra - Szerkezeti kialakítás vázlata

Az öv- és rácsrudak csatlakozását csavarokkal biztosítják, melyek tengelye körül a szelvények szabadon elfordulhatnak. Az övrudak gerincén tetszőlegesen alakíthatóak ki furatok, így a rácsos tartó hálózatának kialakítása viszonylag szabadon történhet.

A szerkezeti kialakítás bizonytalanságai miatt 3 eltérő befogási viszonyt vizsgáltunk:

- Tartósíkban két végén csuklósan elfordulni képes: Amennyiben feltételezzük, hogy a kalapszelvény gerincei kellően megtámasztják a rácsrudakat síkra merőleges elfordulásra, úgy ezt síkcsuklókkal tudjuk modellezni.
- **2 irányban, tartósíkra merőlegesen is elfordulni képes:** Amennyiben az övrúd (kalap szelvény) csavarónyomaték hatására jelentősebb elcsavarodásra képes, úgy ezt a jelenséget legjobban gömbcsuklós megtámasztással vehetjük figyelembe.
- Befogás: Elméleti eset, teljes befogás és öblösödés gátlásának modellezése.

A laborvizsgálatok során elsődlegesen 150 mm, 500 mm, 1500 mm és 2500 mm hosszú elemekkel foglalkoztunk. Kiegészítő kísérleteket végeztünk lényegesen rövidebb hossztartományban, így 50 mm, 20 mm sőt, 5 mm-es elemeket is próbaterheltünk.

2.1. Rácsrudak típusai

A szerkezeti kialakításokhoz egyfajta szelvénykészlet áll a rendelkezésünkre. Ezeket használhatjuk önmagukban (továbbiakban szimpla szelvény), kettőt egymásba forgatva (továbbiakban dupla szelvény) vagy olyan módon, hogy a dupla szelvény öveit egymásnak feszítjük (továbbiakban dupla press-fitted vagy dupla-csavarozott, angolul double-screwed). Ezekről a 2.1.3. pontban részletesen olvashat.

2.1.1. Szimpla szelvény

A 4. ábra egy szimpla szelvényt mutat. E hidegen alakított szelvény geometriája olyan, hogy alkalmas legyen egy másik példánnyal összeillesztve dupla szelvényt alkotni. Külön felhívom a figyelmet az 1 mm alatti falvastagság jelentőségére. Eleinte egy ettől közel másfélszer vastagabb szelvényt terveztek gyártani, ám vélhetően szerelhetőségi okokból, a könnyebb egymásba illesztés miatt a 0,946 mm-es falvastagság mellett döntöttek.

4. ábra - Szimpla szelvény

A szelvények keresztmetszeti adatai az 5. táblázatban találhatóak.

2.1.2. Dupla szelvény

A szimpla szelvények egymásba forgatásával alakítható ki a duplaszelvény. Ideális esetben az övek tökéletesen egymáshoz illeszkednek, míg az övmerevítők a gerincekkel nem érintkeznek. Eredetileg a szelvényeket 1,40 mm-es falvastagsággal gyártották volna, ám vélhetően a gyártási pontatlanság figyelembevétele és a könnyebb szerelhetőség miatt ezt csökkentették 0,946 mm-re. Az eredeti koncepció szerint az övmerevítők is tökéletesen érintkeztek volna a gerinccel, ám nem ideális esetben ez nagyban nehezíthette volna az elemek egymásba illesztését. A kísérletekhez az alább (5. ábra) látható keresztmetszetű acélelemeket kaptuk. Tapasztalataink szerint néha még ezen elemek egymásba illesztése sem volt egyszerű, így a nagyobb falvastagság mellett ez problémát jelenthet.

A dupla szelvények erő hatására egymástól el tudnak válni, az övek csak részben jelentenek támaszt egymásnak.

5. ábra - Dupla szelvény

2.1.3. Dupla szelvény csavarokkal

Keresztmetszetét illetően megegyezik a dupla szelvénnyel. A különbséget az övek egymásnak feszülése jelenti. Az eredeti koncepció szerint egy speciális gép a dupla szelvény öveit egymásnak feszíti, melyek terheletlen állapotban meggátolják az elemek szétcsúszását, terhelés hatására pedig az övek egymásnak feszülésével gátolja az övek elmozdulását. Érezhető tehát, hogy bizonyos tönkremeneteli módok esetén (pl. torzulásos horpadás) ez a kialakítás növelheti a teherbírást.

A laborkísérletekhez mi ilyen elemeket nem kaptunk, viszont szükségesnek láttuk annak a vizsgálatát, hogy valóban van-e kedvező hatása ennek a kialakításnak, illetve nagyságrendileg ez mekkora lehet. Ahhoz, hogy ezt tanulmányozni tudjuk, a lehető legjobban kellett modelleznünk a hatásmechanizmus lényegét. Vizsgálatainknál azt találtuk a legfontosabbnak, hogy az övek ilyen esetben a lehető legjobban támasszák egymást, így a hatékony keresztmetszet a lehető legnagyobb maradhasson különböző kihajlási módok esetén. Ezt úgy értük el, hogy az öveket egymással szembenálló önfúró csavarpárokkal szorítottuk egymáshoz. A csavarpárok egymástól mért hossz menti távolságát paraméterként kezeltük (X).

6. ábra - Dupla szelvény csavarokkal - oldalnézet

2.2. Anyagminőség

A szelvények névleges anyagminősége az Eurocode osztályozása alapján S 550 MC.

A kísérletsorozat utolsó 4 elemeként végeztünk anyagszilárdsági kísérleteket. Ezekhez a megmaradt elemekből standard próbatesteket alakítottunk ki. A húzókísérletek során a nagyszilárdságú acélokra jellemző kis duktilitású, gyorsan lezajló tönkremenetel volt jellemző. A jellemző húzószilárdság 675 N/mm² volt. Fontos megjegyezni, hogy az Eurocode elvárása az, hogy a névleges folyáshatárnál a mért és érték ne legyen 25%-nál nagyobb. Esetünkben ez 22%, amely megfelel a szabványnak.

7. ábra - Standard húzókísérlet

8. ábra - Feszültség-elmozdulás diagram

Számításaink során a rugalmassági modulus értékét E=210 GPa-nak, a Poisson-tényezőt v=0,3-nak feltételezzük. Ezekből a nyírási modulus G=80,77 GPa értékre adódik.

3. Kísérletek és kísérleti eredmények

Az analitikus számításoknál kifejtett különböző elképzelések igazolása vagy cáfolása érdekében elvégeztünk egy 117 kísérletből álló sorozatot:

- központosan nyomott szimpla és dupla szelvények vizsgálata 3 fajta megtámasztással,
- központosan húzott szimpla vagy dupla szelvények vizsgálata 2 különböző megtámasztás mellett,
- központosan nyomott, különösen rövid szelvények vizsgálata,
- anyagminőség vizsgálata.

A vizsgálati tartomány elsősorban 150-2500 mm volt, ugyanakkor 5-150 mm-es tartományban is végeztünk kiegészítő jelleggel kísérleteket, amelyek itt szintén bemutatásra kerülnek.

3.1. Kísérleti elrendezés

A tesztek során két különböző géppel dolgoztunk. Az első egy terhelő keret volt, melyet a Hidak és Szerkezetek Tanszék laboratóriumában szereltek össze. A másik az ún. Zwick Roell Z400 (továbbiakban Zwick) gép volt.

3.1.1. Terhelő keret

A kísérletek döntő többsége ebben a gépben zajlott, egészen pontosan minden 150 mm és 2500 mm közti elem került itt tesztelésre.

3.1.1.1. Szerkezet

A kísérletek során többször kellett módosítani a szerkezeten, hogy ahhoz újabb támaszokat adjunk, ugyanis egyes elemek terhelése közben kismértékű eltolódások és elfordulások voltak megfigyelhetőek a felső támasznál. A 9. ábra egy ilyen módosított (hátulról elcsavarodás ellen megtámasztott) kialakítást mutat.

9. ábra - Terhelő keret

10. ábra - Terhelő keret kialakítása rövid, valamint hosszú elemek esetén

3.1.1.2. Támaszok

A három elméleti megtámasztásnak megfelelően 3 kialakítást alkalmaztunk:

- Síkcsukló: az egytengelyű elfordulás megengedett, a másik tengely rögzített, az elcsavarodás szintén meggátolt. Az öblösödés gátolatlan. A támaszoknál a Scottsdale által rendelkezésünkre bocsátott csavarokra ültettük fel az elemet. (11. ábra)
- Gömbcsukló: 2 tengely mentén szabadon elfordulhat. Az elcsavarodás gátolt, az öblösödés nem. A támaszoknál a Scottsdale által rendelkezésünkre bocsátott csavarokra ültettük fel az elemet. (12. ábra)
- Befogott: Minden elfordulás és eltolódás, továbbá az öblösödés is gátolt. A támaszoknál nem alkalmaztunk csavarokat. (13. ábra)

11. ábra - Síkcsuklós (Fixed) támasz

12. ábra - Gömbcsuklós (Hinged) támasz

13. ábra - Befogás (Clamped)

3.1.2. Zwick Roell Z400

A másik alkalmazott gép egy Zwick Roell Z400-as berendezés volt. Ez a gép ugyan kisebb, de a rövidebb elemek vizsgálatát (400 kN-ig) csak ebben tudtuk elvégezni. A gép használhatóságának korlátját a behelyezhető elemek mérete jelenti. Szintén ezt használtuk az anyagvizsgálat elvégzésére is.

3.1.2.1. Szerkezet

A szerkezet és annak részei a következő ábrán láthatóak (14. ábra):

14. ábra - Zwick Roell Z400

3.1.2.2. Támaszok

A kísérletek során 2 fajta támasz került alkalmazásra a Zwick gépben:

- Merev lemez központos nyomásnál (14. ábra).
- Hidraulikus befogás az elem két végén központos húzás esetén (15. ábra).

15. ábra - Szakítószilárdság mérése a Zwick gépben

3.2. Kísérleti program

Alább láthatóak a kísérleti programot tartalmazó táblázatok. Az 1. táblázat, illetve a 2. táblázat a kísérleti paraméterei szerint rendezve sorolja fel az elvégzett kísérletek sorszámát (a kísérleti jegyzőkönyv megtalálható a függelékben), míg a 3. táblázat a kísérletek kronológiai rendjét mutatja be.

A kísérleti programot a kísérletek során módosítottuk, hogy egyes jelenséget jobban meg tudjunk figyelni az időközben nem relevánssá váltak terhére.

		Com	pression	tests					
Length	Profile	Support	#1	#2	#3	#4	#5	#6	#7
5 mm	Single	Clamped	# 112	# 113					
20 mm	Single	Clamped	# 100	# 101	# 102	# 103			
20 11111	Double	Clamped	# 108	# 109	# 110	# 111			
F.0. mama	Single	Clamped	# 96	# 97	# 98	# 99			
50 mm	Double	Clamped	# 104	# 105	# 106	# 107			
		Fixed	# 25	# 26	# 27	# 28			
	Single	Hinged	# 21	# 22	# 23	# 24			
		Clamped	# 9	# 10	# 11	# 12			
150 mm		Fixed	# 29	# 30	# 31	# 32			
	Double	Clamped	# 13	# 14	# 15	# 16			
	Double Screwed	Clamped	# 17	# 18	# 19	# 20			
		Fixed	# 33	# 34	# 35	# 36			
	Single	Hinged	# 42	# 43	# 44	# 45			
		Clamped	# 53	# 54					
		Fixed	# 37	# 38	# 39	# 40			
500 mm	Double	Hinged	# 46						
500 1111		Clamped	# 47	# 48	# 49				
	Double	Fixed	# 41						
	Screwed	Clamped	# 50	# 51	# 52				
		Fixed	# 55	# 56	# 57	# 58			
	Single	Hinged	# 60	# 61	# 62	# 63			
		Clamped	# 65	# 66	# 67	# 68			
1500 mm		Fixed	# 59						
1300 mm	Double	Hinged	# 64						
		Clamped	# 69	# 70	# 71	# 72	# 74	# 75	# 76
	Double Screwed	Clamped	# 73	# 77	# 78	# 79			
	Single	Fixed	# 80	# 81	# 82	# 83			
2500 mm	JIIBIC	Hinged	# 88	# 89	# 90	# 91			
2300 11111	Doublo	Fixed	# 84	# 85	# 86	# 87			
	Double	Hinged	# 92	# 93	# 94	# 95			

1. táblázat - Kísérletek központos nyomásra

	Ten	ision tests				
Length	Profile	Support	#1	#2	#3	#4
150 mm	Single	Fixed	#1	# 2	#3	#4
120 11111	Double	Fixed	# 5	#6	# 7	#8

2. táblázat - Kísérletek központos húzásra

Kísérletek időrendben:

1	T_SIN_FX 150 mm #1
2	T_SIN_FX 150 mm #2
3	T_SIN_FX 150 mm #3
4	T_SIN_FX 150 mm #4
5	T_DB_FX 150 mm #1
6	T_DB_FX 150 mm #2
7	T_DB_FX 150 mm #3
8	T_DB_FX 150 mm #4
9	C_SIN_CL 150 mm #1
10	C_SIN_CL 150 mm #2
11	C_SIN_CL 150 mm #3
12	C_SIN_CL 150 mm #4
13	C_DB_CL 150 mm #1
14	C_DB_CL 150 mm #2
15	C_DB_CL 150 mm #3
16	C_DB_CL 150 mm #4
17	C_DBSCR_CL 150 mm #1
18	C_DBSCR_CL 150 mm #2
19	C_DBSCR_CL 150 mm #3
20	C_DBSCR_CL 150 mm #4
21	C_SIN_HG 150 mm #1
22	C_SIN_HG 150 mm #2
23	C_SIN_HG 150 mm #3
24	C_SIN_HG 150 mm #4
25	C_SIN_FX 150 mm #1
26	C_SIN_FX 150 mm #2
27	C_SIN_FX 150 mm #3
28	C_SIN_FX 150 mm #4
29	C_DB_FX 150 mm #1
30	C_DB_FX 150 mm #2
31	C_DB_FX 150 mm #3
32	C_DB_FX 150 mm #4
33	C_SIN_FX 500 mm #1
34	C_SIN_FX 500 mm #2
35	C_SIN_FX 500 mm #3
36	C_SIN_FX 500 mm #4
37	C_DB_FX 500 mm #1
38	C_DB_FX 500 mm #2
39	C_DB_FX 500 mm #3
40	C_DB_FX 500 mm #4

41	C_DBSCR_FX 500 mm #1
42	C_SIN_HG 500 mm #1
43	C_SIN_HG 500 mm #2
44	C_SIN_HG 500 mm #3
45	C_SIN_HG 500 mm #4
46	C_DB_HG 500 mm #1
47	C_DB_CL 500 mm #1
48	C_DB_CL 500 mm #2
49	C_DB_CL 500 mm #3
50	C_DBSCR_CL 500 mm #1
51	C_DBSCR_CL 500 mm #2
52	C_DBSCR_CL 500 mm #3
53	C_SIN_CL 500 mm #1
54	C_SIN_CL 500 mm #2
55	C_SIN_FX 1500 mm #1
56	C_SIN_FX 1500 mm #2
57	C_SIN_FX 1500 mm #3
58	C_SIN_FX 1500 mm #4
59	C_DB_FX 1500 mm #1
60	C_SIN_HG 1500 mm #1
61	C_SIN_HG 1500 mm #2
62	C_SIN_HG 1500 mm #3
63	C_SIN_HG 1500 mm #4
64	C_DB_HG 1500 mm #1
65	C_SIN_CL 1500 mm #1
66	C_SIN_CL 1500 mm #2
67	C_SIN_CL 1500 mm #3
68	C_SIN_CL 1500 mm #4
69	C_DB_CL 1500 mm #1
70	C_DB_CL 1500 mm #2
71	C_DB_CL 1500 mm #3
72	C_DB_CL 1500 mm #4
73	C_DBSCR_CL 1500 mm #1
74	C_DB_CL 1500 mm #5
75	C_DB_CL 1500 mm #6
76	C_DB_CL 1500 mm #7
77	C_DBSCR_CL 1500 mm #2
70	
78	C_DBSCR_CL 1500 mm #3
78 79	C_DBSCR_CL 1500 mm #3 C_DBSCR_CL 1500 mm #4

81	C_SIN_FX 2500 mm #2
82	C_SIN_FX 2500 mm #3
83	C_SIN_FX 2500 mm #4
84	C_DB_FX 2500 mm #1
85	C_DB_FX 2500 mm #2
86	C_DB_FX 2500 mm #3
87	C_DB_FX 2500 mm #4
88	C_SIN_HG 2500 mm #1
89	C_SIN_HG 2500 mm #2
90	C_SIN_HG 2500 mm #3
91	C_SIN_HG 2500 mm #4
92	C_DB_HG 2500 mm #1
93	C_DB_HG 2500 mm #2
94	C_DB_HG 2500 mm #3
95	C_DB_HG 2500 mm #4
96	C_SIN_CL 50 mm #1
97	C_SIN_CL 50 mm #2
98	C_SIN_CL 50 mm #3
99	C_SIN_CL 50 mm #4
100	C_SIN_CL 20 mm #1
101	C_SIN_CL 20 mm #2
102	C_SIN_CL 20 mm #3
103	C_SIN_CL 20 mm #4
104	C_DB_CL 50 mm #1
105	C_DB_CL 50 mm #2
106	C_DB_CL 50 mm #3
107	C_DB_CL 50 mm #4
108	C_DB_CL 20 mm #1
109	C_DB_CL 20 mm #2
110	C_DB_CL 20 mm #3
111	C_DB_CL 20 mm #4
112	C_SIN_CL 5 mm #1
113	C_SIN_CL 5 mm #2
114*	T_SIN_HG 20 mm #1
115*	T_SIN_HG 20 mm #2
116*	T_SIN_HG 20 mm #3
117*	T_SIN_HG 20 mm #4

3. táblázat - Kísérletek kronológiai sorrendje

A jelölések jelentése: Kísérlet típusa_Keresztm._Támasz_Hossz_Ismétlésszám

Kísérlet típusa: C = Compression (Központos nyomás) / T = Tension (Központos húzás) Keresztm.: SIN = Single (Szimpla) / DB = Double (Dupla) / DBSCR = Double with screws (dupla, csavarozott) Támasz: FX = Fixed (Síkcsukló) / HG = Hinged (Gömbcsukló) / CL = Clamped (Befogott)

3.3. Kísérletek kiértékelése

Az Eurocode 1993-1-3 "A" függelékének megfelelően végeztük el a kapott eredmények kiértékelését. Az alábbiakban közöljük az eljárás lépéseit, illetve az eredményeket (4. táblázat): A szabvány értelmében először meg kell határoznunk minden mért R_{obs} érték esetén az ún. R_{adj} értéket az alábbi módon:

$$R_{adj.i} := \frac{R_{obs.i}}{\mu_R}$$

$$\mu_{\mathbf{R}} := \left(\frac{\mathbf{f}_{\mathbf{yb.obs}}}{\mathbf{f}_{\mathbf{yb}}}\right)^{\alpha} \cdot \left(\frac{\mathbf{t}_{\mathbf{obs.cor}}}{\mathbf{t}_{\mathbf{cor}}}\right)^{\beta}$$

ahol

Az A.6.2 pont ("A" jelentése "Annex A") értelmében:

fyb=550 N/mm²

A 4 anyagvizsgálati kísérlet eredménye megtekinthető a függelékben a kísérleti jegyzőkönyv 114-117. oldalain. Mind a négy tesztből számítható egy maximális feszültség, a mért legkisebb keresztmetszetek és mért legnagyobb erők alapján, melyek számtani átlaga:

A különbség a mért és névleges érték között a mért érték javára 22,8%, amely kevesebb, mint 25% (A.6.2 (2)) ahol $f_{yb.obs} > f_{yb}$ (gy α =1 (6).

A névleges és mért vastagságok:

 $t_{cor}\mbox{=}0,946\mbox{ mm}$ and $t_{obs.cor}\mbox{=}0,963\mbox{ mm}$

Hogy meghatározzuk β értékét, ki kell számítani b_p/t és (b_p/t)_{lim} hányadosokat.

$$b_{p}/t = 38,17$$

$$\left(\frac{b_{p}}{t}\right) \lim = 19.1\varepsilon \cdot \sqrt{k_{\sigma}} \cdot \sqrt{\frac{f_{yb}}{\gamma_{M1} \cdot \sigma_{com.Ed}}}$$

$$\varepsilon := \sqrt{\frac{235 \frac{N}{mm^{2}}}{f_{yb}}} \qquad (\varepsilon = 0,654)$$

$$k_{\sigma} = 4$$

$$\gamma_{M1} = 1,0$$

ahol

 $\sigma_{\text{com.Ed}}$ a legnagyobb nyomófeszültség a rudakban a teherbírási határállapotban.

Miután meghatároztuk az α és β értékeket kísérletenként, kiszámíthatjuk R_{adj.i} értékeket. Egy kísérletcsoportban, ahol a hosszak és támaszviszonyok azonosak, R_{adj} számtani átlaga megadja R_m értékét.

R_k, teherbírás karakterisztikus értéke az alábbi módon határozható meg akkor, ha egy csoportban legalább 4 érvényes mérési eredményünk van:

$$R_k = R_m - k^* s$$

Ahol *s* a standard szórás (A.6.3.1 (4, 5)) illetve *k* paraméter meghatározható az A.2. táblázat alapján.

Kevesebb kísérleti eredmény esetén eltérő módon határozzuk meg *R*_k értékét:

 $R_{\rm k} = 0.9^{*} \eta_{\rm k}^{*} R_{\rm adj}$ amennyiben csak egy mérésünk van

 $R_k = \eta_k * R_{adj}$ amennyiben 2 vagy 3 mért értékünk van

Ahol $\,^\eta k$ az EC 1993.1.3 A.6.3.3. pontja alapján határozható meg.

Legvégül a teherbírás tervezés értéke:

$$R_d := \eta_{sys} \cdot \frac{R_k}{\gamma_M}$$

Ahol η_{sys} = 1 alkalmazása javasolt.

A sárgával jelölt soroknál az alkalmazott csavar nyíródott el, így a szelvény teherbírását nem tudtuk meghatározni, ezeket az értékeket töröltük.

														Comp	ression test	nesults														
Length	Profile	Support	#1	#2	#3	#4	#5	AS	A7	Failure	a	o.com.Ed	(b.pit)lim	β	µ.R	#1	#2	18	#4	<i>1</i> 5	#6	#7	R.m	5	k	ηK	R.k	13.575	y.M0*M1	Rd
Smm	Single	Gamped	83.82	86.78						L.	1.00	52330	25.61	1.98	1.27	65.88	68.21						67.04		0.00	0.80	48.27	1.00	1.00	48.27
20.000	Single	Gamped		65.85	66.79	67.31				L.	1.00	408.89	28.97	1.63	1.26		52.08	52.82	\$3.23				\$2.71	0.99	0.00	0.80	37.95	1.00	100	37.95
20 mm	Double	Gamped		67.24	64.07	68.68				L	1.00	204.49	42.97	1.00	1.25		\$3.78	5125	\$4.93				\$3.32	1.89	0.00	0.80	38.39	1.00	1.00	38.39
50.000	Single	Gamped	57.23	65.04	62.15	60.96			-	L	1.00	376.34	30.20	1.53	1.26	45.34	51.53	49.25	48.30				48.61	2.56	2.63	0.90	41.87	1.00	100	41.87
mmuc	Oouble	Gamped	71.70	61.40	62.48	64.57				- L -	1.00	199.50	41.48	1.00	1.25	57.35	49.11	49.97	\$1.65				\$2.02	3.71	2.63	0.80	42.27	1.00	1.00	42.27
		Fixed	13.07	14.45	14.81	15.13				Y	1.00	88.13	62.41	1.00	1.25	10.45	11.56	11.85	12.10				11.49	0.73	2.63	0.90	9.58	1.00	100	9.58
1	Single	Hinged	\$4.33	14.72	\$4.32	15.02				L	1.00	89.55	61.91	1.00	1.25	11.46	11.77	11.45	12.01				11.68	0.27	2.63	0.80	10.97	1.00	1.00	10.97
1		Gamped	44.75	45.13	43.96	45.91				L	1.00	275.68	35.29	1.16	1.25	35.69	35.99	35.06	36.61				35.84	0.64	2.63	0.80	34.14	1.00	1.00	34.14
150 mm	Dauble	Fixed	34.85			33.29				85		BOLT SHEAT	t																	
	Digrate	Gamped	95.35	92.96	88.00	87.86				Y	1.00	279.27	35.06	1.18	1.25	76.03	74.12	70.16	70.05				72.59	2.97	2.63	0.90	64.78	1.00	1.00	64.78
1	Double	Carried	99.05	79.08	90.51	88.82				× 1	1.00	266.46	25.89	1.13	1.25	21.02	63.11	22.23	20.88				60.32	4.18	263	0.90	58.22	1.00	1.00	58 37
	Screwed	Gampara										192.44	33.43						10.00				57.75				30.34			30.34
	12.2	Fixed	34.83	14.87	15.15	14.90				L	1.00	91.64	61.20	1.00	1.25	11.86	11.89	12.12	11.92				11.95	0.12	2.63	0.80	11.64	1.00	1.00	11.64
500 mm	Single	Hinged	13.41	15.70	16.34	16.30				L	1.00	94.71	60.21	1.00	1.25	10.73	12.56	13.07	23.04				12.35	1.11	2.63	0.80	9.44	1.00	1.00	9.44
		Gamped	48.15	41.19						L.	1.00	258.69	36.43	1.30	125	34.45	32.89						33.67		0.00	0.80	24.24	1.00	1.00	24.24
		Fixed	28.30	34.30	34.12	36.22				85		BOLT SHEAT	R																	
	Double	Hinged	33.71							BS		BOLT SHEAT	R																20000	
		Gamped	92.33	94.39	91.31					L	1.00	284.28	34.75	1.20	1.25	73.59	75.23	72.78					73.87		0.00	0.80	53.18	1.00	1.00	53.18
1	Double	Fixed	30.85							8S	- 44	BOLT SHEAT	t																	
	Screwed	Gamped	93.39	95.88	101.07					L	1.00	296.87	34.00	1.24	1.26	7437	76.35	80.49					77.07		0.00	0.80	55.49	1.00	100	55.49
		Fixed	435	4.60	4.60	4.54				6	1.00	13.87	157.31	1.00	1.25	3.48	168	3.68	3.63				3.62	0.09	2.63	0.70	3.37	1.00	100	3.37
1	Single	Hinged	437	4.25	432	4.29				G	1.00	26.43	113.97	1.00	1.25	3.50	3.40	3.46	3.43				3.45	0.04	2.63	0.70	3.34	1.00	1.00	3.34
1		Gamped	\$4.39	17.64	17.86	14.88				6	1.00	99.35	58.78	1.00	1.25	1151	54.11	14.28	11.90				12.95	1.45	2.63	0.70	9.15	1.00	1.00	9.15
1500 mm	i	Fixed	28.06							85	244	BOLT SHEAT	t																	
	Double	Hinged	36.66							BS	-	BOLT SHEAT	R																	
1		Gamped	68.77	\$0.76	59.25	58.80	73.99	68.89	67.06	- L -	1.00	196.11	41.84	1.00	1.25	55.00	40.60	47.39	47.03	59.18	55.10	53.63	51.13	6.37	2.18	0.80	37.24	1.00	1.00	37.24
	Double Screwed	Gamped	74.53	73.39	75.09	72.09				L	1.00	226.30	38.95	1.00	1.25	59.61	58.70	60.06	57.66				99.01	1.06	2.63	0.80	56.22	1.00	1.00	56.22
<u> </u>		Fixed	2.75	3.03	3.42	2.90				6	1.00	1856	136.00	1.00	1.25	2.20	2.42	2.74	2.32				2.42	0.23	2.63	0.70	1.82	1.00	1.00	1.82
1	Single	Hinged	2.46	2.40	2.32	2.35				G	1.00	14.62	153.25	1.00	1.25	1.97	1.92	1.86	1.88				191	0.05	2.63	0.70	1.78	1.00	1.00	1.78
2500 mm		Fixed	\$4.60	13.93	15.60	14.24				6	1.00	44.76	87.58	1.00	1.25	1168	11.14	12.48	11.39				11.67	0.58	2.63	0.70	10.14	1.00	1.00	10.14
	Oouble	Hinged	13.57	12.99	13.84	13.55				6	1.00	41.37	91.09	1.00	1.25	10.85	10.39	11.07	20.84				10.79	0.29	2.63	0.70	10.03	1.00	1.00	10.03

														Ten	sion test res	iulti -														
Length	Section	Support	#1	#2	#3	44	#5	86	87	failure	G	o.com.Ed	mil (Xq. d) I	β	µ.R	#1	#2	43	#4	15	46	#7	R.m.		k	ŋ.K	R.k	n.sys	y.M0"M1	Rd
150.000	Single	Fixed	13.00	15.04	54.13	15.51				Ŷ	1.00	88.45	62.30	1.00	1.25	10.40	12.03	11.30	12.40				11.53	0.89	2.63	0.90	9.20	1.00	1.00	9.20
*30 mil	Oouble	fixed	30.23	28.37	27.55	26.93				Y	1.00	173.43	44.49	1.00	1.25	24.18	22.69	22.04	21.54				22.61	1.15	2.63	0.90	19.60	1.00	1.00	19.60

f.y.obs	675.5
f.y.b	5.50

b.p/t 38.1649

t.abs.cor 0.963

0.946

t.cor

b	36.104
epszilon	0.654
kszigma	4.0
η. έγε	1.0
y.M1	1.0

4. táblázat - Kiértékelt kísérleti eredmények

4. Analitikus számítások

Az analitikus számítások során célunk volt egy, az Eurocode-dal a lehető legnagyobb összhangban lévő számítási eljárás kidolgozása. Szimpla szelvények esetén ez nem feltétlen jelent problémát. A szabvány alkalmazása a dupla és dupla-csavarozott szelvények esetében jelent nehézséget, ugyanis két szimpla szelvény egymásmellé helyezése nem analóg a falvastagság megduplázásával. Egyrészt egy nyitott szelvény helyett egy zárt szelvényre emlékeztető szerkezeti elemet kapunk, mely jelentősen növeli a csavarási merevséget, másrészt az övek képesek egymástól eltávolodni, amely viszont csökkentheti az effektív keresztmetszeti területet. Ezen elválás a kísérleti tapasztalatok alapján még dupla-csavarozott szelvényeknél is lehetséges volt.

Annak függvényében, hogy mely hatások kialakulását feltételezzük, többféle effektív keresztmetszetről beszélhetünk. Mivel az övek mentén az övmerevítő hatása olyan kicsi lehet, hogy a szabvány javaslatára azt célszerű lehet elhanyagolni az effektív keresztmetszetből ugyanakkor a szimpla szelvény központos nyomásra 4. keresztmetszeti osztályú, így például szükséges lehet a lemezhorpadásnak megfelelő effektív keresztmetszet meghatározása. Ekkor már 3 különböző keresztmetszet alkalmazása merült fel a számításokban. Ha azt is figyelembe vesszük, hogy vékonyfalú acélszerkezetek nyomás hatására torzulásos horpadással is tönkremehetnek, illetve ez interakcióba léphet más tönkremeneteli módokkal, akkor ennek megfelelően szükséges lehet az övek vastagságának a csökkentése. Az így létrejövő, 4. keresztmetszetnek a legkisebb a területe, hiszen ebben minden korábban felsorolt hatást érvényesítettünk.

Érdemes megjegyezni, hogy az sem mindegy, hogy az egyes hatásokat milyen sorrendben vesszük figyelembe, mert például egy övmerevítő elhagyása befolyásolhatja a lemezhorpadásnál kieső szakasz hosszát, amely viszont hatással van a torzulásos horpadásnál az effektív lemezvastagságra.

Az alábbiakban bemutatásra kerülnek a számítások során felhasználható különböző effektív keresztmetszetek.

4.1. Effektív keresztmetszetek

A modellezés során az egyes hatásokat több lépcsőben vesszük figyelembe. Ezekről összehasonlító táblázat a 4.2. fejezetben található. A keresztmetszeti számításához a lekerekítések figyelembevételével a keresztmetszetet át kell alakítani egy középvonalakra illesztett sokszögvonallá (EN 1993-1-3: 5.1.). A továbbiakban a kézi számításban az egyes hosszak alatt (övek, övmerevítők, stb. hosszai) ezeket az értékeket értjük. Ugyanakkor a keresztmetszeti jellemzők számítását egy olyan geometrián végezzük el, melynél az ineffektív részeket a **valós** geometriából vesszük el.

4.1.1. Eredeti keresztmetszet

(C_Sin/C_DB)

Kiindulási alapnak szemléltetésként itt látható a mindenféle csökkentés nélküli, eredeti keresztmetszet mind szimpla, mind dupla esetekben.

16. ábra - Eredeti keresztmetszetek

4.1.2. Övmerevítők elhagyása

(C_Sin_RedSlip/C_DB_RedSlip)

Az Eurocode javaslatot tesz arra, hogy amennyiben az övmerevítők hossza arányában túl rövid az övekhez képest, úgy a merevítők kihajlásának elkerülése érdekében azokat célszerű elhanyagolni (EN 1993-1-3: 5.2 [2]). Fontos megjegyezni, hogy egyáltalán nem mindegy az egyes hatások, így az effektív keresztmetszeteknél az elhanyagolások sorrendje, ugyanis ezek a hosszak a számításoknál kölcsönösen bemenő adatok. Esetünkben kiszámoltuk mindkétféleképpen: először a lemezhorpadás miatti hanyagolást végeztük el, majd a merevítőt zártuk ki a számításból, illetve fordítva. A számítás során kiderült, hogy ebben a konkrét esetben a két érték azonos: 8.91 mm hosszú az ineffektív szakasz hossza a hosszabbik övön, tehát esetünkben nem számít a sorrend.

17. ábra – Övmerevítők elhagyása

4.1.3. Effektív keresztmetszet az egyik övmerevítő elhagyása után

(C_Sin_RedSlip_Eff/C_DB_RedSlip_Eff)

A 4. keresztmetszeti osztály esetén figyelembe veendő effektív keresztmetszetek módszere jól ismert. Amennyiben azt feltételezzük, hogy a dupla szelvény elemei egymástól tökéletesen függetlenül dolgoznak, úgy egyszerűen a szimpla szelvény önmagába forgatása megadja az itt

látható dupla szelvényt. Látható, hogy a dupla szelvénynél az így kieső részek nincsenek tökéletesen átfedésben, viszont olyan analitikus számításai eljárásunk, mely erre lehetőséget ad, nincsen. A biztonság javára történő közelítésnek felel meg viszont, ha nem próbáljuk meg ezen kieső részeket fedésbe hozni, együttdolgoztatni a szelvényeket, hanem első közelítésben elhanyagoljuk a lemezek egymást támasztó hatását, és egyszerűen megduplázzuk az effektív szimpla szelvényt az itt látható módon.

18. ábra – Effektív keresztmetszet 4. km-i osztály esetén

A számítás lépései:

Központos nyomás miatt: $\psi_h \coloneqq 1$ Szintén központos nyomás miatt: $k_{\sigma} \coloneqq 4$

$$\sigma_{c \max} := \frac{f_y}{f_y}$$

$$\lambda_{p} \coloneqq \frac{b_{p}}{t} \cdot \sqrt{\frac{12 \cdot (1 - v^{2}) \cdot f_{y}}{\pi^{2} \cdot E \cdot k_{\sigma}}} \qquad \lambda_{p.red} \coloneqq \lambda_{p.red} \coloneqq \lambda_{p} \cdot \sqrt{\frac{\sigma_{c.max} \gamma M0}{f_{y}}}$$

$$\rho \coloneqq \frac{1 - \frac{0.055(3 + \psi)}{\lambda_{p.red}}}{\lambda_{p.red}} + 0.18 \frac{\lambda_{p} - \lambda_{p.red}}{\lambda_{p} - 0.6}$$

melyekből a dolgozó rész aránya:

4.1.4. Torzulásos horpadás figyelembevétele

(C_Sin_RedSlip_Eff_Dist/C_DB_RedSlip_Eff_Dist)

Vékonyfalú szelvények esetén jellemző tönkremeneteli mód a torzulásos horpadás. Jellegzetessége, hogy vékonyfalú, nyitott szelvények esetén az övek a gerinchez képest elfordulnak, keresztmetszeti torzulás lép fel. Ennek analitikus úton történő figyelembevételéhez az övek vastagságát csökkenteni kell az effektív keresztmetszet meghatározásakor. Modellünkben ezt úgy végezzük el, hogy minden eddigi hatást figyelembe véve, a *C_Sin_RedSlip_Eff/C_DB_RedSlip_Eff* szelvényt, mint számítási kiindulási alapot felhasználva számítjuk ki a csökkentő tényezőt.

19. ábra – Effektív keresztmetszet torzulásos horpadás figyelembevételével

A számítás lépései:

$$A_{st} := \left(\frac{b_{1.eff} + b_{2.eff} + c_{1.eff} + c_{2.eff}}{2}\right) \cdot t$$

Övek keresztmetszeti összterülete:

Keresztmetszeti torzulás esetén a gerinchez kapcsolódó öveket úgy vesszük figyelembe, mint amelyeket egy adott rugómerevségű kapcsolat köt össze egymással. Ennek a fiktív rugónak a rugómerevsége:

$$K := \frac{E \cdot t^{3}}{4 \cdot (1 - v^{2})} \cdot \frac{1}{1.5 \cdot (h - t) b_{dist.1}^{2} + b_{dist.1}^{3}}$$

Mivel az övek nem egyenlő hosszúak, ezért a kritikus feszültséghez tartozó értéket, a szabványtól kissé eltérve állapítjuk meg, az öveket átlagoljuk:

$$\sigma_{\text{cr.st}} \coloneqq \frac{\sqrt{K_1 \cdot E \cdot I_{a.st}} + \sqrt{K_2 \cdot E \cdot I_{a.st}}}{A_{st}}$$
$$\lambda_d \coloneqq \sqrt{\frac{f_y}{\sigma_{\text{cr.st}}}}$$
$$\chi_d \coloneqq \frac{0.66}{\lambda_d}$$

Mindezekből a karcsúság:

A csökkentő tényező pedig:

Esetünkben a csökkentett övvastagság: $\ ^{t_{red}:=t\cdot \chi _{d}}$

 $t_{red} = 0,204 \text{ mm}$

4.2. Inercia táblázatok

Az egyes szelvényekhez tartozó keresztmetszeti terület (A), y-tengelyű inercianyomaték (tartórács síkjával párhuzamos hajlítás) (I.y), z-tengelyű inercianyomaték (tartó síkjára merőleges hajlítás) (I.z), csavarási inercia (I.t) és torzulási inercia (I. ω). A keresztmetszeti jellemzőket Axis program felhasználásával számoltattuk ki, mivel az a lekerekítéseket is figyelembe véve pontosabb eredményt ad a kézi számításnál.

	А	l.y	l.z	l.t	l.ω
	[mm^2]	[mm^4]	[mm^4]	[mm^4]	[cm^6]
C_Sin	111.73	19671	27329	33.5	6.43
C_DB	223.45	42429	55012	66.9	83.03
C_Sin_RedSlip	100.63	13937	25032	30.1	3.22
C_DB_RedSlip	201.26	35319	50425	60.1	59.76
C_Sin_RedSlip_Eff	87.25	13289	20723	25.6	0.44
C_DB_RedSlip_Eff	174.5	35149	41542	51.2	12.70
C_Sin_RedSlip_Eff_Dist	66.37	4657	14021	18.0	0.32
C_DB_RedSlip_Eff_Dist	132.73	29860	28107	36.1	12.47

5. táblázat - Fontosabb keresztmetszeti jellemzők

A teljes táblázat a függelékek között megtalálható.

4.3. Analitikus számítás menete

A teljes számítás a függelékben megtalálható. Az alábbiakban csak a számítás fontosabb részleteit közöljük.

Többfajta tönkremeneteli módot kell vizsgálnunk, melyek közül ki kell választanunk az adott hossz melletti mértékadót. Fontos megjegyezni, hogy torzulásos horpadás interakcióját úgy vesszük figyelembe, hogy a jól ismert képleteket a csökkentett övvastagságú szelvényekre alkalmazzuk. Ekkor tehát nem használunk új képleteket, hanem csak a meglévőeket alkalmazzuk kétszer, két különböző geometria esetén.

4.3.1. Síkbeli kihajlás

Mivel a támasz tengelyei és a szelvény inercia főirányai nem esnek egybe, ezért a kihajlási hossz számításakor trigonometrikus függvényeket felhasználva átszámoljuk a szelvény inercia főirányaiba eső kihajlási hossz tényezők értékeit:

$$v_{\eta} \coloneqq v_{y} \cdot \cos(\delta)^{2} + v_{z} \cdot \sin(\delta)^{2} \quad \text{és } v_{\zeta} \coloneqq v_{y} \cdot \sin(\delta)^{2} + v_{z} \cdot \cos(\delta)^{2}$$
$$N_{cr,\eta}(L) \coloneqq \frac{\pi^{2} \cdot E \cdot I_{1.eff}}{(v_{\eta} \cdot L)^{2}}$$
erő idealizált esetben:

Elméleti kritikus e

$$\lambda'_{\eta}(L) := \sqrt{\frac{A_{c.eff} \cdot f_{y}}{N_{cr.\eta}(L)}}$$

Kihajlási tényező:

Csökkentő tényező:

$$\chi_{\mathrm{fl},\eta}(\mathrm{L}) \coloneqq \frac{1}{\left[\frac{1+\alpha\cdot\left(\lambda'\eta(\mathrm{L})-0.2\right)+\lambda'\eta(\mathrm{L})^{2}}{2}\right]+\sqrt{\left[\frac{1+\alpha\cdot\left(\lambda'\eta(\mathrm{L})-0.2\right)+\lambda'\eta(\mathrm{L})^{2}}{2}\right]^{2}-\lambda'\eta(\mathrm{L})^{2}}$$

ahol c-görbe esetén (EN 1993-1-1 6.1., 6.2. táblázatok) α =0,49.

4.3.2. Térbeli elcsavarodó kihajlás

Elméleti kritikus erő idealizált esetben (EN 1993-1-3: 6.2.3.):

$$N_{cr.\tau}(L) \coloneqq \frac{1}{i_{s}^{2}} \cdot \left(\frac{\pi^{2} E \cdot I_{2.eff} a^{2}}{L^{2}} + \frac{\pi^{2} E \cdot I_{\omega.eff}}{L^{2}} + G \cdot I_{t.eff} \right)$$
$$\lambda_{\tau}'(L) \coloneqq \sqrt{\frac{A_{c.eff} f_{y}}{N_{cr.\tau}(L)}}$$

Kihajlási tényező: Csökkentő tényező:

$$\chi_{\tau}(L) := \frac{1}{\left[\frac{1 + \alpha \cdot \left(\lambda'_{\tau}(L) - 0.2\right) + \lambda'_{\tau}(L)^{2}}{2}\right] + \sqrt{\left[\frac{1 + \alpha \cdot \left(\lambda'_{\tau}(L) - 0.2\right) + \lambda'_{\tau}(L)^{2}}{2}\right]^{2} - \lambda'_{\tau}(L)^{2}}}$$

$$N_{\tau.Rd} := \frac{\chi_{\tau} \cdot A_{c.eff} \cdot f_{y}}{\gamma_{M1}}$$

Ezek alapján a teherbírás értéke:

4.3.3. Keresztmetszeti ellenállás

Befogás esetén célszerű lehet meghatározni a keresztmetszet ellenállását úgy, hogy a csavarlyuk gyengítését is figyelembe vesszük:

$$N_{c.Rd} := \frac{f_{y} \cdot A_{net}}{\gamma_{M0}}$$

4.3.4. Kapcsolat ellenállása

Mivel a kísérletek kiértékelésekor a csavarok elnyíródását kategorikusan kizártuk, az ilyen eredményeket kiszűrtük és töröltük, ezért a továbbiakban ezzel nem foglalkozunk, ezt az analitikus megoldás esetén sem számítjuk. Mindezek tudatában, a kapcsolat teherbírásának kimerülését úgy definiáljuk be sík- illetve gömbcsuklónál, hogy az a csavar furatárának tönkremenetelét, megfolyását jelentse. Ennek értéke $2^*d^*t^*f_y$ szimpla szelvénynél. Befogás esetén a már korábban bemutatott keresztmetszeti ellenállást kell használni, mivel nem alkalmaztunk csavarokat, így a furatokra nem hat erő.

5. Eredmények összehasonlítása

Az alábbiakban bemutatom a kísérletek során mért és kiértékelt tervezési teherbírási értékeket, illetve összehasonlítom az analitikus úton számított tervezési teherbírási értékekkel. Azért, hogy a torzulásos horpadás hatása jól kimutatható legyen, bemutatom a torzulásos horpadás esetén alkalmazandó (csökkentett övvastagságú) effektív keresztmetszetekkel számolt teherbírási grafikonokat, illetve a torzulásos horpadás kialakulását nem feltételező, nagyobb teherbírást adó grafikonokat is. A kísérletek elsősorban a 150-2500 mm-es tartományban mozogtak, míg kiegészítő jelleggel kiterjesztettük a vizsgálati tartományt 5-150 mm közé is. Ennek megfelelően az analitikus eljárással is elsősorban a 150-2500 mm-es tartományt vizsgáltuk. A grafikonok esetében az egyes függvények jelentése:

N.fl.n.Rd.G / N.fl.n.dist.Rd.G – Síkbeli kihajlás kritikus ereje tartó síkjában torzulásos horpadás elhanyagolásával / torzulásos horpadás interakciójának figyelembevételével.

- **N.fl.ζ.Rd.G / N.fl.ζ.dist.Rd.G** Síkbeli kihajlás kritikus ereje tartó síkjára merőlegesen torzulásos horpadás elhanyagolásával / torzulásos horpadás interakciójának figyelembevételével.
- **Ν.τ.Rd.G / Ν.τ.dist.Rd.G** Térbeli elcsavarodó kihajlás torzulásos horpadás elhanyagolásával / torzulásos horpadás interakciójának figyelembevételével.

N.pl.Rd– Keresztmetszet ellenállás lyukgyengítés figyelembevételével.F.Rd– Kapcsolat teherbírása.

Az "**X**"-ek a kísérleti úton meghatározott tervezési teherbírást jelölik.

A grafikonok vízszintes tengelye minden esetben a vizsgált elem támaszai közti távolságot jelenti méterben (tehát nem a névleges hosszat), míg a függőleges tengely az erőt kN-ban megadva.

Meg kell jegyezni, hogy természetesen palástnyomás-jellegű tönkremenetel nem jöhet létre befogott esetben, mivel ott nem alkalmaztunk csavarokat. Ugyanakkor, az egyszerűbb kezelhetőség illetve az összehasonlíthatóság érdekében az ilyen esetekben is szerepel a grafikonokon a palástnyomási ellenállás értéke.

5.1. Szimpla szelvény

Feltételezések:

- övmerevítők elhanyagolása,
- 4. keresztmetszeti osztály,
- torzulásos horpadás interakciója érvényesül.

Az itt található feltételezésekkel az egyes tönkremenetelekhez számolt kritikus erők értékeit meghatároztuk az elemhossz függvényében. A számítást külön elvégeztük minden esetben a torzulásos horpadás figyelembevétele nélkül és a figyelembevételével is. A grafikonokon az egyes jelölések a korábban leírtak szerint értelmezendő. Röviden elismételve:

síkbeli kihajlás tartósíkban
síkbeli kihajlás tartósíkra merőlegesen
térbeli elcsavarodó kihajlás
keresztmetszeti ellenállás
kapcsolat (furat) teherbírása

Síkcsuklós megtámasztás:

RESISTANCE IN NON-DISTORTIONAL MODE

20. ábra - Síkcsuklós megtámasztás, torzulásos horpadás nélkül és azzal

Gömbcsuklós megtámasztás:

RESISTANCE IN NON-DISTORTIONAL MODE

Befogás:

SZIMPLA	Névleges hossz [mm]						
	5	20	50	150	500	1500	2500
Síkcsukló számított				10.41	10.41	4.81	3.86
Síkcsukló mért				9.58	11.64	3.37	1.82
Gömbcsukló számított				10.41	10.41	3.78	1.43
Gömbcsukló mért				10.97	9.44	3.34	1.78
Befogás számított	36.50	36.50	36.50	32.01	13.73	4.75	
Befogás mért	48.27	37.95	41.87	34.14	24.24	9.15	

6. táblázat - Szimpla szelvény eredményeinek összehasonlítása

A táblázatban szereplő analitikus eredmények a feltételezésnek megfelelően a torzulásos horpadás figyelembevételével számított értékek.

Sík- és gömbcsuklós esetben a grafikonok alapján elmondható, hogy az analitikus megoldás során helyes volt a feltételezésünk, hogy a torzulásos horpadás hatását figyelembe kell vennünk. Befogás esetén azonban látszik, hogy a rövid tartományt (<150 mm) leszámítva a kísérleti eredmények nem igazolták, hogy a csökkentett övvastagságú szelvény alapján kellene számolni.

5.2. Dupla szelvény

Feltételezések:

- övmerevítők elhanyagolása,
- 4. keresztmetszeti osztály,
- torzulásos horpadás interakciója nem érvényesül.

Az itt található feltételezésekkel az egyes tönkremenetelekhez számolt kritikus erők értékeit meghatároztuk az elemhossz függvényében az előzőeknek megfelelően. A számítást külön elvégeztük minden esetben a torzulásos horpadás figyelembevétele nélkül és a figyelembevételével is. A grafikonokon az egyes jelölések a korábban leírtak szerint értelmezendő. Röviden elismételve:

síkbeli kihajlás tartósíkban
síkbeli kihajlás tartósíkra merőlegesen
térbeli elcsavarodó kihajlás
keresztmetszeti ellenállás
kapcsolat (furat) teherbírása

Síkcsuklós megtámasztás:

RESISTANCE IN NON-DISTORTIONAL MODE

Gömbcsuklós megtámasztás:

RESISTANCE IN NON-DISTORTIONAL MODE

24. ábra - Gömbcsuklós megtámasztás, torzulásos horpadás nélkül és azzal

Befogás:

RESISTANCE IN NON-DISTORTIONAL MODE

25. ábra - Befogás, torzulásos horpadás nélkül és azzal

DUPLA	Névleges hossz [mm]						
	5	20	50	150	500	1500	2500
Síkcsukló számított							10.45
Síkcsukló mért							10.14
Gömbcsukló számított							10.16
Gömbcsukló mért							10.03
Befogás számított		73.00	73.00	73.00	59.13	22.71	
Befogás mért		38.39	42.27	64.78	53.18	37.24	

7. táblázat - Dupla szelvény eredményeinek összehasonlítása

A táblázatban szereplő analitikus eredmények a feltételezésnek megfelelően a torzulásos horpadás elhanyagolásával számított értékek.

Sík- és gömbcsukló esetén a mérések során kapott eredmények kellően illeszkednek az elméleti megoldáshoz, ugyanakkor a befogott esetben ez nem mondható el. A különbség fő oka, hogy a szelvények imperfektek, a hosszuk nem tökéletesen egyforma, így egyik-másik szelvény nagyobb terhet kap, az elemek nem dolgoznak tökéletesen együtt. Erre a legjobb példa a nagyon rövid elemek viselkedése (~5mm), ahol egyértelműen látszik, hogy az elemek a korábban bemutatott ugyanolyan hosszú, de szimpla elemek viselkedésére emlékeztetnek. Mivel ez az eset elméleti, a gyakorlatban ilyen kialakítás nem fog készülni, ezért ennek a számítási korrekciójával a továbbiakban nem foglalkozunk, megelégszünk a csuklós esetek alkalmazhatóságával.

5.3. Dupla-csavarozott szelvény

Feltételezések:

- övmerevítők elhanyagolása,
- 2. keresztmetszeti osztály, az övek teljes keresztmetszete dolgozó,
- torzulásos horpadás interakciója NEM érvényesül, az övek együttdolgoznak.

Az itt található feltételezésekkel az egyes tönkremenetelekhez számolt kritikus erők értékeit meghatároztuk az elemhossz függvényében az előzőeknek megfelelően. A számítást külön elvégeztük minden esetben a torzulásos horpadás figyelembevétele nélkül és a figyelembevételével is. A grafikonokon az egyes jelölések a korábban leírtak szerint értelmezendő. Röviden elismételve:

N.fl.η.Rd.G / N.fl.η.dist.Rd.G (piros):	síkbeli kihajlás tartósíkban
N.fl.ζ.Rd.G / N.fl.ζ.dist.Rd.G (kék):	síkbeli kihajlás tartósíkra merőlegesen
N.T.Rd.G / N.T.dist.Rd.G (zöld):	térbeli elcsavarodó kihajlás
N.pl.Rd:	keresztmetszeti ellenállás
F.Rd:	kapcsolat (furat) teherbírása

Befogás:

RESISTANCE IN NON-DISTORTIONAL MODE

26. ábra - Befogás, torzulásos horpadás nélkül és azzal

DUPLA CSAVAROZOTT	Névleges hossz [mm]						
	5	20	50	150	500	1500	2500
Síkcsukló számított							
Síkcsukló mért							
Gömbcsukló számított							
Gömbcsukló mért							
Befogás számított				102.09	102.09	64.61	
Befogás mért				58.32	55.49	56.22	

8. táblázat - Dupla-csavarozott szelvény eredményeinek összehasonlítása

A táblázatban szereplő analitikus eredmények a feltételezésnek megfelelően a torzulásos horpadás elhanyagolásával, 2. keresztmetszeti osztályú elemként számított értékek.

Mindenekelőtt ismét le kell szögeznünk, hogy a csavarozott szelvények csak közelítő megoldást nyújtanak a press-fitted elemek modellezésére. Így ennek jelentősége kimerül a tendenciák vizsgálatában. A press-fitted szelvények esetén messze a legnagyobb effektív keresztmetszettel számoltunk, melyre a teherbírási értékek lényegesen nagyobbak a dupla szelvényekénél illetve a szimpla szelvény teherbírásának duplájánál. Ugyanakkor a csavarozott elemek nem érik el ezt az elméleti teherbírási értéket. Ha megfigyeljük a mért értékeket, azt tapasztaljuk, hogy azok 56 kN körül ingadoznak, látszólag a hossztól függetlenül. Ennek egyik oka az lehet, hogy a csavarokat úgy osztottuk ki, hogy azok a hossztól függetlenül minden esetben közel azonos távolságra voltak egymástól, azoknak csak a darabszáma változott. Ez a tulajdonképpeni csavarkép-változattás jelentősen befolyásolja az eredményeket. A lényegen viszont ez nem változtat: az övek egymást támasztó hatása igen jelentős, az együttdolgozás szerepe kiemelkedő. Az ilyen szelvények vizsgálatához javasolt a további kísérletek végzése immáron valós press-fitted szelvényeken.
6. Összefoglalás

A Scottsdale Construction Systems Ltd. által megbízást kaptunk az általuk fejlesztett rácsos tartó rácsrúdjainak stabilitásvizsgálatára az Eurocode alapján, melyekhez 3 különböző szelvényt terveztek alkalmazni. Egy 117 kísérletből álló kísérletsorozattal meghatároztuk az elemek tervezési teherbírásértékét 3 különböző elméleti támasz esetén 150-2500 mm-es hossztartományon belül adott hosszakon. Ezen kísérletek egy része kiegészítő jellegű, és az 5-150 mm-es tartomány vizsgálatáról szól.

Célunk egy olyan számítási útmutató kidolgozása volt, mely az Eurocode alapján megadja egy adott szelvény teherbírását a hossz függvényében. Ehhez több különböző dolgozó keresztmetszetet feltételeztünk. Az eredmények összehasonlítása során az alábbi megállapításokra jutottunk a rácsos tartó lehetséges kialakítására vonatkozóan:

- A szimpla szelvények esetében az övmerevítők teherbírását figyelmen kívül kell hagyni, a szelvény 4. keresztmetszeti osztálynak megfelelő csökkentését el kell végezni, továbbá a torzulásos horpadást az övvastagság csökkentésével figyelembe kell venni.
- Dupla szelvények esetén az övmerevítőket szintén el kell hagyni, a 4. keresztmetszeti osztálynak megfelelő csökkentést el kell végezni, ám az egymást támasztó hatása miatt a torzulásos horpadás hatását figyelmen kívül hagyhatjuk, az övek vastagságát nem kell csökkenteni.
- Dupla-csavarozott szelvények esetén az együttdolgozás ténye kimutatható, ám ennek számítása bonyolult, jelen kísérletek nem alkalmasak egzakt módszer kidolgozására
- A dupla press-fitted szelvények vizsgálata indokolt, azok teherbírásának meghatározásához laborkísérletek szükségesek.

7. Irodalomjegyzék

- [1] MSZ EN 1990:2002 Basis of structural design
- [2] MSZ EN 1993-1-1:2005 Design of steel structures General rules and rules for buildings
- [3] MSZ EN 1993-1-3:2006 Design of steel structures General rules Supplementary rules for cold formed thin gauge members and sheeting.
- [4] MSZ EN 1993-1-12:2007 Design of steel structures Additional rules for the extension of EN 1993 up to steel grades S 700

8. Függelék

- Keresztmetszeti adatok
- MathCAD számítási melléklet
- Labor jegyzőkönyv

Keresztmetszeti adatok

Szelvények

Név	Rajz	Gyártás	Alak	h	b	tw	tf	Ax	Ay	Az
				[mm]	[mm]	[mm]	[mm]	[mm ²]	[mm ²]	[mm ²]
1 C_Sin		Más	Egyedi	39.70	37.10	0	0	111.73	21.08	56.81
2 C_Sin_RedSlip		Más	Egyedi	38.80	37.10	0	0	100.63	23.18	50.64
3 C_Sin_RedSlip_Eff		Más	Egyedi	38.80	37.10	0	0	87.25	0	0
4 C_Sin_RedSlip_Eff_Dist		Más	Egyedi	38.80	37.10	0	0	66.37	0	0
5 C_DB		Más	Egyedi	41.40	38.15	0	0	223.45	0	0
6 C_DB_RedSlip		Más	Egyedi	39.59	38.15	0	0	201.26	0	0
7 C_DB_RedSlip_Eff		Más	Egyedi	39.59	38.15	0	0	174.50	0	0
8 C_DB_RedSlip_Eff_Dist		Más	Egyedi	39.59	38.15	0	0	132.73	0	0

Név	Ix [mm4]	ly [mm4]	lz [mm4]	lyz	l ₁	l ₂	α	١۵	W _{1,el,t}	W _{1,el,b}
	funu.1	[uuu.]	[uuu.]	funu.1	[uuu.]	[uuu.]	[1]	[cm°]	funu-1	funu-1
1 C_Sin	33.5	19671.0	27329.0	2104.8	27869.4	19130.7	-75.60	6.434	1236.2	1284.5
2 C_Sin_RedSlip	30.1	13937.2	25032.3	1918.9	25354.8	13614.7	-80.46	3.217	1185.9	1225.3
3 C_Sin_RedSlip_Eff	25.6	13288.5	20722.9	1285.8	20939.0	13072.4	-80.46	0.444	946.5	1049.6
4 C_Sin_RedSlip_Eff_Dist	18.0	4656.9	14021.0	375.2	14036.0	4641.9	-87.71	0.321	718.2	745.3
5 C_DB	66.9	42428.5	55011.5	3165.1	55762.8	41677.3	-76.65	83.026	2467.0	2467.0
6 C_DB_RedSlip	60.1	35319.1	50425.3	2199.2	50739.0	35005.5	-81.88	59.756	2378.5	2378.5
7 C_DB_RedSlip_Eff	51.2	35149.1	41542.1	1663.5	41949.0	34742.2	-76.25	12.696	1848.5	1848.5
8 C_DB_RedSlip_Eff_Dist	36.1	29859.7	28106.8	-404.1	29948.3	28018.1	12.38	12.465	1363.9	1363.9

Név	W _{2,el,t} Imm ³ 1	W _{2,el,b} [mm ³]	W _{1,pl} [mm ³]	W _{2,pl} [mm ³]	i _v [mm]	i _z [mm]	Hy [mm]	Hz [mm]	y _G [mm]	Z _G [mm]	y₅ [mm]	Z _s [mm]
1.0.0	1000.0		1015.0	1000.0	10.07	45.04	07.40	[mm]	10.00	15.00		
1 C_Sin	1036.8	831.3	1645.3	1290.6	13.27	15.64	37.10	39.70	19.28	15.28	2.12	-31.72
2 C_Sin_RedSlip	899.7	572.2	1498.6	1019.3	11.77	15.77	37.10	38.80	19.37	12.92	2.01	-26.20
3 C_Sin_RedSlip_Eff	913.1	531.2	1252.8	884.9	12.34	15.41	37.10	38.80	18.77	11.99	0.71	-15.13
4 C_Sin_RedSlip_Eff_Dist	649.8	147.2	883.0	350.1	8.38	14.54	37.10	38.80	18.73	6.56	0.69	-9.71
5 C_DB	1881.0	1881.0	3301.1	2737.2	13.78	15.69	38.15	41.40	19.07	20.70	0	0
6 C_DB_RedSlip	1664.5	1664.5	3001.4	2366.0	13.25	15.83	38.15	39.59	19.07	19.80	0	0
7 C_DB_RedSlip_Eff	1562.5	1562.5	2498.1	2268.3	14.19	15.43	38.15	39.59	19.07	19.80	0	0
8 C_DB_RedSlip_Eff_Dist	1252.0	1252.0	1869.5	1750.0	15.00	14.55	38.15	39.59	19.07	19.80	0	0

Név	F.p.
1 C_Sin	1
2 C_Sin_RedSlip	1
3 C_Sin_RedSlip_Eff	1
4 C_Sin_RedSlip_Eff_Dist	1
5 C_DB	1
6 C_DB_RedSlip	1
7 C DB RedSlip Eff	1
8 C_DB_RedSlip_Eff_Dist	1

SCOTTSDALE sections

1. Standards

1.1. Eurocode 3 - in details:

EN 1993-1-1-2006: General rules and rules for buildings

EN 1993-1-3-2006: General rules - Supplementary rules for cold formed thin gauge members and sheeting

EN 1993-1-5-2006: General rules - Supplementary rules for planar plated structures without transverse loading

1.2. Partial factors

 $\gamma_{M0} := 1.0$ $\gamma_{M1} := 1.0$ $\gamma_{M2} := 1.25$

- 2. Material properties
 - 2.1. Materia of the column

Steel: S 550 MC

E := 210GPa	$\nu := 0.3$ G := $\frac{E}{2 \cdot (1 + \nu)} = 80.769 \cdot GPa$
$f_y := 550 \frac{N}{mm^2}$	$f_u := 600 \frac{N}{mm^2}$

2.1. Materia of the screw

Steel: S2100 $f_{ub} := 2100 \frac{N}{mm^2}$ $f_{yb} := f_{ub} \cdot 0.8 = 1680.0 \cdot \frac{N}{mm^2}$

3. Geometry

d := 10mm

3.1. Nominal and notional geometry

c₁ := 7.2mm b₁ := 34.9mm h := 37.1mm h' := 19.3mm c₂ := 39.7mm c₂ := 7.2mm t := 0.95mm - 0.004mm = 0.946 · mm r := 3.6mm - $\frac{t}{2}$ = 3.127 · mm Diamater of the hole:

Member lengths:

$$\Delta L := \begin{bmatrix} 2 \cdot \left(10 \text{ mm} + \frac{d}{2} \right) & \text{if config > 1} & = 30 \text{ mm} \\ 0 \text{ mm otherwise} \end{bmatrix}$$

... IN CASE OF MANUAL CONFIGURATION ___

$$v_{y} := 0 \qquad v_{z} := 0$$
Screws:
$$v_{y} := 0 \qquad 0 \text{ - There were no screws} \\ 1 \text{ - screws were applied} \end{bmatrix}$$
Nominal length - network length difference:
$$\Delta L := \begin{bmatrix} 2 \cdot \left(5 \text{ mm} + \frac{d}{2} \right) & \text{if config = 0} & = 30 \text{ mm} \\ \Delta L \text{ otherwise} \end{bmatrix}$$
... END OF MANUAL CONFIGURATION ___
Calculation of the network length:
$$L_{1} := \text{Lnom}_{1} - \Delta L$$

$$v_{z} := \begin{bmatrix} \text{if config > 0} & v_{z} := \\ 1 \text{ if config = 1} \\ 1 \text{ if config = 2} \\ 1 \text{ if config = 3} \\ v_{y} \text{ otherwise} \end{bmatrix}$$

$$v_{z} = \begin{bmatrix} \text{if config = 3} \\ 1 \text{ if config = 3} \\ v_{z} \text{ otherwise} \end{bmatrix}$$

$$v_{z} = \begin{bmatrix} 1 \text{ config = 3} \\ 1 \text{ if config = 3} \\ v_{z} \text{ otherwise} \end{bmatrix}$$

text := "The configuration is INCORRECT!" if $(\nu_y \cdot \nu_z = 0) \lor (\Delta L < 0)$ "The configuration seems to be OK" otherwise

text = "The configuration seems to be OK"

= 1 = 2 = 3

3.3. Gemoetrical properties for the effective cross section

3.3.1. Notional flat widhts (EN 1993-1-3: 5.1.)

$$\begin{split} c_{1p} &\coloneqq c_1 - \frac{t}{2} - \left(r + \frac{t}{2}\right) \cdot (1 - \sin(45^\circ)) = 5.673 \cdot mm \\ b_{1p} &\coloneqq b_1 - t - 2\left(r + \frac{t}{2}\right) \cdot (1 - \sin(45^\circ)) = 31.845 \cdot mm \\ h_p &\coloneqq h' - t - 2\left(r + \frac{t}{2}\right) \cdot (1 - \sin(45^\circ)) = 16.245 \cdot mm \\ \end{split}$$
As this part is also stiffened, not h but h' is considered as the basis of the notional flat.

$$b_{2p} := b_2 - t - 2\left(r + \frac{t}{2}\right) \cdot (1 - \sin(45^\circ)) = 36.645 \cdot \text{mm}$$
$$c_{2p} := c_2 - \frac{t}{2} - \left(r + \frac{t}{2}\right) \cdot (1 - \sin(45^\circ)) = 5.673 \cdot \text{mm}$$

Gaps at the corners if notional widths are used:

$$g_{\rm TW} := \left(r + \frac{t}{2}\right) \cdot (\tan(45^\circ) - \sin(45^\circ)) = 1.054 \cdot \text{mm}$$
$$g_{\rm TS} := \left(r + \frac{t}{2}\right) \cdot (\tan(45^\circ) - \sin(45^\circ)) = 1.054 \cdot \text{mm}$$

"The affect of rounded corners can NOT be neglected" if r > 5t"The affect of rounded corners can NOT be neglected" if $r > 0.1 \min(b_{1p}, b_{2p}, h_p)$ "The affect of rounded corners can be neglected" otherwise text :=

text = "The affect of rounded corners can NOT be neglected"

3.3.2. Geometrical proportions (EN 1993-1-3: 5.2.)

index
$$:= 0$$

$$\frac{\max(b_{1p}, b_{2p})}{t} = 38.737 < 60$$
$$\frac{\max(c_{1p}, c_{2p})}{t} = 5.996 < 50$$
$$\frac{h_p}{t} = 17.172 < 500$$

index :=
$$\begin{vmatrix} 1 & \text{if } \frac{\max(b_{1p}, b_{2p})}{t} > 60 \\ 1 & \text{if } \frac{\max(c_{1p}, c_{2p})}{t} > 50 \\ 1 & \text{if } \frac{h_p}{t} > 500 \\ \text{index otherwise} \end{vmatrix}$$

text := "The geometry is NOT proper" if index > 0 "OK. The geometry is proper" otherwise

<

500

text = "OK. The geometry is proper"

NOTE: If the geometry is not proper, please read EN-1993-1-3: 5.2. As it is mentioned in this section, the geometrical limitations guranatee that the calculations are validated by sufficient experience, although these limitations can be extended if it is supported by experiments.

$$0.2 < \frac{c_{1p}}{b_{1p}} = 0.178 < 0.6 \qquad c_{1p} := \begin{vmatrix} 0 & \text{if } \left[\left(\frac{c_{1p}}{b_{1p}} < 0.2 \right) \lor \left(\frac{c_{1p}}{b_{1p}} > 0.6 \right) \right] \land \text{ double } \neq 2 = 0 \cdot \text{mm} \\ c_{1p} & \text{otherwise} \\ 0 & \text{if } \left[\left(\frac{c_{2p}}{b_{2p}} < 0.2 \right) \lor \left(\frac{c_{2p}}{b_{2p}} > 0.6 \right) \right] \land \text{ double } \neq 2 = 0 \cdot \text{mm} \\ c_{2p} & \text{otherwise} \\ c_{2p} & \text{otherwise} \end{vmatrix}$$

text := "The stiffeners were not modified" if $c_{1p} \cdot c_{2p} > 0$ "One or both stiffeners were neglected due to EN-1993-1-3: 5.2" otherwise

text = "One or both stiffeners were neglected due to EN-1993-1-3: 5.2"

Due to the above mentioned section, the slip can be neglected, although if press-fitted technology used, the effect of the slip shall be considered. In this case, the slip is supported by force to the other sections web, so the buckling of the slip is partially obstructed.

3.3.3. Classification of the cross-section

$$\varepsilon := \sqrt{\frac{\frac{235 \frac{N}{mm^2}}{\frac{mm^2}{f_y}}} = 0.654$$

extracurricural calculations:
$$\frac{b_{2p}}{t} = 38.737$$
 $42 \cdot \varepsilon = 27.454$
 $\frac{h_p}{t} = 17.172$ $42 \cdot \varepsilon = 27.454$

^c2p

$$= 0 14 \cdot \varepsilon = 9.151$$

b.2p is used as the lenght of the idealized cross-section with sharp corners

 $cl := max(cl_h, cl_b, cl_c) = 4$

text := "The cross-section is I. class" if cl = 1
"The cross-section is II. class" if cl = 2
"The cross-section is III. class" if cl = 3
"The cross-section is IV. class" otherwise

text = "The cross-section is IV. class"

The calculation will be continued according to the aforementioned classification.

3.3.4. Cross-section reduction in according to the local buckling

The colum may not be considered as centrally loaded element. In this case the undermentioned ψ factors should be modified. See EC 3.1.5:2006 Table 4.1.

$$\begin{split} \psi_{\mathbf{h}} &\coloneqq 1 & \psi_{\mathbf{b}} &\coloneqq 1 & \psi_{\mathbf{c}} &\coloneqq 1 \\ \mathbf{k}_{\mathbf{h}.\sigma} &\coloneqq \begin{bmatrix} \frac{8.2}{\left(1.05 + \psi_{\mathbf{h}}\right)} & \text{if } \psi_{\mathbf{h}} < 1 & \mathbf{k}_{\mathbf{b}.\sigma} &\coloneqq \begin{bmatrix} \frac{8.2}{\left(1.05 + \psi_{\mathbf{b}}\right)} & \text{if } \psi_{\mathbf{b}} < 1 & \mathbf{k}_{\mathbf{c}.\sigma} &\coloneqq \begin{bmatrix} \frac{0.578}{\left(\psi_{\mathbf{c}} + 0.34\right)} & \text{if } \psi_{\mathbf{c}} < 1 \\ 0.43 & \text{otherwise} & 0.43 & \text{otherwise} & 0.43 & \text{otherwise} \\ \end{bmatrix}$$

$$k_{h,\sigma} = 4 \qquad k_{b,\sigma} = 4 \qquad k_{c,\sigma} = 0.43$$

$$\sigma_{c,max} := \frac{f_y}{\gamma_{M0}} = 550 \cdot MPa \qquad \lambda'_p := \frac{c_{1p}}{t \cdot 28.4 \cdot \epsilon \cdot \sqrt{k_{c,\sigma}}} = 0$$

$$\lambda_{p,c1} := \frac{c_{1p}}{t} \cdot \sqrt{\frac{12 \cdot (1 - \nu^2) \cdot f_y}{\pi^2 \cdot E \cdot k_{c,\sigma}}} = 0.000 \qquad \lambda_{p,red,c1} := \lambda_{p,c1} \cdot \sqrt{\frac{\sigma_{c,max} \cdot \gamma_{M0}}{f_y}} = 0.000$$

$$\rho_{c1} := \begin{vmatrix} 1 & \text{if } \lambda_{p,c1} \le 0.6 & = 1.000 \\ \min \left(\frac{1 - \frac{0.188}{\lambda_{p,red,c1}}}{\lambda_{p,red,c1}} + 0.18 \cdot \frac{\lambda_{p,c1} - \lambda_{p,red,c1}}{\lambda_{p,c1} - 0.6}, 1 \right) \text{ if } \lambda_{p,c1} > 0.6$$

$$\lambda_{p.b1} \coloneqq \frac{b_{1p}}{t} \cdot \sqrt{\frac{12 \cdot (1 - \nu^2) \cdot f_y}{\pi^2 \cdot E \cdot k_{b.\sigma}}} = 0.906 \qquad \qquad \lambda_{p.red.b1} \coloneqq \lambda_{p.b1} \cdot \sqrt{\frac{\sigma_{c.max} \cdot \gamma_{M0}}{f_y}} = 0.906$$

$$\rho_{b1} := \begin{bmatrix} 1 & \text{if } \lambda_{p.b1} \le 0.6 \\ min \begin{bmatrix} \frac{1 - \frac{0.055 \cdot (3 + \psi_b)}{\lambda_{p.red.b1}}}{\lambda_{p.red.b1}} + 0.18 \cdot \frac{\lambda_{p.b1} - \lambda_{p.red.b1}}{\lambda_{p.b1} - 0.6}, 1 \end{bmatrix} \text{ if } \lambda_{p.b1} > 0.6 \end{bmatrix}$$

$$\lambda_{p.h} \coloneqq \frac{h_p}{t} \cdot \sqrt{\frac{12 \cdot (1 - \nu^2) \cdot f_y}{\pi^2 \cdot E \cdot k_{h.\sigma}}} = 0.462 \qquad \qquad \lambda_{p.red.h} \coloneqq \lambda_{p.h} \cdot \sqrt{\frac{\sigma_{c.max} \cdot \gamma_{M0}}{f_y}} = 0.462$$

$$\begin{split} \rho_{h} &\coloneqq \left| \begin{array}{c} 1 \quad \text{if } \lambda_{p,h} \leq 0.6 \\ & = 1.000 \\ \\ min \left[\frac{1 - \frac{0.055 \cdot \left(3 + \psi_{h}\right)}{\lambda_{p.red,h}}}{\lambda_{p.red,h}} + 0.18 \cdot \frac{\lambda_{p,h} - \lambda_{p.red,h}}{\lambda_{p,h} - 0.6}, 1 \right] & \text{if } \lambda_{p,h} > 0.6 \\ \\ \lambda_{p,b2} &\coloneqq \frac{b_{2p}}{t} \cdot \sqrt{\frac{12 \cdot \left(1 - \nu^{2}\right) \cdot f_{y}}{\pi^{2} \cdot E \cdot k_{b,\sigma}}} = 1.043 \\ \end{array} \right| \\ \lambda_{p.red,b2} &\coloneqq \lambda_{p,b2} \cdot \sqrt{\frac{\sigma_{c.max} \cdot \gamma_{M0}}{f_{y}}} = 1.043 \\ \end{split}$$

$$\rho_{b2} := \begin{bmatrix} 1 & \text{if } \lambda_{p.b2} \le 0.6 \\ min \begin{bmatrix} \frac{1 - \frac{0.055 \cdot (3 + \psi_b)}{\lambda_{p.red.b2}}}{\lambda_{p.red.b2}} + 0.18 \cdot \frac{\lambda_{p.b2} - \lambda_{p.red.b2}}{\lambda_{p.b2} - 0.6}, 1 \end{bmatrix} \text{ if } \lambda_{p.b2} > 0.6 \end{bmatrix}$$

$$\lambda_{p.c2} \coloneqq \frac{c_{2p}}{t} \cdot \sqrt{\frac{12 \cdot (1 - \nu^2) \cdot f_y}{\pi^2 \cdot E \cdot k_{c.\sigma}}} = 0.000 \qquad \lambda_{p.red.c2} \coloneqq \lambda_{p.c2} \cdot \sqrt{\frac{\sigma_{c.max} \cdot \gamma_{M0}}{f_y}} = 0.000$$

$$\rho_{c2} \coloneqq \left| \begin{array}{ccc} 1 & \text{if } \lambda_{p.c2} \leq 0.6 \\ min \left(\frac{1 - \frac{0.188}{\lambda_{p.red.c2}}}{\lambda_{p.red.c2}} + 0.18 \cdot \frac{\lambda_{p.c2} - \lambda_{p.red.c2}}{\lambda_{p.c2} - 0.6}, 1 \right) & \text{if } \lambda_{p.c2} > 0.6 \end{array} \right|$$

Cross-section reduction shuld be considered only if the section is 4. class.

$$\begin{array}{c|c} \rho_{c1} \coloneqq \rho_{c1} \text{ if } cl = 4 = 1 \\ 1 \text{ otherwise} \end{array} \qquad \begin{array}{c|c} \rho_{b1} \coloneqq \rho_{b1} \coloneqq \rho_{b1} \text{ if } cl = 4 = 0.836 \\ 1 \text{ otherwise} \end{array} \qquad \begin{array}{c|c} \rho_{h} \coloneqq \rho_{h} \coloneqq \rho_{h} \text{ if } cl = 4 = 1 \\ 1 \text{ otherwise} \end{array}$$

$$\begin{array}{c|c} \rho_{b2} \coloneqq \rho_{b2} \text{ if } cl = 4 = 0.757 \\ 1 \text{ otherwise} \end{array} \qquad \begin{array}{c|c} \rho_{c2} \coloneqq \rho_{c2} \text{ if } cl = 4 = 1 \\ 1 \text{ otherwise} \end{array}$$

Effective lengths:

$$c_{1p} = 0 \cdot mm$$

$$c_{1.eff} := \rho_{c1} \cdot c_{1p} = 0 \cdot mm$$

$$b_{1.eff} := \rho_{b1} \cdot b_{1p} = 26.6 \cdot mm$$

$$b_{1e1} := \frac{2}{5 - \psi_b} \cdot (\rho_{b1} \cdot b_{1p}) = 13.3 \cdot mm$$

$$b_{1e2} := \rho_{b1} \cdot b_{1p} - b_{1e1} = 13.3 \cdot mm$$

$$h_{eff} := \rho_{h} \cdot h_p = 16.2 \cdot mm$$

$$b_{2.eff} := \rho_{b2} \cdot b_{2p} = 27.7 \cdot mm$$

$$b_{2e1} := \frac{2}{5 - \psi_b} \cdot (\rho_{b2} \cdot b_{2p}) = 13.9 \cdot mm$$

$$b_{2e2} := \rho_{b2} \cdot b_{2p} - b_{2e1} = 13.9 \cdot mm$$

$$c_{2.eff} := \rho_{c2} \cdot c_{2p} = 0 \cdot mm$$

Uneffective lengths:

$$(1 - \rho_{c1}) \cdot c_{1p} = 0 \cdot mm$$

$$(1 - \rho_{b1}) \cdot b_{1p} = 5.23 \cdot mm$$

$$(1 - \rho_{h}) \cdot h_{p} = 0 \cdot mm$$

$$(1 - \rho_{b2}) \cdot b_{2p} = 8.91 \cdot mm$$

$$(1 - \rho_{c2}) \cdot c_{2p} = 0 \cdot mm$$

WARNING! The geometrical properties below are not refeshed automatically based on these calculations! These should be recalculated manually according to the effective cross-section!

The following datas are from a FEM software.

	0	1	2	3	4	5	6	7	8	9
0	111.73	21.08	56.81	33.5	967·10 ⁴	733·10 ⁴	105∙10 ³	787·10 ⁴	913·10 ⁴	-75.6
1	100.63	23.18	50.64	30.1	394·10 ⁴	503·10 ⁴	919·10 ³	535·10 ⁴	361·10 ⁴	-80.46
2	87.25	0	0	25.6	329·10 ⁴	072·10 ⁴	286∙10 ³	094·10 ⁴	307.104	-80.46
3	66.37	0	0	18	657·10 ³	402·10 ⁴	375.2	404·10 ⁴	642∙10 ³	-87.71
4	223.45	0	0	66.9	243·10 ⁴	501·10 ⁴	165∙10 ³	576·10 ⁴	168·10 ⁴	-76.65
5	201.26	0	0	60.1	532·10 ⁴	043·10 ⁴	199.10 ³	074·10 ⁴	501·10 ⁴	-81.88
6	174.5	0	0	51.2	515·10 ⁴	154·10 ⁴	663 · 10 ³	195·10 ⁴	474·10 ⁴	-76.25
7	132.73	0	0	36.1	986·10 ⁴	811·10 ⁴	-404.1	995·10 ⁴	802·10 ⁴	

Simple section
$$j := ORIGIN + 2$$
 $k := ORIGIN$ $A_{sp} := SecData_{ORIGIN, k} mm^2 = 111.73 \cdot mm^2$ $A_{c.eff.sp} := SecData_{j, k} mm^2 = 87.25 \cdot mm^2$ $I_{1.eff.sp} := SecData_{j, k+7} mm^4 = 20939 \cdot mm^4$ $I_{2.eff.sp} := SecData_{j, k+8} mm^4 = 13072 \cdot mm^4$ $I_{t.eff.sp} := SecData_{j, k+3} \cdot mm^4 = 25.6 \cdot mm^4$ $I_{\omega.eff.sp} := SecData_{j, k+10} mm^6 = 0.4437 \cdot cm^6$ $I_{z.eff.sp} := SecData_{j, k+5} mm^4 = 20723 \cdot mm^4$ $I_{\omega.eff.sp} := SecData_{j, k+4} mm^4 = 13289 \cdot mm^4$ $i_{y.sp} := SecData_{j, k+17} mm = 12.34 \cdot mm$ $i_{z.sp} := SecData_{j, k+18} mm = 15.41 \cdot mm$ $a_{sp} := \sqrt{(SecData_{j, k+23} mm)^2 + (SecData_{j, k+24} mm)^2} = 15.147 \cdot mm$

Difference between the x,y axises and the η, ζ axises: $\delta_{sp} := \left(90 - \text{SecData}_{j,k+9}\right)^\circ = 170.46 \cdot \circ$

Double section

$$j := ORIGIN + 6$$

$$A_{db} := SecData_{ORIGIN+4,k} mm^{2} = 223.45 \cdot mm^{2}$$

$$A_{c.eff.db} := SecData_{j,k} mm^{2} = 174.5 \cdot mm^{2}$$

$$I_{1.eff.db} := SecData_{j,k+7} mm^{4} = 41949 \cdot mm^{4}$$

$$I_{2.eff.db} := SecData_{j,k+8} mm^{4} = 34742 \cdot mm^{4}$$

$$I_{t.eff.db} := SecData_{j,k+3} \cdot mm^{4} = 51.2 \cdot mm^{4}$$

$$I_{w.eff.db} := SecData_{j,k+10} mm^{6} = 13.0000 \cdot cm^{6}$$

$$I_{z.eff.db} := SecData_{j,k+5} mm^{4} = 41542 \cdot mm^{4}$$

$$I_{y.eff.db} := SecData_{j,k+4} mm^{4} = 35149 \cdot mm^{4}$$

$$i_{y.db} := SecData_{j,k+17} mm = 14.19 \cdot mm$$

$$i_{z.db} := SecData_{j,k+18} mm = 15.43 \cdot mm$$

$$a_{db} := \sqrt{\left(\text{SecData}_{j,k+23} \text{ mm}\right)^2 + \left(\text{SecData}_{j,k+24} \text{ mm}\right)^2} = 0 \cdot \text{mm}$$

Difference between the x,y axises and the η , ζ axises: δ_{dh} :=

 $\delta_{db} := (90 - \text{SecData}_{j, k+9})^\circ = 166.25 \cdot \circ$

Double (press-fitted) section

$$j := ORIGIN + 5$$

$$A_{dbpf} := SecData_{ORIGIN+4, k} mm^{2} = 223.45 \cdot mm^{2} A_{c.eff.dbpf} := SecData_{j, k} mm^{2} = 201.26 \cdot mm^{2}$$

$$I_{1.eff.dbpf} := SecData_{j, k+7} mm^{4} = 50739 \cdot mm^{4} I_{2.eff.dbpf} := SecData_{j, k+8} mm^{4} = 35006 \cdot mm^{4}$$

$$I_{t.eff.dbpf} := SecData_{j, k+3} \cdot mm^{4} = 60.1 \cdot mm^{4} I_{\omega.eff.dbpf} := SecData_{j, k+10} mm^{6} = 60.0000 \cdot cm^{6}$$

$$I_{z.eff.dbpf} := SecData_{j, k+5} mm^{4} = 50425 \cdot mm^{4} I_{y.eff.dbpf} := SecData_{j, k+4} mm^{4} = 35319 \cdot mm^{4}$$

$$i_{y.dbpf} := SecData_{j, k+17} mm = 13.25 \cdot mm$$

$$i_{z.dbpf} := SecData_{j, k+18} mm = 15.83 \cdot mm$$

$$a_{dbpf} := \sqrt{\left(SecData_{j, k+23} mm\right)^{2} + \left(SecData_{j, k+24} mm\right)^{2}} = 0 \cdot mm$$

Difference between the x,y axises and the η , ζ axises:

 $\delta_{\text{dbpf}} := \left(90 - \text{SecData}_{j, k+9}\right)^\circ = 171.88^\circ$

 $I_{1.eff} := \begin{bmatrix} I_{1.eff.sp} & \text{if double} = 0 = 2.094 \cdot \text{cm}^4 \\ I_{1.eff.db} & \text{if double} = 1 \\ I_{1.eff.dbpf} & \text{otherwise} \end{bmatrix}$

$$I_{t.eff} := \begin{bmatrix} I_{t.eff.sp} & \text{if double} = 0 = 0.0026 \cdot \text{cm}^4 \\ I_{t.eff.db} & \text{if double} = 1 \\ I_{t.eff.dbpf} & \text{otherwise} \end{bmatrix}$$

 $I_{z.eff} := \begin{vmatrix} I_{z.eff.sp} & \text{if double} = 0 = 2.072 \cdot \text{cm}^4 \\ I_{z.eff.db} & \text{if double} = 1 \\ I_{z.eff.dbpf} & \text{otherwise} \end{vmatrix}$

$$i_y := \begin{cases} i_{y.sp} & \text{if double} = 0 = 12.34 \cdot \text{mm} \\ i_{y.db} & \text{if double} = 1 \\ i_{y.dbpf} & \text{otherwise} \end{cases}$$

a := $\begin{vmatrix} a_{sp} & \text{if double} = 0 = 15.147 \cdot \text{mm} \\ a_{db} & \text{if double} = 1 \\ a_{dbpf} & \text{otherwise} \end{vmatrix}$

Attila Joó, Sándor Ádány, Dávid Visy, Máté Szedlák

$$I_{2.eff} := \begin{bmatrix} I_{2.eff.sp} & \text{if double} = 0 = 1.307 \cdot \text{cm}^4 \\ I_{2.eff.db} & \text{if double} = 1 \\ I_{2.eff.dbpf} & \text{otherwise} \end{bmatrix}$$

$$I_{\omega.eff} := \begin{bmatrix} I_{\omega.eff.sp} & \text{if double} = 0 = 0.444 \cdot \text{cm}^6 \\ I_{\omega.eff.db} & \text{if double} = 1 \\ I_{\omega.eff.dbpf} & \text{otherwise} \end{bmatrix}$$

$$I_{y.eff} := \begin{bmatrix} I_{y.eff.sp} & \text{if double} = 0 = 1.329 \cdot \text{cm}^4 \\ I_{y.eff.db} & \text{if double} = 1 \\ I_{y.eff.dbpf} & \text{otherwise} \end{bmatrix}$$

$$i_z := \begin{cases} i_{z.sp} & \text{if double} = 0 = 15.41 \cdot \text{mm} \\ i_{z.db} & \text{if double} = 1 \\ i_{z.dbpf} & \text{otherwise} \end{cases}$$

 $\delta := \begin{cases} \delta_{sp} & \text{if double} = 0 = 170.46 \cdot^{\circ} \\ \delta_{db} & \text{if double} = 1 \\ \delta_{dbpf} & \text{otherwise} \end{cases}$

$$i_s := \sqrt{i_y^2 + i_z^2 + a^2} = 24.883 \cdot mm$$

3.3.5. Cross-section reduction in according to the distortional buckling

As a simpler calculation, we do NOT iterate the effective cross-section accordint to the changing of the geometrical input. Althogh it can be eliminated if λ .d>1 is true. For a more precise calculation, these effects may be considered and calculated here!

$$OPTIONAL ITERATIONS SHOULD BE REPEATED FROM HERE$$

$$A_{st} \coloneqq \left(\frac{b_{1.eff} + b_{2.eff} + c_{1.eff} + c_{2.eff}}{2}\right) \cdot t = 25.705 \cdot mm^{2}$$

$$y_{st.CG} \coloneqq \frac{b_{1.eff} \cdot t \cdot (0.5b_{1.eff} + g_{rs}) + b_{2.eff} \cdot t \cdot (0.5b_{2.eff} + g_{rs})}{2A_{st}} = 14.646 \cdot mm$$

$$z_{st.CG} \coloneqq \frac{c_{1.eff} \cdot t \cdot (0.5c_{1.eff} + g_{rs}) + c_{2.eff} \cdot t \cdot (0.5c_{2.eff} + g_{rs})}{2A_{st}} = 0.000 \cdot mm$$

г

$$I_{a.st} := \frac{b_{1.eff} + b_{2.eff}}{2} \cdot \frac{t^3}{12} + \left[\frac{\frac{c_{1.eff} + c_{2.eff}}{2} \cdot \frac{t^3}{12} + \frac{c_{1.eff}^3}{2} \cdot \frac{t}{12} + \frac{c_{2.eff}^3}{2} \cdot \frac{t}{12}}{2} \cdot \frac{c_{2.eff}^3}{12} \cdot \frac{t}{12}}{2} \cdot \frac{c_{1.eff}^3}{2} \cdot \frac{t}{12} - \frac{c_{2.eff}^3}{2} \cdot \frac{t}{12}}{2} \cdot \frac{c_{2.eff}^3}{2} \cdot \frac{t}{2}}{2} \cdot \frac{c_{2.eff}^3}{2} \cdot \frac{t}{2}}{2} \cdot \frac{c_{2.eff}^3}{2} \cdot \frac{t}{2}}{2} \cdot \frac{c_{2.eff}^3}{2} \cdot \frac{t}{2} \cdot \frac{t}{2}}{2} \cdot \frac{c_{2.eff}^3}{2} \cdot \frac$$

$$I_{a.st} := \left[I_{a.st} + \frac{c_{1.eff} + c_{2.eff}}{2} \cdot t \cdot \left[\left(0.5 \frac{c_{1.eff} + c_{2.eff}}{2} + g_{rs} \right) \cdot \sin(90^{\circ}) \right]^2 \right] - A_{st} \cdot z_{st.CG}^2 = 1.917 \cdot mm^4$$

Spring stiffness per unit length

$$b_{\text{dist.1}} \coloneqq b_1 - t - y_{\text{st.CG}} = 19.308 \cdot \text{mm} \qquad K_1 \coloneqq \frac{\text{E} \cdot t^3}{4 \cdot (1 - \nu^2)} \cdot \frac{1}{1.5 \cdot (h - t) b_{\text{dist.1}}^2 + b_{\text{dist.1}}^3} = 1.782 \cdot \frac{\text{N}}{\text{mm}^2}$$

$$b_{dist,2} \coloneqq b_2 - t - y_{st,CG} = 24.108 \cdot \text{mm} \qquad K_2 \coloneqq \frac{E \cdot t^3}{4 \cdot (1 - \nu^2)} \cdot \frac{1}{1.5 \cdot (h - t) b_{dist,2}^2 + b_{dist,2}^3} = 1.073 \cdot \frac{N}{\text{mm}^2}$$

Critical stress for distortional buckling:

$$\sigma_{cr.st} := \frac{\sqrt{K_1 \cdot E \cdot I_{a.st}} + \sqrt{K_2 \cdot E \cdot I_{a.st}}}{A_{st}} = 58.512 \cdot MPa$$

Slenderness

$$\lambda_{d} := \sqrt{\frac{f_{y}}{\sigma_{cr.st}}} = 3.066$$

Reduction factor

$$\begin{split} \chi_d &\coloneqq \begin{bmatrix} 1 & \text{if } \lambda_d \leq 0.65 \\ & 1.47 - 0.723 \cdot \lambda_d & \text{if } 0.65 < \lambda_d < 1.38 \\ & \frac{0.66}{\lambda_d} & \text{if } \lambda_d \geq 1.38 \end{bmatrix} \end{split}$$

 $\chi_{\rm d} = 0.215$

OTHER OPTIONAL ITERATIONS CAN BE INSERTED HERE

Reduced thickness:

 $t_{red} := t \cdot \chi_d = 0.204 \cdot mm$

WARNING! The geometrical properties below are not refeshed automatically based on these calculations! These should be recalculated manually according to the effective cross-section!

Simple section

$$j := ORIGIN + 3$$

A_{c.eff.dist.sp} := SecData_{j,k} mm² = 66.37 · mm²

$$I_{1.dist.sp} \coloneqq SecData_{j,k+7}mm^{4} = 14036 \cdot mm^{4}$$

$$I_{2.dist.sp} \coloneqq SecData_{j,k+8}mm^{4} = 4642 \cdot mm^{4}$$

$$I_{t.dist.sp} \coloneqq SecData_{j,k+3} \cdot mm^{4} = 18 \cdot mm^{4}$$

$$I_{\omega.dist.sp} \coloneqq SecData_{j,k+10}mm^{6} = 0.3206 \cdot cm^{6}$$

$$I_{z.dist.sp} \coloneqq SecData_{j,k+5}mm^{4} = 14021 \cdot mm^{4}$$

$$I_{y.dist.sp} \coloneqq SecData_{j,k+4}mm^{4} = 4657 \cdot mm^{4}$$

$$i_{y.dist.sp} \coloneqq SecData_{j,k+17}mm = 8.38 \cdot mm$$

$$i_{z.dist.sp} \coloneqq SecData_{j,k+18}mm = 14.54 \cdot mm$$

$$a_{dist.sp} \coloneqq \sqrt{\left(SecData_{j,k+23}mm\right)^{2} + \left(SecData_{j,k+24}mm\right)^{2}} = 9.734 \cdot mm$$

Difference between the x,y axises and the η , ζ axises:

 $I_{z.dist.dbpf} := SecData_{j,k+5} mm^4 = 28107 \cdot mm^4$

$$\delta_{\text{dist.sp}} := \left(90 - \text{SecData}_{j, k+9}\right)^\circ = 177.71$$

Double section

$$j := ORIGIN + 7$$

$$A_{c.eff.dist.db} := SecData_{j,k} mm^{2} = 132.73 \cdot mm^{2}$$

$$I_{1.dist.db} := SecData_{j,k+7} mm^{4} = 29948 \cdot mm^{4}$$

$$I_{2.dist.db} := SecData_{j,k+8} mm^{4} = 28018 \cdot mm^{4}$$

$$I_{1.dist.db} := SecData_{j,k+3} \cdot mm^{4} = 36.1 \cdot mm^{4}$$

$$I_{2.dist.db} := SecData_{j,k+10} mm^{6} = 12.0000 \cdot cm^{6}$$

$$I_{2.dist.db} := SecData_{j,k+5} mm^{4} = 28107 \cdot mm^{4}$$

$$I_{2.dist.db} := SecData_{j,k+17} mm = 15.00 \cdot mm$$

$$i_{2.dist.db} := SecData_{j,k+17} mm = 15.00 \cdot mm$$

$$i_{2.dist.db} := SecData_{j,k+17} mm = 15.00 \cdot mm$$

$$i_{2.dist.db} := SecData_{j,k+18} mm = 14.55 \cdot mm$$

$$a_{dist.db} := \sqrt{(SecData_{j,k+23} mm)^{2} + (SecData_{j,k+24} mm)^{2}} = 0 \cdot mm$$
Difference between the x, y axises and the η , ζ axises:
$$\delta_{dist.db} := (90 - SecData_{j,k+9})^{\circ} = 77.62 \cdot^{\circ}$$

$$Double (press-fitted) section$$

$$j := ORIGIN + 7$$

$$A_{c.eff.dist.dbpf} := SecData_{j,k+7} mm^{4} = 29948 \cdot mm^{4}$$

$$I_{2.dist.dbpf} := SecData_{j,k+8} mm^{4} = 28018 \cdot mm^{4}$$

$$I_{1.dist.dbpf} := SecData_{j,k+7} mm^{4} = 29948 \cdot mm^{4}$$

$$I_{2.dist.dbpf} := SecData_{j,k+8} mm^{4} = 28018 \cdot mm^{4}$$

$$I_{2.dist.dbpf} := SecData_{j,k+10} mm^{6} = 12.0000 \cdot cm^{6}$$

 $I_{y.dist.dbpf} := SecData_{j,k+4} mm^4 = 29860 \cdot mm^4$

$$a_{dist.dbpf} := \sqrt{\left(8eCData_{j,k+23}mm\right)^{2} + \left(8eCData_{j,k+24}mm\right)^{2} = 0.mm}$$
Difference between the x, y axises and the n, ζ axises:
$$\delta_{dist.dbpf} := \left(90 - 8eCData_{j,k+3}\right)^{2} = 77.62^{\circ}$$

$$A_{c.eff.dist} := \left[A_{c.eff.dist.sp} \text{ if double = 0 = 66.37 \cdot mm^{2}} \\ A_{c.eff.dist} := \left[I_{.dist.sp} \text{ if double = 0 = 1.404 \cdot cm^{4}} \\ I_{1.dist} := I_{1.dist.sp} \text{ if double = 0 = 1.404 \cdot cm^{4}} \\ I_{1.dist.dbpf} \text{ otherwise} \right]$$

$$I_{1.dist} := \left[I_{.dist.sp} \text{ if double = 0 = 1.404 \cdot cm^{4}} \\ I_{1.dist.dbpf} \text{ otherwise} \right]$$

$$I_{1.dist.dbpf} \text{ otherwise}$$

$$I_{2.dist.sp} \text{ if double = 0 = 1.402 \cdot cm^{4}} \\ I_{.dist.dbpf} \text{ otherwise}$$

$$I_{.dist.dbpf} \text{ otherwise}$$

$$I_{.dist.dbpf$$

Maximal slenderness ratio

Maximal slenderness ratio may be necessary to decide whether fya can be used in the axial resistance calculation, see 6.1.3.1(1) of EN 1993-1-3:2006).

Relative slenderness of the web:

$$\lambda_{\text{rel.h}} \coloneqq \frac{\lambda_{\text{p.h}}}{0.5 + \sqrt{0.25 - 0.055 \cdot (3+1)}} = 0.687$$

Relative slenderness fof the stiffener flange:

$$\lambda_{\text{rel.fl}} \coloneqq \frac{\max(\lambda_{\text{p.b1}}, \lambda_{\text{p.b2}})}{0.5 + \sqrt{0.25 - 0.055 \cdot (3+1)}} = 1.549$$

Relative slenderness fof the stiffener outstand:

$$\lambda_{\text{rel.st}} := \frac{\max(\lambda_{\text{p.c1}}, \lambda_{\text{p.c2}})}{0.5 + \sqrt{0.25 - 0.188}} = 0$$

Relative slenderness for distorsional buckling:

$$\lambda_{\text{rel.d}} \coloneqq \frac{\lambda_{\text{d}}}{0.65} = 4.717$$

Maximal slenderness ratio:

$$\lambda_{\text{rel.max}} \coloneqq \max(\lambda_{\text{rel.h}}, \lambda_{\text{rel.fl}}, \lambda_{\text{rel.st}}, \lambda_{\text{rel.d}})$$

 $\lambda_{\text{rel.max}} = 4.717$

4. Buckling resistance

4.1. Initial conditions

 $\begin{array}{ll} \mbox{curve}:=\ "c" & (\mbox{See EN 1993-1-1 Table 6.1. and 6.2.}) \\ \alpha:= & \left[\begin{array}{ccc} 0.13 & \mbox{if curve}=\ "a0" & \alpha=0.49 \\ 0.21 & \mbox{if curve}=\ "a" & 0.34 & \mbox{if curve}=\ "b" & 0.49 & \mbox{if curve}=\ "b" & 0.49 & \mbox{if curve}=\ "c" & 0.76 & \mbox{if curve}=\ "d" & \mbox{"error" otherwise} \end{array} \right] \\ \gamma_{M1}=1 \end{array}$

4.2. Flexural buckling resistance - η axis

Attila Joó, Sándor Ádány, Dávid Visy, Máté Szedlák

$$N_{cr.\eta}(L) := \frac{\pi^2 \cdot E \cdot I_{1.eff}}{\left(\nu_{\eta} \cdot L\right)^2} \qquad N_{cr.\eta}(L) = \begin{pmatrix} 3.019 \times 10^3 \\ 196.776 \\ 20.116 \\ 7.125 \end{pmatrix} \cdot kN$$

$$\lambda'_{\eta}(L) := \sqrt{\frac{A_{c.eff} \cdot f_{y}}{N_{cr.\eta}(L)}} \qquad \qquad \lambda'_{\eta}(L) = \begin{pmatrix} 0.126 \\ 0.494 \\ 1.545 \\ 2.595 \end{pmatrix}$$

$$\chi_{\mathrm{fl},\eta}(\mathrm{L}) \coloneqq \frac{1}{\left[\frac{1+\alpha\cdot\left(\lambda'_{\eta}(\mathrm{L})-0.2\right)+\lambda'_{\eta}(\mathrm{L})^{2}}{2}\right]} + \sqrt{\left[\frac{1+\alpha\cdot\left(\lambda'_{\eta}(\mathrm{L})-0.2\right)+\lambda'_{\eta}(\mathrm{L})^{2}}{2}\right]^{2}-\lambda'_{\eta}(\mathrm{L})^{2}}$$

$$\chi_{\mathrm{fl},\eta} \coloneqq \chi_{\mathrm{fl},\eta} (\mathrm{L})$$

$$\chi_{\mathrm{fl},\eta} \coloneqq \begin{vmatrix} 1 & \text{if } \chi_{\mathrm{fl},\eta_{\mathrm{i}}} > 1 \\ \chi_{\mathrm{fl},\eta_{\mathrm{i}}} & \text{otherwise} \end{vmatrix}$$

$$\chi_{\mathrm{fl},\eta} = \begin{pmatrix} 1 \\ 0.846 \\ 0.301 \\ 0.124 \end{pmatrix}$$

$$N_{fl.\eta.Rd} := \frac{\chi_{fl.\eta} \cdot A_{c.eff} \cdot f_{y}}{\gamma_{M1}} \qquad N_{fl.\eta.Rd} = \begin{pmatrix} 47.987\\ 40.618\\ 14.422\\ 5.943 \end{pmatrix} \cdot kN$$

4.3. Flexural buckling resistance- ζ axis

$$N_{cr.\zeta}(L) := \frac{\pi^2 \cdot E \cdot I_{2.eff}}{(\nu_{\zeta} \cdot L)^2} \qquad N_{cr.\zeta}(L) = \begin{pmatrix} 7.502 \times 10^3 \\ 489.05 \\ 49.994 \\ 17.707 \end{pmatrix} \cdot kN$$

$$\lambda'_{\zeta}(L) := \sqrt{\frac{A_{c.eff} \cdot f_{y}}{N_{cr.\zeta}(L)}} \qquad \qquad \lambda'_{\zeta}(L) = \begin{pmatrix} 0.08\\ 0.313\\ 0.98\\ 1.646 \end{pmatrix}$$

$$\begin{split} \chi_{\mathrm{fl},\zeta}(\mathrm{L}) &\coloneqq \frac{1}{\left[\frac{1+\alpha\cdot\left(\lambda'_{\zeta}(\mathrm{L})-0.2\right)+\lambda'_{\zeta}(\mathrm{L})^{2}}{2}\right]} + \sqrt{\left[\frac{1+\alpha\cdot\left(\lambda'_{\zeta}(\mathrm{L})-0.2\right)+\lambda'_{\zeta}(\mathrm{L})^{2}}{2}\right]^{2}-\lambda'_{\zeta}(\mathrm{L})^{2}} \\ \chi_{\mathrm{fl},\zeta} &\coloneqq \chi_{\mathrm{fl},\zeta}(\mathrm{L}) \\ &\downarrow \quad \text{i.e. c.} \end{split}$$

BME - Faculty of Civil Engineering

$$\chi_{\mathrm{fl},\zeta_{i}} \coloneqq \begin{bmatrix} 1 & \mathrm{if} & \chi_{\mathrm{fl},\zeta_{i}} > 1 \\ \chi_{\mathrm{fl},\zeta_{i}} & \mathrm{otherwise} \end{bmatrix} \qquad \qquad \chi_{\mathrm{fl},\zeta} \equiv \begin{bmatrix} 0.552 \\ 0.272 \end{bmatrix}$$

$$N_{fl,\zeta,Rd} \coloneqq \frac{\chi_{fl,\zeta} \cdot A_{c.eff} \cdot f_{y}}{\gamma_{M1}} \qquad \qquad N_{fl,\zeta,Rd} = \begin{pmatrix} 47.987\\ 45.222\\ 26.479\\ 13.03 \end{pmatrix} \cdot kN$$

4.4. Torsional buckling resistance

$$N_{cr.\tau}(L) := \frac{1}{i_s^2} \cdot \left(\frac{\pi^2 E \cdot I_{2.eff} \cdot a^2}{L^2} + \frac{\pi^2 E \cdot I_{\omega.eff}}{L^2} + G \cdot I_{t.eff} \right)$$
$$N_{cr.\tau}(L) = \begin{pmatrix} 803.656\\55.51\\8.673\\5.228 \end{pmatrix} \cdot kN_{cr.\tau}(L) = \begin{pmatrix} 100 + 100 + 100 \\ 100 + 100 \\ 10$$

$$\lambda'_{\tau}(L) := \sqrt{\frac{A_{c.eff} \cdot f_{y}}{N_{cr.\tau}(L)}} \qquad \qquad \lambda'_{\tau}(L) = \begin{pmatrix} 0.244 \\ 0.93 \\ 2.352 \\ 3.03 \end{pmatrix}$$

$$\begin{split} \chi_{\mathsf{T}}(\mathrm{L}) &\coloneqq \frac{1}{\left[\frac{1+\alpha\cdot\left(\lambda'_{\mathsf{T}}(\mathrm{L})-0.2\right)+\lambda'_{\mathsf{T}}(\mathrm{L})^{2}}{2}\right]+\sqrt{\left[\frac{1+\alpha\cdot\left(\lambda'_{\mathsf{T}}(\mathrm{L})-0.2\right)+\lambda'_{\mathsf{T}}(\mathrm{L})^{2}}{2}\right]^{2}-\lambda'_{\mathsf{T}}(\mathrm{L})^{2}} \\ \chi_{\mathsf{T}} &\coloneqq \chi_{\mathsf{T}}(\mathrm{L}) \\ \chi_{\mathsf{T}_{1}} &\coloneqq 1 & \\ \chi_{\mathsf{T}_{1}} & \text{otherwise} & \chi_{\mathsf{T}} = \begin{pmatrix} 0.977\\ 0.582\\ 0.148\\ 0.093 \end{pmatrix} \\ N_{\mathsf{T},\mathsf{Rd}} &\coloneqq \frac{\chi_{\mathsf{T}}\cdot\mathsf{A}_{\mathsf{c},\mathsf{eff}}\cdot\mathsf{f}_{\mathsf{y}}}{\gamma_{\mathsf{M}1}} & N_{\mathsf{T},\mathsf{Rd}} = \begin{pmatrix} 46.905\\ 27.912\\ 7.088\\ 4.482 \end{pmatrix} \cdot\mathsf{kN} \end{split}$$

4.5. Distortional buckling resistance

4.5.1. Distortional Flexural buckling resistance - $\boldsymbol{\eta}$ axis

$$N_{cr.\eta.dist}(L) := \frac{\pi^{2} \cdot E \cdot I_{1.dist}}{\left(\nu_{\eta} \cdot L\right)^{2}} \qquad N_{cr.\eta.dist}(L) = \begin{pmatrix} 2.023 \times 10^{3} \\ 131.905 \\ 13.484 \\ 4.776 \end{pmatrix} \cdot kN$$

$$\lambda'_{\eta.dist}(L) := \sqrt{\frac{A_{c.eff.dist} \cdot f_{y}}{N_{cr.\eta.dist}(L)}} \qquad \lambda'_{\eta.dist}(L) = \begin{pmatrix} 0.134 \\ 0.526 \\ 1.645 \\ 2.765 \end{pmatrix}$$

$$\begin{split} \chi_{\mathrm{fl},\eta,\mathrm{dist}}(\mathrm{L}) &\coloneqq \frac{1}{\left[\frac{1+\alpha\cdot\left(\lambda'_{\eta,\mathrm{dist}}(\mathrm{L})-0.2\right)+\lambda'_{\eta,\mathrm{dist}}(\mathrm{L})^{2}}{2}\right]}+\sqrt{\left[\frac{1+\alpha\cdot\left(\lambda'_{\eta,\mathrm{dist}}(\mathrm{L})-0.2\right)+\lambda'_{\eta,\mathrm{dist}}(\mathrm{L})^{2}}{2}\right]^{2}} \dots \\ \chi_{\mathrm{fl},\eta,\mathrm{dist}} &\coloneqq \chi_{\mathrm{fl},\eta,\mathrm{dist}}(\mathrm{L}) \\ \chi_{\mathrm{fl},\eta,\mathrm{dist}_{1}} &\coloneqq \left[1 \quad \text{if } \chi_{\mathrm{fl},\eta,\mathrm{dist}_{1}} > 1 \\ \chi_{\mathrm{fl},\eta,\mathrm{dist}_{1}} \quad \text{otherwise} \\ \chi_{\mathrm{fl},\eta,\mathrm{dist}} &\equiv \left(\begin{array}{c}1 \\ 0.828 \\ 0.272 \\ 0.11\end{array}\right) \\ N_{\mathrm{fl},\eta,\mathrm{dist},\mathrm{Rd}} &\coloneqq \frac{\chi_{\mathrm{fl},\eta,\mathrm{dist}} \cdot \mathrm{A}_{\mathrm{c},\mathrm{eff},\mathrm{dist}} \cdot \mathrm{fy}}{\gamma_{\mathrm{M}1}} \\ N_{\mathrm{fl},\eta,\mathrm{dist},\mathrm{Rd}} &= \left(\begin{array}{c}36.504 \\ 30.236 \\ 9.92 \\ 4.031\end{array}\right) \cdot \mathrm{kN} \end{split}$$

4.5.2. Distortional Flexural buckling resistance- ζ axis

$$\begin{split} N_{cr.\zeta,dist}(L) &:= \frac{\pi^2 \cdot E \cdot I_{2,dist}}{\left(\nu_{\zeta} \cdot L\right)^2} \\ \lambda'_{\zeta,dist}(L) &:= \sqrt{\frac{A_{c.eff.dist} \cdot f_y}{N_{cr.\zeta,dist}(L)}} \\ \lambda'_{\zeta,dist}(L) &:= \sqrt{\frac{A_{c.eff.dist} \cdot f_y}{N_{cr.\zeta,dist}(L)}} \\ \chi'_{\xi,dist}(L) &:= \frac{1}{\left[\frac{1 + \alpha \left(\lambda'_{\zeta,dist}(L) - 0.2\right) + \lambda'_{\zeta,dist}(L)^2}{2}\right] + \sqrt{\left[\frac{1 + \alpha \left(\lambda'_{\zeta,dist}(L) - 0.2\right) + \lambda'_{\zeta,dist}(L)^2}{2}\right]^2 \dots}} \\ \chi_{fl.\zeta,dist} \cdot \chi_{fl.\zeta,dist} \cdot \chi_{fl.\zeta,dist}(L) \end{split}$$

$$\chi_{\text{fl.}\zeta.\text{dist}_{i}} \coloneqq \begin{vmatrix} 1 & \text{if } \chi_{\text{fl.}\zeta.\text{dist}_{i}} > 1 \\ \chi_{\text{fl.}\zeta.\text{dist}_{i}} & \text{otherwise} \end{vmatrix} \qquad \chi_{\text{fl.}\zeta.\text{dist}} = \begin{pmatrix} 1 \\ 0.866 \\ 0.337 \\ 0.142 \end{pmatrix}$$

$$N_{fl,\zeta,dist,Rd} \coloneqq \frac{\chi_{fl,\zeta,dist} \cdot A_{c,eff,dist} \cdot f_{y}}{\gamma_{M1}} \qquad \qquad N_{fl,\zeta,dist,Rd} = \begin{pmatrix} 36.504\\ 31.609\\ 12.298\\ 5.166 \end{pmatrix} \cdot kN$$

4.5.3. Distortional Torsional buckling resistance

$$N_{cr.\tau.dist}(L) := \frac{1}{i_{s.dist}^{2}} \cdot \left(\frac{\pi^{2} E \cdot I_{2.dist} \cdot a_{dist}^{2}}{L^{2}} + \frac{\pi^{2} E \cdot I_{\omega.dist}}{L^{2}} + G \cdot I_{t.dist} \right) \quad N_{cr.\tau.dist}(L) = \begin{pmatrix} 294.667\\ 22.819\\ 5.8\\ 4.549 \end{pmatrix} \cdot kN$$
$$\lambda'_{\tau.dist}(L) := \sqrt{\frac{A_{c.eff.dist} \cdot f_{y}}{N_{cr.\tau.dist}(L)}} \quad \lambda'_{\tau.dist}(L) = \begin{pmatrix} 0.352\\ 1.265\\ 2.509\\ 2.833 \end{pmatrix}$$

$$\chi_{\tau.\text{dist}}(L) \coloneqq \frac{1}{\left[\frac{1+\alpha\cdot\left(\lambda'_{\tau.\text{dist}}(L)-0.2\right)+\lambda'_{\tau.\text{dist}}(L)^{2}}{2}\right]} + \sqrt{\left[\frac{1+\alpha\cdot\left(\lambda'_{\tau.\text{dist}}(L)-0.2\right)+\lambda'_{\tau.\text{dist}}(L)^{2}}{2}\right]^{2}} \dots + \sqrt{\left[\frac{1+\alpha\cdot\left(\lambda'_{\tau.\text{dist}}(L)-0.2\right)+\lambda'_{\tau.\text{dist}}(L)^{2}}{2}\right]^{2}} \dots$$

 $\chi_{\tau.dist} := \chi_{\tau.dist}(L)$

$$\chi_{\tau.dist_{i}} \coloneqq \begin{bmatrix} 1 & \text{if } \chi_{\tau.dist_{i}} > 1 \\ \chi_{\tau.dist_{i}} & \text{otherwise} \end{bmatrix} \qquad \chi_{\tau.dist} = \begin{pmatrix} 0.922 \\ 0.404 \\ 0.132 \\ 0.106 \end{pmatrix}$$

$$N_{\tau.dist.Rd} := \frac{\chi_{\tau.dist} \cdot A_{c.eff.dist} \cdot f_{y}}{\gamma_{M1}}$$

$$N_{\tau.dist.Rd} = \begin{pmatrix} 33.673\\ 14.748\\ 4.806\\ 3.856 \end{pmatrix} \cdot kN$$

4.6. Global buckling resistance

$$N_{b.Rd.nondist_{i}} := \min\left[\left(N_{fl.\eta.Rd}^{T}\right)^{\langle i \rangle}, \left[\left(N_{fl.\zeta.Rd}^{T}\right)^{\langle i \rangle}\right], \left(N_{\tau.Rd}^{T}\right)^{\langle i \rangle}\right]$$

$$N_{b.Rd.nondist} = \begin{pmatrix} 46.905 \\ 27.912 \\ 7.088 \\ 4.482 \end{pmatrix} \cdot kN_{b.Rd.nondist} = \begin{pmatrix} 46.905 \\ 27.912 \\ 7.088 \\ 4.482 \end{pmatrix}$$

$$N_{b.Rd.dist_{i}} := \min\left[\left(N_{fl.\eta.dist.Rd}^{T}\right)^{\langle i \rangle}, \left[\left(N_{fl.\zeta.dist.Rd}^{T}\right)^{\langle i \rangle}\right], \left(N_{\tau.dist.Rd}^{T}\right)^{\langle i \rangle}\right]$$

$$N_{b.Rd.dist} = \begin{pmatrix} 33.673 \\ 14.748 \\ 4.806 \\ 3.856 \end{pmatrix} \cdot kN$$

$$N_{b.Rd_{i}} := \min\left[\left(N_{b.Rd.nondist}^{T}\right)^{\langle i \rangle}, \left(N_{b.Rd.dist}^{T}\right)^{\langle j \rangle}\right]$$

	(33.673)	
N	14.748	1-N
$^{N}b.Rd =$	4.806	· KIN
	3.856	

5. Resistance at the support

 $A_{\text{net}} := \begin{vmatrix} A - 2 \cdot d \cdot t & \text{if double} = 0 \\ (A - 4 \cdot d \cdot t) & \text{otherwise} \end{vmatrix}$

$$N_{pl.Rd} := f_y \cdot A_{net} = 51.045 \cdot kN$$

$$F_{Rd} := \begin{cases} 2 \cdot d \cdot t \cdot f_y & \text{if double } = 0 \\ 4 \cdot d \cdot t \cdot f_y & \text{otherwise} \end{cases} = 10.406 \cdot kN$$

6. Total resistance

$$N_{Rd.dist_{i}} := \begin{bmatrix} \min\left[\left(N_{b.Rd}^{T}\right)^{\langle i \rangle}, \left(N_{b.Rd.dist}^{T}\right)^{\langle i \rangle}, N_{pl.Rd}\right] & \text{if screw} = 0\\ \min\left[\left(N_{b.Rd}^{T}\right)^{\langle i \rangle}, \left(N_{b.Rd.dist}^{T}\right)^{\langle i \rangle}, N_{pl.Rd}, F_{Rd}\right] & \text{otherwise} \end{bmatrix}$$

.406 406

kN

$$N_{Rd.nondist_{i}} := \min \left[\begin{pmatrix} N_{b.Rd.nondist}^{T} \end{pmatrix}^{\langle i \rangle}, N_{pl.Rd} \right] \text{ if screw} = 0$$

$$\min \left[\begin{pmatrix} N_{b.Rd.nondist}^{T} \end{pmatrix}^{\langle i \rangle}, N_{pl.Rd}, F_{Rd} \right] \text{ otherwise}$$

$$N_{Rd.nondist} = \begin{pmatrix} 10.406 \\ 10.406 \\ 7.088 \\ 4.482 \end{pmatrix}$$

Failure mode:

text_i := "Global buckling around
$$\eta$$
-axis" if $N_{Rd.dist_i} = N_{fl.\eta.dist.Rd_i}$
"Global buckling around ζ -axis" if $N_{Rd.dist_i} = N_{fl.\zeta.dist.Rd_i}$
"Torsional buckling" if $N_{Rd.dist_i} = N_{\tau.dist.Rd_i}$
"Cross section under compression" if $N_{Rd.dist_i} = N_{pl.Rd}$
"Bearing failure" if $N_{Rd.dist_i} = F_{Rd}$
"ERROR" otherwise
"ERROR" otherwise
"Bearing failure"
"Torsional buckling"

"Torsional buckling"

7. Diagrams of resistances

L := 0m, 0.01m.. 4m RESISTANCE IN NON-DISTORTIONAL MODE

RESISTANCE IN DISTORTIONAL MODE

Additional note:

Test reports		Authors	Sándor Ádány, Attila Joó, Máté Szedlák			
		Machine type	Hydraulic actuator 250			
Test number	9	Test's code	C_SIN_CL 150 mm #1			
Element profile	Single	Nominal Length	150 mm			
Support	Clamped	Date	08 May 2014 12:51:01			
Test layout		Results				
		1 2 2 3 Axial displace	a a a b b b b b b b b b b b b b b b b b			
Resistance		[kN]	44.75			
isplacement at the n	Description of the test					
Description of the test						

Test reports		Authors	Sándor Ádány, Attila Joó, Máté Szedlák			
		Machine type	Hydraulic actuator 250			
Test number	11	Test's code	C_SIN_CL 150 mm #3			
Element profile	Single	Nominal Length	150 mm			
Support	Clamped	Date	08 May 2014 13:05:32			
Test layout		Results				
	50 45 40 35 20 15 10 5 0 0 0	1 2 3 Axial displace	ement [mm]			
Resistance		[kN]	43.96			
Displacement at the r	naximal load	[mm]	4.34			
Description of the test						
Distortional buckling and local plastic mechanism.						
Test reports		Authors	Sándor Ádány, Attila Joó, Máté Szedlák			
--	---	-------------------------	--	--		
		Machine type	Hydraulic actuator 250			
Test number	12	Test's code	C_SIN_CL 150 mm #4			
Element profile	Single	Nominal Length	150 mm			
Support	Clamped	Date	08 May 2014 13:11:07			
Test layout		Results				
	50 45 40 35 20 15 10 5 0 0 1 1	1 2 2 Axial displace	the second secon			
Resistance		[kN]	45.91			
Displacement at the maximal load		[mm]	4.77			
Description of the test						
Distortional buckling and local plastic mechanism.						

Test reports		Authors	Sándor Ádány, Attila Joó, Máté Szedlák	
		Machine type	Hydraulic actuator 250	
Test number	14	Test's code	C_DB_CL 150 mm #2	
Element profile	Double	Nominal Length	150 mm	
Support	Clamped	Date	08 May 2014 13:35:30	
Test layout		Results	5	
		4 6 Axial displace	a lo	
Resistance		[kN]	92.96	
Displacement at the maximal load		[mm]	5.57	
Description of the test				
Local plastich mechanism. The longitudinal axis deformed.				

Test reports		Authors	Sándor Ádány, Attila Joó, Máté Szedlák	
		Machine type	Hydraulic actuator 250	
Test number	17	Test's code	C_DBSCR_CL 150 mm #1	
Element profile	Double Screwed	Nominal Length	150 mm	
Support	Clamped	Date	08 May 2014 14:25:38	
Test layout		Result	S	
1 screw/150 mm		2 3 Axial displa	terminal contraction of the second se	
Resistance		[kN]	89.05	
Displacement at the maximal load		[mm]	4.13	
Description of the test				
Local plastich mechanism. The longitudinal axis deformed. The screw had no mentionable effect.				

Test reports		Authors	Sándor Ádány, Attila Joó, Máté Szedlák	
		Machine type	Hydraulic actuator 250	
Test number	18	Test's code	C_DBSCR_CL 150 mm #2	
Element profile	Double Screwed	Nominal Length	150 mm	
Support	Clamped	Date	08 May 2014 14:32:11	
Test layout		Results	5	
1 screw/150 mm		2 3 4 Axial displace	a 5 6 7 8 ement [mm]	
Resistance		[kN]	79.08	
Displacement at the maximal load		[mm]	5.33	
Description of the test				
Local plastich mechanism. The longitudinal axis deformed. The screw had no mentionable effect.				

Test reports		Authors	Sándor Ádány, Attila Joó, Máté Szedlák	
		Machine type	Hydraulic actuator 250	
Test number	19	Test's code	C_DBSCR_CL 150 mm #3	
Element profile	Double Screwed	Nominal Length	150 mm	
Support	Clamped	Date	08 May 2014 15:02:01	
Test layout		Results	5	
1 screw/150 mm		2 3 Axial displac	the second secon	
Resistance		[kN]	90.51	
Displacement at the maximal load		[mm]	15.22	
Description of the test				
Local plastich mechanism. The longitudinal axis deformed. The screw had no mentionable effect.				

Test reports		Authors	Sándor Ádány, Attila Joó, Máté Szedlák	
		Machine type	Hydraulic actuator 250	
Test number	20	Test's code	C_DBSCR_CL 150 mm #4	
Element profile	Double Screwed	Nominal Length	150 mm	
Support	Clamped	Date	08 May 2014 15:10:45	
Test layout		Result	S	
1 screw/150 mm		1 2 Axial displa	a compared to the second secon	
Resistance		[kN]	88.82	
Displacement at the maximal load		[mm]	3.58	
Description of the test				
Local plastich mechanism. The longitudinal axis deformed. The screw had no mentionable effect.				

Test reports		Authors	Sándor Ádány, Attila Joó, Máté Szedlák	
		Machine type	Hydraulic actuator 250	
Test number	30	Test's code	C_DB_FX 150 mm #2	
Element profile	Double	Nominal Length	150 mm	
Support	Standard fixed	Date	09 May 2014 00:00:00	
Test layout		Results		
Pictures				
Resistance		[kN]	34.22	
Displacement at the maximal load		[mm]		
Description of the test				
Bolt shear at the lower side.				

Test reports		Authors	Sándor Ádány, Attila Joó, Máté Szedlák	
		Machine type	Hydraulic actuator 250	
Test number	31	Test's code	C_DB_FX 150 mm #3	
Element profile	Double	Nominal Length	150 mm	
Support	Standard fixed	Date	09 May 2014 00:00:00	
Test layout		Results		
Pictures				
<image/>				
Resistance		[kN]	31.35	
Displacement at the maximal load		[mm]		
	Description of the test			
Bolt shear at the lower side.				

Test reports		Authors	Sándor Ádány, Attila Joó, Máté Szedlák
		Machine type	Hydraulic actuator 250
Test number	33	Test's code	C_SIN_FX 500 mm #1
Element profile	Single	Nominal Length	500 mm
Support	Standard fixed	Date	13 May 2014 10:50:24
Test layout		Results	\$
		5 10 19 Axial displace	20 25 30 ement [mm]
Resistance		[kN]	14.83
Displacement at the maximal load		[mm]	10.99
Description of the test			
Distortional buckling at the upper side. Later the lips at half-height cracked. The final form was torsional buckling.			

cracked at half-height.

Test reports		Authors	Sándor Ádány, Attila Joó, Máté Szedlák
		Machine type	Hydraulic actuator 250
Test number	96	Test's code	C_SIN_CL 50 mm #1
Element profile	Single	Nominal Length	50 mm
Support	Clamped	Date	27 May 2014 10:49:08
Test layout		Results	
		Pictures	the second secon
Resistance		[kN]	57.23
Displacement at the n	naximal load	[mm]	3.73
Description of the test			
Distortional buckling and local plastic mechanism. Note: The machine was fast. After this test it was corrected.			

Test reports		Authors	Sándor Ádány, Attila Joó, Máté Szedlák
		Machine type	Zwick Roell Z400
Test number	102	Test's code	C_SIN_CL 20 mm #3
Element profile	Single	Nominal Length	20 mm
Support	Clamped	Date	27 May 2014 11:39:22
Test layout		Results	
		0 1 1 1 Axial displace	the second secon
Resistance		[kN]	66.79
Displacement at the n	naximal load	[mm]	1.24
Distortional buckling and local plastic mechanism.			

Test reports		Authors	Sándor Ádány, Attila Joó, Máté Szedlák
		Machine type	Zwick Roell Z400
Test number	103	Test's code	C_SIN_CL 20 mm #4
Element profile	Single	Nominal Length	20 mm
Support	Clamped	Date	27 May 2014 11:45:19
Test layout		Results	
	Pictures		
Resistance		[kN]	67.31
Displacement at the maximal load		[mm]	2.03
Distortional buckling and local plastic mechanism.			

Test reports		Authors	Sándor Ádány, Attila Joó, Máté Szedlák
		Machine type	Zwick Roell Z400
Test number	108	Test's code	C_DB_CL 20 mm #1
Element profile	Double	Nominal Length	20 mm
Support	Clamped	Date	27 May 2014 12:49:15
Test layout		Result	S
		1 1 Axial display	the second secon
Resistance		[kN]	129.95
Displacement at the maximal load		[mm]	2.44
		Description of the test	
Distortional buckling	and local plastic mech	nanism. The cross-sections	could partially work together.

Test reports		Authors	Sándor Ádány, Attila Joó, Máté Szedlák	
		Machine type	Zwick Roell Z400	
Test number	109	Test's code	C_DB_CL 20 mm #2	
Element profile	Double	Nominal Length	20 mm	
Support	Clamped	Date	27 May 2014 12:57:58	
Test layout		Results	5	
Fitters				
Resistance [kN] 67.24				
Displacement at the maximal load		[mm]	2.83	
Description of the test				
Distortional buckling and local plastic mechanism. The cross-sections can not work fully together due to the imperfections of the ends of the elements.				

placed form was distortional.

