

Budapest Műszaki és Gazdaságtudományi Egyetem

Építőmérnöki Kar

Építőanyagok és Magasépítés Tanszék

TŰZ HATÁSA A HOMLOKZATI BURKOLÓELEMEKRE

Biró András

TDK konzulensek:

Dr. Majorosné Dr. Lublóy Éva (adjunktus)

Dr. Gálos Miklós (nyugalmazott egyetemi tanár)

Budapest, 2016.

TARTALOMJEGYZÉK

1	BEVEZETÉS	3
2	SZAKIRODALMI ÁTTEKINTÉS	4
2.1	Esettanulmányok	4
2.2	A tűz modellezése	5
3	VIZSGÁLATI MÓDSZEREK	7
3.1	Célkitűzések	7
3.2	Kísérleti anyagok	8
3.3	Próbatestek kialakítása	9
3.4	Kísérletek elvégzésének módjai	10
3.4.1	Hőterhelés módjai	10
3.4.2	Nyomószilárdság vizsgálat	11
3.4.3	Hajlító-húzószilárdság vizsgálat	12
3.4.4	Hasító-húzószilárdság vizsgálat	13
3.4.5	Mikroszkópos vizsgálat	14
3.4.6	Derivatográfiás vizsgálat	14
4	KÍSÉRLETI EREDMÉNYEIN	17
4.1	Szemrevételezés	17
4.2	Nyomószilárdság vizsgálat eredménye	21
4.2.1	A gránit és a labradorit nyomószilárdságának alakulása a hőterhelés után	23
4.2.2	A mészkő és a márvány nyomószilárdságának alakulása a hőterhelés után	27
4.2.3	A σ-ε diagramok alakulása a hőterhelés után	30
4.2.4	A Young modulus és a Poisson tényező alakulása	32
4.3	Hajlító-húzószilárdság vizsgálat eredménye	35
4.4	Hasító-húzó szilárdság vizsgálat eredménye	37
4.5	Mikroszkópos elemzés	38
4.6	Derivatográfiás vizsgálat	43
5	MEGÁLLAPÍTÁSOK	46
6	HIVATKOZÁSOK	49
7	KÖSZÖNETNYILVÁNÍTÁS	50
8	MELLÉKLET	51
8.1	Forrásvízi mészkő mérési eredményei	51
8.1.1	Hasító-húzószilárdság	51
8.1.2	Nyomószilárdság	52
8.1.3	Hajlító-húzószilárdság	53
8.2	Gránit mérési eredményei	54

57

57

58

59

60

60

61

62

Márványmérési eredményei

Labradorit mérési eredményei

Hasító-húzószilárdság

Hajlító-húzószilárdság

Hasító-húzószilárdság

Hajlító-húzószilárdság

Nyomószilárdság

Nyomószilárdság

8.3

8.3.1

8.3.2

8.3.3

8.4

8.4.1

8.4.2

8.4.3

1 BEVEZETÉS

A természetes építőkőzetek nagyon elterjedtek az emberiség építési kultúrájában egészen a kőkortól napjainkig. Az építésre való kőzetek pontos tulajdonságaiknak ismerete szükséges különösen a tervezői munkák elvégzése során, mind épületek, hidak, aknák, alagutak esetén. Az építőanyagokkal szemben új egyre növekvő követelményeket támasztunk, többek között azt is, hogy kellő információval rendelkezzünk a magas hőmérséklet hatására bekövetkező változásokról is, hogy tudjuk, mi történik egy adott szerkezettel egy tűzeset esetén.

Ezen okból az elmúlt évtizedekben több figyelem irányult a különböző kőzetek anyagában magas hőmérséklet hatására bekövetkező kőzetfizikai változások vizsgálatára, amire főként a különböző közelmúltbeli tűzesetek hívták fel a figyelmet. Ilyen tűzesetek voltak például az Egyesült Királyságban jól dokumentáltan a Windsor Castle, a Hampton Court Palace és York Minster tűzesetei. De ezeken felül fontos még ez az ismeret alagúttüzek vagy akár már gazdaságosan nem felhasználható nukleáris fűtőelemek hosszútávú elhelyezése esetén is. A legtöbb ilyen esetben a kőszerkezet károsodása főként az ablakok környékén, illetve kijáratoknál volt jellemző és csak ritkábban volt érintett jelentősen a kőszerkezet többi része.

Magas hőmérsékleten (500 °C-800 °C) a kőzetfizikai változások jelentősek, a hőterhelés hatására az anyag fokozott leromlása következik be. Alacsonyabb hőmérsékleten (150 °C-300 °C) főként esztétikai változások történnek, például elszíneződés, fakulás, vastartalmú kőzetek esetén a vas oxidációja. Bár az ilyen jellegű változás szerkezetileg nem olyan jelentős, mivel a természetes kő választása ma már kifejezetten esztétikai célokkal történik más építőanyagok helyett, így irreverzibilis mivolta miatt a kár figyelembe veendő.

Egyértelműen esztétikai követelmények társulnak a kőválasztás során olyan elemeknél, amelyeket burkolóelemként alkalmazunk. Homlokzati burkolóelemként a rögzítésből adódóan a jellemző tönkremenetel hajlításból adódik. Véleményünk szerint fontos, a különböző sokat alkalmazott kőzettípusok összehasonlító vizsgálata, hogy információt nyerjünk arról, hogy kritikus helyeken, ha figyelembe vesszük a tűzre való méretezésnél a burkolókövek tönkremenetelét (ebből adódóan leesését, amivel emberéletek kerülhetnek veszélybe) az előírt időtartamra akkor mely kőzeteket lehet alkalmazni. A mérnököknek kellő információt kéne kapni a különféle kőzetek alkalmazásának tűzteherre való méretezéskor előnyeiről illetve hátrányairól.

Vizsgálataink során a Magyarországon homlokzat burkolóelemként (gránit, labradorit, márvány, mészkő) gyakran használt kőzetek esetén a nem csak a burkoló kövekre jellemző

tönkremenetelhez tartozó vizsgálatot, hajlító vizsgálatot, hanem további vizsgálatokat is végeztünk. Ezek a nyomószilárdság, a hasító-húzó szilárdság és további kiegészítő vizsgálatok voltak. Ezeknek továbbá azért van jelentősége, mert a vizsgált kőzetek némelyikét (gránit, márvány, mészkő) teherhordó elemként is alkalmazzák és olyankor például a nyomószilárdság szerepe a jelentős.

2 SZAKIRODALMI ÁTTEKINTÉS

2.1 Esettanulmányok

Történelmi kőépületeknél történt tűzesetek felhívták a figyelmet arra, hogy a tűzállóság vizsgálata nélkülözhetetlen a különböző természetes kőzeteknek. Ez indokolt részben a tűz alatti állékonyság megőrzése céljából, illetve a tűz utáni rekonstrukciós lehetőségek eldöntése végett. Alapvetően a tűzvédelmi szabványok az emberi élet védelmét helyezik a középpontba és nem a szerkezet védelmét, de épületek rekonstrukciójakor felmerül a tűzhatás utáni állapot ismeretének igénye is. Sok esetben jobb adatokhoz lehetne jutni az anyag állapotával kapcsolatban, ha közvetlenül a tűz eloltása után elvégezhetőek lennének a vizsgálatok, de ez sokszor nem tehető meg a biztosító felmérésének befejeztéig. A továbbiakban olyan tűzeseteket ismertetek, ahol természetes építőkő is károsodott.

Természetes kőzetet (jelen estben mészkő) érintő tűzeset volt például az Egyesült Királyságban a királyi család tulajdonában lévő Windsor kastély esete is, ami 1992. november 20-án kapott lángra. *(2.1 ábra)*. Itt egy privát kápolna gyulladt ki a Chester toronyban az első emeleten, ami a vár észak-keleti sarkában található. A tüzet először fotósok észlelték, amikor egy függöny égett. Későbbi vizsgálatok megerősítették, hogy a tüzet egy lámpa okozta, ami begyújtott különböző vegyszereket és ezután terjedt tovább a függönyökre. Szellőzők, aknák és rések a szobák alatt segítették a tűz gyors terjedését. A tűz martalékává vált a Brunswick torony és jelentős szerkezeti károkat szenvedett a Szent George terem is. A kőszerkezetben kárt okozott a tűz, a füst és az oltóvíz is (gyors lehűtés).

Magyarországon például a Pauler utcában is történt hasonló eset et, ahol a mészkő lebegő lépcső alatti lom kapott lángra és az oltóvíz hatására rideg törést szenvedett a kőzet és leszakadt a lépcső.

2.1. ábra: Windsori kastély tűzesete [1]

Hasonló eset volt a Hampton Court-i kastély tűzesete 1986. március 31-én. Az említett épület London dél-nyugati részén található a britek történelmében meghatározó jelentőségű épület, mely körülbelül 1000 szobás, folyosókkal és lépcsőházakkal kiegészítve. A tűzeset után sok, korábban ismeretlen üregeket és szerelőlyukakat, nyílásokat találtak, amelyek valószínűleg segítették a tűz gyors terjedését. A vizsgálatok alapján kiderült, hogy valószínűleg egy egyszerű gyertya okozhatta a tűzesetet. Az automatikus észlelő berendezés valamilyen okból (meghibásodás) nem észlelte a tűzesetet időben és az épület kialakítása, berendezése segítette a tűz terjedését felfelé a tetőszerkezetre. Ugyan a szerkezeti kár jelentős és kiterjedt volt, a kőszerkezetben nem keletkeztek komolyabb károk és azok is lokalizáltan az ablakok környékén, párkányoknál és mellvédeknél. Minden sérült kőelemet egyenként vizsgáltak főként belső folytonossági hiányokat keresve (megnyílt repedések), hogy lehet e javítani vagy esetleg az elem cseréje szükséges. A kisebb repedések esetén javíthatónak ítélt elemeket üveggyapottal erősítették meg. Bizonyos esetekben szükséges volt a szerkezet részeinek cseréje [2][3].

2.2 A tűz modellezése

Az EN 1991-1-2 szabvány [4] szerint a tűzhatás modellezését két fő csoportra oszthatjuk:

-névleges hőmérséklet-idő görbékre

- természetes tűzmodellekre.

Az építőmérnöki gyakorlatban általában a névleges hőmérséklet- idő görbéket használjuk, ezért a továbbiakban ezzel foglalkozunk.

5

A hőmérsékleti hatásokat elő lehet állítani névleges hőmérséklet-idő görbék felhasználásával (EC1-1-2: 3.2.). A szabványos tűzgörbén (magasépítési épületekre) kívül a *külső tűz* illetve a *szénhidrogéntűz* (alagutakra) görbéjének függvénye található itt. Ezeken kívül speciális esetekre további tűzgörbék is léteznek (pl. speciális *alagúttűz*-görbék).

A három *névleges* tűzgörbét a 2.2. *ábra* mutatja. Az előíró módszer használata esetén bármely módszert (táblázatos, egyszerűsített, illetve részletes számítási eljárások) alkalmazhatjuk a mechanikai viselkedés elemzésére.

Az EC1-1-2: 3.2 pontjában felsorolt névleges tűzgörbék alkalmazása számos előnnyel jár, mindezek mellett bizonyos méretezési szabványok csak ezeket a tűzgörbéket (módszereket) engedélyezik használni.

A szabványos hőmérséklet-idő (ISO) görbe egyenlete:

 $\Theta_{g} = 20 + 345 \cdot \log_{10} (8t + 1)$

 $\begin{array}{lll} ahol & \Theta_g & a t \ensuremath{\mbox{izszakaszban}}\ erv \ensuremath{\mbox{enventsys}}\ s \ensuremath{\mbox{sch}}\ s \ensuremath{\mbox{enventsys}}\ t & a \ensuremath{\mbox{tild}}\ s \ensuremath{\mbox{sch}}\ s \ensuremath{\mbox{sch}}\ s \ensuremath{\mbox{enventsys}}\ s \ensuremath{\mbox{sch}}\ s \ensuremath{\mbox{enventsys}}\ s \ensuremath{\mbox{enventsys}}\ s \ensuremath{\mbox{sch}}\ s \ensuremath{\mbox{enventsys}}\ s \ensuremath{\mbox{enventsys}}\ s \ensuremath{\mbox{sch}}\ s \ensuremath{\mbox{enventsys}}\ s \ensu$

A szabványos ISO-tűzgörbétől az alábbi esetekben térhetünk el feltéve, hogy a méretezési szabvány engedélyezi:

- ha a tűzhatásra vizsgált szerkezet az épület külső elválasztó eleme, akkor a külső tűzgörbe alkalmazásával más tűzszakaszból származó tűzhatásra is meg kell vizsgálni (EC1-1-2: 3.2.2.),
- ha az ott tárolt szénhidrogének következtében a tűz a szokványosnál erőteljesebb, akkor a *szénhidrogéntűz*-görbét kell használni (EC1-1-2: 3.2.3.).

A névleges tűzgörbék a teljes tűzszakaszban azonos hőmérsékletű gázt tételeznek fel, és gázhőmérséklet-idő összefüggést adnak egy fiktív tűzhatásra. A névleges tűzgörbéket bár építményeken végrehajtott tűzkísérletekre illesztették, de hanyatló ágat – a biztonság javára – nem definiáltak.

2.2. ábra: Az EC1-1-2 3.2. pontjában szereplő névleges tűzgörbék (DIFISEK oktatóanyag)

Ezek alapján a külső burkoló elemekre a külső tűzgörbe alkalmazható általában. Belső szerkezeti elemek esetén a szabványos vagy szélsőséges esetben a szénhidrogén tűzgörbét javasoljuk alkalmazni [5].

3 VIZSGÁLATI MÓDSZEREK

3.1 Célkitűzések

Számos tűzeset mutatta a létjogosultságát, annak a ténynek, hogy tűz hatásával természetes építőkövek esetén is érdemes és kell foglalkoznunk. Az építőkövek általában burkolókőként kerülnek alkalmazásra. Régebben gyakrabban ma már egyre ritkábban szerkezeti elemként való alkalmazása is előfordul. Szükségesnek éreztük, a természetes építőkövek tűz utáni fizikai és mechanikai jellemzőinek nyomon követését, hiszen erre kevés szakirodalmi adat áll rendelkezésre, és a kövek ásványi összetétele erősen földrajz specifikus.

Bár a tűz hatás alatt lévő anyag állapotromlása is bekövetkezik, de ennek vizsgálata nagyon bonyolult, másrészről burkolókövek esetén nagyobb jelentősége van a reziduális (maradó tulajdonságok ismeretének, hiszen itt a stabilitási problémák kisebb jelentőséggel bírnak, az esetleges rekonstrukció viszont gazdaságosság szempontjából gyakran előfordul. A rekonstrukció tervezése folyamán a maradó tulajdonságokra van szükség, ezért ezt vizsgáltuk. Célkitűzésünk ezen okokból kifolyólag a Magyarországon fellelhető burkoló kőként alkalmazható kőzetek tűzteher utáni viselkedésének tisztázása volt.

A hőterhelés után (50, 150, 300, 500, 800 °C) a Magyarországon homlokzat burkoló kőként (gránit, labradorit, márvány, mészkő) gyakran használt kőzetek esetén nem csak a burkoló

kövekre jellemző tönkremenetelhez tartozó vizsgálatot, azaz a hajlító vizsgálatot, hanem további vizsgálatokat is végeztünk. Ezek a nyomószilárdság, a hasító-húzó szilárdság és további főleg vegyész jellegű kiegészítő vizsgálatok voltak. Ezeknek továbbá azért van jelentősége, mert a vizsgált kőzetek némelyikét (gránit, márvány, mészkő) teherhordó elemként is alkalmazzák és olyankor például a nyomószilárdság szerepe a jelentős.

3.2 Kísérleti anyagok

Az anyagvizsgálatokat négy az építőiparban burkolóelemként gyakran használt kőzeten hajtottuk végre. Melyeket az alábbiakban sorolunk fel:

- gránit (Rosa Beta, Olaszország)
- labradorit (Pakoslawice, Lengyelország)
- forrásvizi mészkő (Sűttő, Haraszti bánya
- márvány (Carrara, Olaszország

A választásunk során figyelembe vettük, hogy a kísérleteink során átalakult, magmás és üledékes kőzetet is vizsgáljunk.

A vizsgált kőzettípusokat a következőben röviden ismertetem [6].

A *gránit* kristályos szövetű, savanyú mélységi magmás kőzet. Fő világos kőzetalkotói a kvarc, káliföldpát és plagioklász. A sötét kőzetalkotók közül megemlítendő a biotit és az amfiból. A felépítő ásványok mérete a centiméterestől a milliméteres nagyságrendig változó. Felhasználása széles körben elterjedt, például szobrok lábazataként, sírkövek anyagaként, de burkolólapként, járólapként és szegélykőként is találkozhatunk vele. Itthon kevésbé jellemző, hogy zúzottkőként út- és vasútépítésben ágyazati kőként is használják.

A *labradorit* egy olyan változata a gabbrónak, ami sok kékesen csillogó felületű plagioklászt (*labradoritot*) tartalmaz. A gabbró egy sötét színű, bázisos mélységi magmás kőzet. Szövetszerkezete kristályos. Fő kőzetalkotó ásványai a bázisos plagioklászok, amik például a *gránit*tal ellentétben itt nem világos, hanem sötét színűek. Ezen kívül további sötét színű ásványokat tartalmaz, melyek közül a leggyakoribbak a monoklin és a piroxének. Jellemzőek még az ércásványok is benne.

A forrásvízi mészkő általában krémszínű, barnássárga, változó méretű pórusokat tartalmazó

kőzet. Neve elég beszédes. Forrásvizekből kivált és lerakódott maga az anyag. Kialakulásának helyétől és körülményeitől (pl. folyók, tavak közvetlen források) függ a szövetszerkezete és megjelenési formái. Inkább burkoló és építőkő szerepét tölti be. Szobrászathoz kevésbé alkalmas, a pórusok miatt. Ilyen kőzetből épült többek között a római Colosseum is és az Országház felújításakor is ilyen kőzetet alkalmaztak a rossz állapotú durva mészkő cserjére.

A márvány a mészkő átalakulása során keletkező metamorf kőzet. Az uralkodó ásvány alapján megkülönböztetünk dolomitos és kalcitos márványokat. A kalcitos márvány leginkább fehér színű, de ismerünk sok más sötétebb és színes márványokat is (például zöld vagy rózsaszín). Szabad szemmel is látható fényes kristályok alkotják. Homogén szerkezetű, jól megmunkálható, polírozható, ezért történelmi korok óta használják a művészetben és a épületek anyagaként egyaránt. A görög és római korból sok máig fennmaradt oszlop és szobor anyaga volt márvány. A római kor remekei közül sok megtekinthető, illetve sok a vatikáni múzeum tulajdona. Szerkezetének köszönhetően nagyon finom vonások alakíthatók ki belőle ezért volt elterjedt. Többek között egy tűzesetben az ilyen műalkotások is károsodhatnak, mert szobrok és talapzatok anyagát képezi a mai napig is. Ahol nagy mennyiségben előfordul, ott használják az útépítésben zúzottkőként és tömbkőnek is. Hazánkban is sokszor használt kőzet, többek között az Országház és a Budapesti Műszaki és Gazdaságtudományi Egyetem K épületének főlépcsője is ilyen kőetből készült.

3.3 Próbatestek kialakítása

A nyomószilárdság vizsgálathoz a kőzet tömbökből 50 mm átmérőjű hengereket fúrtunk, amiket 60 mm magasra levágtunk. A hasító-húzó szilárdság vizsgálatához 50 mm átmérőjű és 30 mm magas hengereket alakítottunk ki. A hajlító-húzó szilárdság vizsgálathoz 150 mm, 25 mm, 50 mm élhosszúságú hasábokat vágtunk ki *(3.1. ábra)*. A próbatestek közepén bemetszést készítettünk, hogy törésmechanikailag is kiértékelhető legyen (K_{1e}) *(3.2. ábra)*. 5 hőlépcsőt vizsgálatonként és egy referenciahőmérsékletet. Minden hőlépcsőhőz kőzetenként és vizsgálatonként 3-3 próbatestet készítettünk, így összesen 72 próbatest készült vizsgálatonként és összesen 216 darab.

3.1. ábra: Nyomószilárdság, hasító-húzó szilárdság és a hajlító- húzó szilárdság vizsgálatokhoz kialakított próbatestek (1 hőlépcső)

3.2. ábra: Bemetszés a hajlító-húzó szilárdság méréséhez kialakított próbatesteken

3.4 Kísérletek elvégzésének módjai

3.4.1 Hőterhelés módja

A hőterhelést elektromos kemencében végeztük el. A hőterhelés hőmérséklete 50, 150, 300, 500, 800 °C volt referenciaként a 20 °C-os hőmérsékletet is vizsgáltuk. A kemence felfűtési

görbéje a normatív tűzgörbével volt azonos. A próbatesteket laborlevegőn hagytuk lehűlni, a méréseket ezután végeztük el. A kísérlet során összese 216 próbatestet törtünk el. A kísérleti mátrixot a *3.1. táblázatban adjuk meg*.

3.1. táblázat: A kísérleti mátrix (ny= nyomószilárdság vizsgálat; haj= hajlító-húzó szilárdság vizsgálat; has.=hasító-húzó szilárdság vizsgálat)

Hőm		Gránit		La	abrado	rit		Mészkő	Ď	N	Aárván	y
[°C]	ny	hajl.	has.									
20	3	3	3	3	3	3	3	3	3	3	3	3
50	3	3	3	3	3	3	3	3	3	3	3	3
150	3	3	3	3	3	3	3	3	3	3	3	3
300	3	3	3	3	3	3	3	3	3	3	3	3
500	3	3	3	3	3	3	3	3	3	3	3	3
800	3	3	3	3	3	3	3	3	3	3	3	3
Összes próbatest szám:								216				

3.4.2 Nyomószilárdság vizsgálat

A nyomószilárdság vizsgálatot 60 mm magas, 50 mm átmérőjű henger próbatesteken végeztük. A mérés közben folyamatosan rögzítettük az axiális és laterális elmozdulásokat, amelyeket 3-3 induktív útadóval regisztráltunk (10 mm méréshatárú). A kísérleti elrendezés a *3.3 ábrán* látható. A méréshez DRMB200 típusú gépet használtunk. A vízszintes irányú útadók elrendezését a *3.4. ábrán* láthatjuk. A függőleges irányú útadók elrendezése hasonló kiosztású, szabályos háromszög elrendezésben. Irányonként 3-3 útadóval mértünk, hogy a próbatest mérése során keletkező ferdeségeket kompenzáljuk.

3.3. ábra: Kísérleti elrendezés a nyomószilárdság vizsgálatánál

3.4. ábra: Vízszintes irányú induktív útadók elrendezése

3.4.3 Hajlító-húzószilárdság vizsgálat

A hajlító-húzószilárdság vizsgálatot 150 mm, 25 mm, 50 mm oldalhosszúságú hasábokon hajtottuk végre 125 mm-es támaszközzel a próbatest közepén vonalmenti terhelést alkalmaztunk (3.5 ábra). A mérés során a töréshez tartozó értékeket rögzítettük. A kísérletnél használt gép típusa: TIW ZD 10/90.

3.5. ábra: Kísérleti elrendezés a hajlító-húzószilárdság vizsgálatánál

3.4.4 Hasító-húzószilárdság vizsgálat

A hasító-húzószilárdság vizsgálatot 30 mm magas 50 mm átmérőjű henger próbatesteken végeztük el *(3.6. ábra)*. A törés során vonalmenti terhelést alkalmaztunk és feljegyeztük a töréshez tartozó erő értékét. A használt gép típusa: DRMB200.

3.6 ábra: Kísérleti elrendezés a hasító-húzószilárdság vizsgálatánál

3.4.5 Mikroszkópos vizsgálat

A mikroszkópos elemzéshez a szobahőmérsékleten tárolt próbatestekből csiszolatokat készítettünk. A csiszolatok készítéséhez először vékony szeleteket vágtunk a kőzetekből, majd ezeket – az üveglap és a minta megfelelő előkészítése után – kétkomponensű epoxigyanta alapú ragasztóval egy üveglapra ragasztottuk. Az üveglapra ragasztott mintát 0,03 mm-nél vékonyabbra csiszoltuk, hogy a Zeiss Axioskop 40 típusú polarizációs kőzettani vizsgáló mikroszkóp segítségével vizsgálni tudjuk.

3.4.6 Derivatográfiás vizsgálat

Az alkalmazott fázisanalitikai vizsgálati módszer az ún. derivatográfiás módszer volt. Ez egy szimultán termoanalitikai módszer, mely egyidejűleg hoz létre TG (termogravimetriás), DTA (differenciál termoanalízis) és DTG (derivatív termogravimetriás) jelet. A minta kis mennyiségét megporítva, inert anyagú (korund vagy platina) tégelybe helyezve, kemencetérben egyenletes felfűtési sebességgel (úgynevezett dinamikus üzemmódban) kiizzítottuk. Eközben analitikai mérleg folyamatosan mérte a minta tömegében bekövetkező változásokat (TG-

görbe), valamint termoelemek mérték a mintában bekövetkező hőreakciókat egy inert anyag kemencetérbeli hőmérsékletéhez képest (DTA-görbe). A TG-görbe első deriváltját, a DTG görbét analóg módon állítja elő a készülék, mely a tömegváltozással is járó hőreakciók szétválasztásában segít. A fenti három görbét, valamint a hőmérséklet (T °C) jelet is tartalmazó, mérési idő (t, min) függvényében felvett vizsgálati eredményt derivatogramnak nevezzük. A derivatogram megjeleníthető a hőmérséklet (T °C) függvényében is [7].

A mérésekhez a Derivatograph Q-1500 D (3.7 ábra) készüléket használtuk.

3.7. ábra: Derivathograph Q-1500 D kísérleti berendezés

A derivatográfiás mérés paraméterei a következők voltak:

- referencia anyag: alumínium-oxid,
- felfűtési sebesség: 10°C/perc,
- hőmérsékleti tartomány: 20-1000°C,
- bemért mintatömeg: 200 mg,
- TG-érzékenység: 50 mg,

- korund tégely,

- levegő atmoszféra.

A mérési eredmények kiértékeléséhez a WINDER (Version 4.4) szoftvert használtuk.

A vizsgált anyag (minta) azon fázisai, melyek a mérési hőmérséklet intervallumában nem szenvednek el semmiféle hőreakciót, a derivatográfiás módszerrel nem elemezhetők. Ha ugyanabban a hőmérséklet intervallumban párhuzamos hőreakciók következnek be, a hőreakciót szolgáltató fázisok DTG és DTA csúcsai átlapolhatnak, többszörös csúcsok vagy vállak (inflexiók) jelennek meg. Ilyen esetekben a fázisok minőségi azonosítása derivatográfiás módszerrel nehézkes vagy nem lehetséges

4 KÍSÉRLETI EREDMÉNYEINK

4.1 Szemrevételezés

A hőterhelés után a próbatesteket szemrevételeztük. Egyértelműen láthatók a különböző kőzeteknél, hogy egy esetleges hőhatás után (nyilván szempont ez egy burkolókő esetében) sokat vesztettek az eredeti esztétikai értékükből, tehát ilyen módon a cseréjük indokolttá válhat. Alacsonyabb hőmérsékleten (300 °C-ig) a kőzetek mattá váltak. A kőzet elszíneződése (például a *labradoritban* oxidálódott vas tartalmú ásványok), repedezettsége utalhat kémiailag megváltozott felépítésre is. A kémiai változások általában szilárdságváltozást is okoznak, amit a későbbi vizsgálati eredményeink is igazolnak.

A hőterhelés utáni szemrevételezés alatt a következő megfigyeléseket tettük:

 Megfigyeltük, hogy az 500 °C-on hőterhelt gránit és labradorit próbatesteken enyhe, a 800 °C-on hőterheltek esetében erős repedezettség volt látható. Feltételezhetően a repedések a szilárdsági értékeket is kedvezőtlenül befolyásolják, ezért kőzet további használhatóságát is megkérdőjelezhetővé teszik (4.1. 4.2. ábra).

4.1. ábra: Kőzetek színváltozása (gránit)

4.2. ábra: Kőzetek repedezettsége (labradorit)

 A *labradorit* esetén az 500 °C-os hőterhelést követően a kőzet elszíneződését figyeltük meg (4.3. ábra), amit feltehetően a kőzetben található vastartalmú ásványok oxidációja okozott.

4.3. ábra: Labradorit próbatestek vas tartalmú ásványainak oxidációja okozta színváltozás

3. A *gránitnál* 300°C és afeletti hőtehernél a próbatestek kifakulása volt megfigyelhető. A sötétebb színű ásványok egy része vélhetően átalakult. (*4.4. ábra*)

4.4-es ábra: Gránit próbatestek repedezettsége 800 °C-os hőterhelés után.

4. A márvány esetében a legszembetűnőbb változása az volt, hogy a kőzet matt fehérré válása következett be. A kőzetek teljesen elveszették a fényüket. Mivel nem a hőterhelés napján csak a rákövetkező napon voltak törve a próbatestek, így további elváltozások keletkeztek a 800 °C hőterhelt CaCO3 anyagú kőzetek esetében (márvány, mészkő). Másnap fehér porszerű réteg (változó méretű darabokban) héjszerű leválását figyeltük meg. Ez a réteg egészen könnyen morzsolható volt kézzel. A szilárdságvizsgálathoz a geometriai méretek meghatározása így nehézzé vált. A geometria meghatározása után lemértem a levált rész mennyiségét. A levált rész mennyisége tömegszázalékban a mészkő esetében 5,5 m/m %-ra a márványnál 3,1 m/m %-ra adódott. A hőterhelés hatására kalcium karbonát, kalcium-oxiddá alakult, ami levegő а а nedvességtartalmával reagálva kalcium-hidroxidot képez (legalábbis részben) ami 44 %-os térfogat növekedéssel jár és ez okozta a felületi réteg leválását. A márvány próbatestek annyira tönkrementek, hogy anyaguk (nyilván a mérések elvégzése után) kézzel is morzsolhatóvá vált. A jelenség a 4.5. és 4.6. ábrán, márványon, a 4.7. ábrán, *mészkövön* figyelhető meg

4.5. ábra: Márvány felületi rétegének leválása nyomószilárdság méréséhez késztett próbatesten

4.6. ábra: Márvány felületi rétegének leválása hasító-húzószilárdság méréséhez készített próbatesten

4.7. ábra: Mészkő felületi rétegének leválása nyomószilárdság méréséhez késztett próbatesten

4.2 Nyomószilárdság vizsgálat eredményei

A nyomószilárdság adott hőterhelés után meghatározott átlag értékeit (3 mérés átlaga) a 4.8. *ábrán* adjuk meg. A kezdeti 20 °C-os szilárdsághoz viszonyított relatív értékek (az adott hőmérsékleten hőterhelt és utána visszahűtött próbatesten mért szilárdság (20 °C-on meghatározott szilárdság) *a 4.9. ábrán* láthatóak. Budapest, 2016

4.8. ábra: Nyomószilárdságok átlag értéke a hőterhelés hőmérsékletének függvényében (3 próbatest átlagából számolva)

4.9 ábra: Nyomószilárdságok relatív értékei a hőmérséklet függvényében (3 próbatest átlagából számolva)

A vizsgált kőzeteket külön is vizsgáltuk az összehasonlításkor, a keletkezésük és a mutatott hasonló viselkedés miatt. A *gránitot a labradorittal* hasonlítottuk össze, mert mind a kettő hasonló keletkezésű mélységi magás kőzet. A *mészkövet* pedig a *márvánnyal* hasonlítottuk össze, mert mind a kettő kalcium-karbonát és magnézium-karbonát anyagú.

Tűz hatása a homlokzati burkolóelemekre Budapest, 2016

4.2.1 A gránit és a labradorit nyomószilárdságának alakulása a hőterhelés után

A gránit kedvezően viselkedik az első 5 hőlépcső esetében. Az 500 °C-os hőterhelés után a szilárdság csökkenés 9,6 %-os volt. A 800 °C-os hőterhelés után nagyobb szilárdságcsökkenés tapasztalható, csupán 41 %-a marad a kezdeti 20 °C-on mért szilárdságnak. Ez már a szemrevételezés alapján is feltételezhető volt, mert ahogy már említettük a kőzet erősen berepedezett. Ez a gránitban található nagy mennyiségű kvarc 575 °C-n α-kvarcból β-kvarccá történő átkristályosodásával magyarázható, ami a kvarc 4,7 %-os térfogat növekedésével jár, ami a kőzet szerkezetére kedvezőtlenül hat. A gránit esetében megfigyelhető egy helyi szilárdságnövekedés a 150 °C-on hőterhelt próbatestek nyomószilárdság értékeinél. Ez a jelenség a kőzetben lévő víz távozásával magyarázható. A 300 °C-on hőterhelt próbatesteknél látható, egy helyi minimum, ez vélhetően mérési hibából vagy a próbatest belső szerkezetében lévő hibából adódott, mert az egyik érték jelentős mértékben alacsonyabb volt a másik 2 mért értéknél. (A mért értékek 300 °C-os hőterhelés után: 81 N/mm², 75 N/mm², 35 N/mm²) Továbbá a gránit rendelkezett a legnagyobb nyomószilárdsággal a vizsgált kőzetek közül a 20 °C, 50 °C és 150 °C-os hőterhelést követően. A 4.10. ábrán egy tönkrement gránit próbatest látható. A gránit kristályszerkezete miatt a tönkremenetel mindig valamilyen kristály határfelületen következett be. A hőterhelés hatására a töréskép is megváltozott, ez a 4.11. ábrán figyelhető meg. A leváló darabok jelentősen kisebbek lettek. Míg a referencia hőmérséklet esetén közel a próbatest magasságával megegyező magasságú darabok maradtak a törés után, a 800 °C-on hőterhelt próbatest törésekor kisebb, 5 mm-es darabok váltak le oldalirányban. A törési felület ugyanúgy matt felületűvé vált, mint a próbatest külső felülete. A gránit és a labradorit nyomószilárdságának abszolút és relatív értékei a 4.12. és a 4.13 ábrán láthatók.

4.10. ábra: Gránit próbatest törésképe 20 °C 4.11. ábra: Gránit próbatest törésképe 800 °C

4.12. ábra: Labradorit és gránit próbatestek átlagnyomószilárdság értékei a hőterhelés hőmérsékletének függvényében (3 próbatest átlagából számolva)

4.13. ábra: Labradorit és gránit próbatestek relatív nyomószilárdsága a hőterhelés hőmérsékletének függvényében (3 próbatest átlagából számolva)

A labradorit a *gránit*hoz hasonlóan viselkedett az 500 °C-os hőterhelésig, a 20 °C-on mért értékhez képest 80% volt a nyomószilárdság. A *labradorit* esetén ugyanúgy megfigyelhető a helyi szilárdságnövekedés a 150 °C-on hőterhelt próbatestek esetében. Ez a jelenség itt is a kőzetben lévő víz távozásával magyarázható. Jelentős különbség mutatkozik azonban, a *gránit*hoz képest, a legmagasabb, a 800 °C-on hőterhelt próbatestek esetében, ami a *labradorit* kisebb kvarctartalmával magyarázható. A kőzet jóval kisebb kvarctartalma miatt a berepedezettség mértéke alacsonyabb volt, mint a *gránit*ban. Ezért itt nem csökkent le annyira a relatív maradó nyomószilárdság a kezdeti értékhez képest. Ebben az esetben a maradó szilárdság 67%-ra adódott. A *4.14. ábrán* egy tönkrement 20 °C-os referenciahőmérsékleten tartott *labradorit* próbatest látható, míg a *4.15. ábrán* ugyanazon kőzet 800 °C-on hőterhelt próbatestjének tönkremenetele. Jól megfigyelhető. hogy a tönkrementel mindig a kristálylapok mentén történik, ami a *labradoritban* található nagyméretű kristályok miatt következik be.

4.14. ábra: Labradorit próbatest törésképe 20 °C 4.15. ábra: Labradorit próbatest törésképe 800 °C

4.2.2 A mészkő és a márvány nyomószilárdságának alakulása a hőterhelés után

A *márvány* és a *mészkő* nyomószilárdságának abszolút és relatív értékeit a 4.16. *ás a 4.17 ábrákon* adjuk meg.

Alacsonyabb vizsgált hőmérsékleteken a *mészkő* nyomószilárdságában nagyobb változások tapasztalhatók. A mutatott tendencia hasonló, 50 °C és 150 °C esetén csökkenés van a referenciaértékekhez képest, de mind a két esetben egy helyi maximumot tapasztaltunk 300 °C- on, majd folyamatos csökkenést az annál magasabb hőmérsékleteken. 800 °C- on jelentősen gyengébbnek bizonyult a *márvány* a *mészkőnél, a mészkő* maradó relatív szilárdsága 64 %-ra míg a *márványé* csak 19 %-ra adódott.

4.16. ábra: Mészkő és márvány próbatestek átlagszilárdság értékei a hőterhelés hőmérsékletének függvényében (3 próbatest átlagából számolva)

Budapest, 2016

4.17. ábra: A márvány és mészkő próbatestek relatív nyomószilárdsága.

A *mészkő* kedvezőbb viselkedésére az szolgál magyarázatul, hogy a kálcium-karbonát átalakulása kálcium-oxiddá csak 700 és 800 °C között megy végbe, és a szemrevételezéskor megállapított tény, miszerint a próbatestek felületén leváló fehér réteg keletkezett, ezt támasztja alá, ugyanolyan időtartam alatt a próbatestek belső része nem károsodott annyira, mint a *márvány* estében. (Ez a jelenség további vizsgálatot igényelhet, hogy a kőzet szerkezetétől, hogyan függ az átalakulás mértéke azonos hőteher és időtartam mellett.) Fontos azonban megjegyezni, hogy a *forrásvízi mészkő* esetében a *márványhoz* képest jelentősebb volt a 150 °C-os hőterhelés után mért szilárdságcsökkenés, és szintén nagyobb volt az utána tapasztalható helyi maximum érték a 300 °C-os hőterhelést követően. A *4.18. ábrán* egy tönkrement *mészkő* próbatest látható.

4.18. ábra: Mészkő próbatest törésképe (300 °C)

A hőterhelésre legérzékenyebben a *márvány* próbatestek reagáltak nyomószilárdság szempontjából. 800 °C-os hőterhelés után a relatív maradó nyomószilárdság értéke csupán 20 %-ra adódott. Továbbá a *márványt* nagyrészt alkotó kalcium-karbonát kristályok homogénebb szerkezete miatt ugyanolyan időtartam alatt, nagyobb mértékben reagáltak az oxigénnel, mint a *mészkő* esetében így itt nagyobb szilárdságcsökkenés volt tapasztalható. A *márvány* próbatest törésképe a *4.19. ábrán* látható.

4.19. ábra: Márvány próbatest törésképe (50 °C)

A hasító-húzó és a hajlító-húzó vizsgálathoz képesti más tendenciákra magyarázatul szolgálhat a nyomószilárdág vizsgálat elvégzésének a módja, ahol a próbatest valójában nem nyomásra megy tönkre, hanem a kialakuló nyírási síkok mentén történik a tönkremenetel. A gyakorlatban a mérés a felfűtés hatását vizsgálja, hogy utána milyen külső munka (erő*elmozdulás) esetén megy tönkre az anyag. Ennek kiértékelése pontosabb eredményhez vezetne, ha a töréshez tartozó külső munka mértékét tartanánk szem előtt (jobban tükrözné a belső energiamegváltozást).

4.2.3 A σ-ε diagramok alakulása a hőterhelés után

Az alakváltozás adatsor folyamatos rögzítése miatt elkészíthetőek lettek a feszültség alakváltozás diagramok is. A próbatestek közül hőmérsékletenként egy-egy jellemző görbe a *4.20, 4.21, 4.22, 4.23 ábrákon* látható. Ezeken megfigyelhető a hőterhelés hatására megváltozó karakterisztikája a függvénynek, ahol kezdetben kevésbé jelentős a görbe meredekségének a változása, viszont 500 °C esetén már minden kőzet esetében jelentős csökkenés látható a Young modulusban és a görbék is sokkal nagyobb kezdeti alakváltozásokat mutatnak, sokkal később látható rajtuk a jellemző lineáris szakasz, több kezdeti repedés van az anyagban, ezért azok záródásának hatása is jelentkezik ezekben a nagyobb kezdeti alakváltozásokban. Továbbá megállapítható, hogy a terhelés során, a hőteher növekedésével, sokkal egyenlőtlenebbül alakultak a görbék, azokon több töréspont található, illetve 800 °C-on a kőzetek (kivéve a *márványt*, mert ott a mérési eredmények annyira csekélyek voltak, hogy nem tekinthetők értékelhetőnek 800 °C esetén) nagyobb alakváltozással veszítették el a teherbírásukat illetve az utána lévő szakasz meredeksége is sokkal kisebb.

A két mélységi magmás kőzet esetében a görbék meredeksége kis mértékben változik csak 300 °C-ig , viszont utána nagyon jelentős mind a szilárdság, mind a meredekség (Young-modulus) csökkenés. A tönkremenetelhez tartozó alakváltozás így nagy mértékben növekedett. Ezek mind a két kőzet esetében megfigyelhetők, de a *labradoritnál* a Young modulus csökkenés volt jelentősebb 500 °C-on, a *gránit*nál a 800 °C-hoz tartozó törési alakváltozás mértéke adódott nagyobbra.

A *mészkő* esetén megfigyelhető a kifejezetten nagy törési alakváltozás a legnagyobb vizsgált hőmérsékleten, illetve a többi kőzethez képest az összes hőmérsékleten több töréspont látható a görbéken, ezt okozhatja a magasabb pórustartalom. A *márványnak* a 800 °C-hoz tartozó görbéje azért nem volt elkészíthető, mert annyira roncsolódott az anyag, hogy értékelhetetlen volt az eredmény. A kisebb hőmérsékleteken azonban az anyag viszonylag homogén és

mikrokristályos mivolta miatt csak kisebb változások láthatók, de 500 °C-on már itt is nagyobb az alakváltozás.

4.20. ábra: Gránit próbatestek jellemző szigma-epszilon diagrammjai különböző hőterhelések esetén.

4.21 ábra: Labradorit próbatestek jellemző szigma-epszilon diagrammjai különböző hőterhelések esetén.

4.22 ábra: Mészkő próbatestek jellemző szigma epszilon diagrammjai különböző hőterhelések esetén.

4.23 ábra: Márvány próbatestek jellemző szigma-epszilon diagrammjai különböző hőterhelések esetén.

4.2.4 A Young modulus és a Poisson tényező alakulása

A *gránit* és a *labradorit* esetében a Poisson tényezőre az adatok nagy szórása miatt a kapott értékeket nem tekintettük kellően megbízhatónak és úgy ítéltük meg, hogy a nagyméretű kristályok és azok különböző orientáltsága okoz nagy szórást a mérésben és nagyobb próbatest szám szükséges a Poisson tényező megállapításához e két kőzet esetében.

A Young modulus alakulása a gránit és a labradorit esetében a 4.24 ábrán látható. Megfigyelhető a vizsgálatok alapján, hogy a kőzetek merevsége a szilárdságuk alakulásához hasonló tendenciát mutatott. Közel а rugalmassági azonos modulusuk a referenciahőmérsékleten, valamint mind a kettőnél egyértelműen látható egy helyi minimum 50 °C -os és egy helyi maximum 150 °C -os hőterhelés esetén. A labradorit esetében ezek után a csökkenés sokkal egyenletesebb, míg a gránitnál 500 és 800 °C között van egy nagyobb különbség a kapott értékeknél. Ez szintén igazolható a gránit szerkezetének megváltozásával, a kvarc átalakulás repesztő hatásával, amit már a szemrevételezésnél megfigyeltünk.

A *márvány* és a *mészkő* esetében a Poisson tényező megállapított értékei kisebb szórást mutattak, így ezek a *4.25 ábrán* láthatók. A *márvány* esetén tapasztalható egy helyi minimum melynek értéke 0,078-ra adódott 50 °C esetén, ezután egy átmeneti növekedést követően folyamatosan csökken a tényező értéke viszonylag lineárisan egészen 0,066-ig, ami a kezdeti 0,133 értéknek már csak körülbelül a fele. A *mészkőnél* 150 °C-ig folyamatos és drasztikus csökkenés tapasztalható 0,038-ig a referencia 0,20 értékről. 300 és 500 °C-nál enyhe növekedés figyelhető meg, majd a legmagasabb vizsgált hőteher esetén újra csökken a Poisson tényező 0,058-ig.

A Young modulus (*márványé* és *mészkőé* a 4.26 ábrán látható) ennél a két kőzetnél is (hasonlóan a *labradorithoz* és a *gránithoz*) hasonló tendenciát mutatott, mint a nyomószilárdság értékek. Itt is megfigyelhetők a helyi minimumok 150 °C-nál és a helyi maximumok 300 °C-nál. Azt viszont érdemes megjegyezni, hogy a kezdeti relatív csökkenése a Young modulusnak a *márvány* esetében sokkal erősebb, mint a relatív szilárdságcsökkenése. Bár a *gránit* és a *labradorit* rugalmassága is jelentősen lecsökken a maximális hőterhelésnél, de a *márvány* és a *mészkő* szerkezete annyira roncsolódik az eredeti állapothoz képest, hogy ott a maradó érték közel 0-nak tekinthető.

Tűz hatása a homlokzati burkolóelemekre Budapest, 2016

4.24 ábra: A gránit és a labradorit rugalmassági modulusa a hőterhelés függvényében.

4.25 ábra: A márvány és a mészkő Poisson tényezője a hőterhelés függvényében.

Tűz hatása a homlokzati burkolóelemekre Budapest, 2016

4.26 ábra: A gránit és a labradorit rugalmassági modulusa a hőterhelés függvényében.

4.3 Hajlító-húzószilárdság vizsgálat eredménye

A hajlító-húzó szilárdság az adott hőterhelés után meghatározott átlag értékeit (3 mérés átlaga) a *4.27-es ábrán* adjuk meg. A 20°C-on mért szilárdsághoz viszonyított relatív értékek a *4.28-ös ábrán* láthatóak.

4.27 ábra: Hajlító-húzó szilárdság mért abszolút értékeinek átlaga különböző hőterhelések esetén.

4.28 ábra: Hajlító-húzó szilárdság mért relatív értékeinek átlaga különböző hőterhelések esetén.

4.27- es, 4.28-as ábrák alapján a következő megállapítások tesszük:

A *gránit* kezdeti hajlító-húzószilárdsága alacsonyabb volt a *márványénál* és a relatív maradó szilárdsága 800 °C-os hőterhelés után közel 0%, mint ahogy a *labradorité* is. Kisebb hőterhelés (300 °C-ig) után sokkal kedvezőbb viselkedés figyelhető meg a kezdeti szilárdsági értékeihez képest, mint a *márvány* esetében.

A *márvány* rendelkezett a legnagyobb hajlító- húzószilárdság értékkel, de a belső szerkezetében végbement változásoknak köszönhetően a legnagyobb és leggyorsabb relatív szilárdságcsökkenés is itt volt tapasztalható.

Az általunk vizsgált kőzetek közül a legkedvezőbben a *forrásvízi mészkő* viselkedett hajlítóhúzószilárdság tekintetében. A relatív maradó szilárdság megközelítőleg 50 %-ra adódott. Ennek a fő oka a hőterhelés időtartamában is keresendő, mert ahogy fentebb is említettük, szemlátomást a *mészkő* szerkezete belül is károsodott ugyan (elszíneződés, sötétebb felület), de csak a felületi rétegben ment végbe teljesen az oxigénnel való reakciója a kalcium-karbonátnak. Meglepő módon még egy nagyon enyhe növekedést is tapasztaltunk az 500 és a 800°C-on hőterhelt próbatestek szilárdsági értékei között, de ezt magyarázhatja a minták alacsony száma is. Budapest, 2016

4.4 Hasító-húzószilárdság vizsgálat eredménye

A hasító-húzó szilárdság az adott hőterhelés után meghatározott átlag értékeit (3 mérés átlaga) a *4.29-es ábrán* adjuk meg.

4.29 ábra: Hasító-húzó szilárdság mért abszolút értékeinek átlaga különböző hőterhelések

4.30 ábra: Hasító-húzó szilárdság mért relatív értékeinek átlaga különböző hőterhelések esetén.

esetén.

A hasító-húzó szilárdság az adott hőterhelés után meghatározott relatív értékeit (3 mérés átlaga) *4.30-as ábrán* adjuk meg.

A hasító-húzószilárdság vizsgálatok hasonló tendenciát mutatnak, mint a hajlító húzószilárdsági vizsgálatok eredményei, azzal az eltéréssel, hogy itt a *gránit* kedvezőbb tendenciája a *labradorithoz* és a *márványhoz* képest nem volt megfigyelhető. Eltérő továbbá, hogy a *mészkő* és a *labradorit* egy helyi maximumot mutat az 50 °C esetén, ami a hajlító kísérletnél nem volt megfigyelhető. A maradó relatív szilárdsági értékek magasabbra adódtak a hajlító-húzó szilárdsághoz képest és az abszolút értékek is magasabbak voltak.

4.5 Mikroszkópos elemzés

A mikroszkóppal készített egyszeres polárszűrős felvételeken jobban látható a szövetszerkezet, míg a kétszeres polárszűrős képeken a vizsgált anyagok ásványos összetétele vehető ki jobban. A 4.31, 4.32 ábrákon a mészkő, a 4.33, 4.34 ábrákon a márvány, a 4.35, 4.36 ábrákon a gránit, a 4.37, 4.38 ábrákon a labradorit vékonycsiszolatokról készült mikroszkópos képek láthatók.

A forrásvízi *mészkőnél* jól látható a homogén, de porózus szövet, amiben szórtan kalcitok vannak.

A *márványnak* látható a mikrokristályos szövete, néhol mészpátos csomókkal (nem kristályosodott részek), de pórustartalom nem jellemző rá.

A *gránit* esetében jól látható és nagyon fontos, hogy a kvarc kristályok fellazultak, de ezen kívül láthatók még a felvételen különböző plagioklászok és színes elegyrészek is.

A *labradoritról* készül képeken megfigyelhető egy irányultság az ásványokban. Láthatóak nagyszemcsés bázikus plagioklászok és szórtan színes elegyrészek. A szövet nagyon tömör, pórustartalma nagyon csekély, fellazulás nem látható.

Tűz hatása a homlokzati burkolóelemekre Budapest, 2016

4.31 ábra: Mészkő mikroszkópos képe 1 polárszűrővel

4.32 ábra: Mészkő mikroszkópos képe 2 polárszűrővel

Tűz hatása a homlokzati burkolóelemekre Budapest, 2016

4.33 ábra: Márvány mikroszkópos képe 1 polárszűrővel

4.34 ábra: Márvány mikroszkópos képe 2 polárszűrővel

Tűz hatása a homlokzati burkolóelemekre Budapest, 2016

4.35 ábra: Gránit mikroszkópos képe 1 polárszűrővel

4.36 ábra: Gránit mikroszkópos képe 2 polárszűrővel

4.37 ábra: Labradorit mikroszkópos képe 1 polárszűrővel

4.38 ábra: Labradorit mikroszkópos képe 2 polárszűrővel

4.6 Derivatográfiás vizsgálat

Kőzetminták derivatográfiás vizsgálata

A minták őrleményeiről Q-1500D típusú derivatográffal készültek felvételek, melyeken a hő hatására bekövetkező jellegzetes tömeg- és esetleges hőtartalom változások azonosíthatók. A felvételek az 4.39, 4.40, 4.41,4.42 ábrákon láthatók.

4.39 ábra: A gránit mintáról készült derivatogram

A *gránit*ról készült minta derivatogramján egy megjelenő jellemző hőbomlási csúcs van. Az 1. jelű csúcs az adszorbeált nedvességtartalom eltávozását jelöli.

4.40 ábra: A labradorit mintáról készült derivatogram

A *labradoritról* készült minta derivatogramján egy megjelenő jellemző hőbomlási csúcs van. Az 1. jelű csúcs az adszorbeált nedvességtartalom eltávozását jelöli.

4.41 ábra: A márvány mintáról készült derivatogram

A derivatogramon megjelenő jellemző hőbomlási csúcsok:

- 1. jelű csúcs: Adszorbeált nedvességtartalom eltávozása
- 2. jelű csúcs: Kalcium-karbonát bomlása

4.42 ábra: forrásvizi mészkőről készült derivatogram

A derivatogramon megjelenő jellemző hőbomlási csúcsok:

- 1. jelű csúcs: Adszorbeált nedvességtartalom eltávozása
- 2. jelű csúcs: Kalcium-karbonát bomlása

Budapest, 2016

A kőzetmintákról készített derivatogramok értékelése

A *gránit* és a *labradorit* kőzetminták derivatogramja a vulkanikus kőzetekre jellemző viselkedést mutatja, amennyiben a mintában 1000 °C-ig tartó hevítés hatására nem mutatkozik sem tömeg-, sem pedig hőtartalom változás. A porrá őrölt minta a tárolás folyamán a levegőből vizet adszorbeált (1. csúcs).

A *márvány* és a *mészkő* minták a hőmérséklet hatására hasonló viselkedést mutattak. Itt is megfigyelhető kevés adszorbeált víz, mely szintén a levegő nedvességéből származik (1. csúcs). Jellegzetes, nagy tömegváltozással járó csúcs a 2. jelű, mely a minták fő összetevőjének, a kalcium-karbonátnak a bomlásából ered. Ennek során a kalcium-karbonátból szén-dioxid (CO₂) távozik a következő képlet szerint:

 $CaCO_3 \rightarrow CaO + CO_2$

A derivatogram mennyiségi értékelése szerint az *mészkő* mintából több CO₂ távozik, mely arra utal, hogy a felépítő ásvány mennyisége ebben a kőzettípusban valamivel nagyobb, mint az *márvány* minta esetében, ami várható eredmény volt, mert a mávány tartalmazhat MgCO₃ –at is, aminek a bomlása magnézium-oxiddá és széndioxiddá csak magasabb hőmérsékleten történik meg. Ugyanezt az eredményt mutatta a héjszerűen leváló anyag tömege is a 800 °C-os hőterhelés után az eredeti tömeghez viszonyítva.

5 MEGÁLLAPÍTÁSOK

Az elvégzett vizsgálatok alapján megállapítható, hogy az alacsonyabb hőmérsékletek esetén (300 °C-ig) a *gránit*nak volt kedvezőbb a viselkedése és a referenciahőmérsékleten is az rendelkezett a legnagyobb szilárdsággal mind nyomásra, mind hasító-húzó vizsgálatra, annak ellenére, hogy már a 20 °C-os referenciaanyagról készített csiszolaton is látszik a benne található kvarc fellazultsága. Hajlításra is kedvezően viselkedik az említett alacsonyabb hőmérsékleteken, a többi kőzethez képest a legnagyobb relatív szilárdsággal rendelkezik, majd az utolsó két hőlépcső esetén már sokat veszít a szilárdságából mind a három vizsgálat szerint. A maximális 800 °C-on már nyomásra és hasításra csak a *márvány* tulajdonságai rosszabbak, míg hajlításra közel 0 a maradó szilárdsága. A rugalmassági modulus tendeciáiban követi a nyomószilárdság alakulását. A magas hőmérsékleten kedvezőtlen viselkedésére a kvarc átkristályosodása szolgál magyarázatul, aminek a térfogatnövekedése repedéseket okozott az anyagban és emiatt csökkent az anyag szilárdsága (ahol átmenő repedések keletkeztek ott közel 0 volt a maradó szilárdság).

A *labradorit* sok tekintetben hasonlóan viselkedett a *gránit*hoz, de nagyobb benne az ásványok mérete és nincs kvarctartalma (így itt ez nem roncsolta a kőzet szövetét), viszont megfigyelhető volt egy irányultság az ásványokban, ami befolyásolhatta a tönkremenetelt. Nyomószilárdság szempontjából kis változások történtek a többi kőzethez képest és a maximális hőmérsékleten mind abszolút, mind relatív értékei a nyomószilárdságnak ennél a kőzetnél voltak a legmagasabbak. Itt a legfontosabb belső változás a különböző vastartalmú ásványok oxidációja volt, ami esztétikai szempontból nem jó, de szilárdsági értelemben nem okozott akkora változást, azonban a kialakuló repedések a hajlító és a hasító vizsgálat során már jobban csökkentették a mért eredményeket. 500 °C-on és 800 °C-on kifejezetten alacsony volt a maradó szilárdsága az anyagnak. Hajlításra közel ugyanúgy viselkedik, mint a *márvány*, de 300 °C-on egy kevéssel magasabb a relatív szilárdsága és majdnem párhuzamosan futnak a hőterhelés- hajlító-húzó szilárdság görbéik, valamint magas a legmagasabb hőmérsékleten a maradó szilárdsága a *labradoritnak* is minimális.

A *márványnak* a mikroszkópos felvételen látható a mikrokristályos viszonylag homogén néhol mészpátos csomókat tartalmazó szerkezete. Ebben az esetben a 800 °C-on történő igen jelentős szilárdságcsökkenést a kálcium-karbonát oxidációja okozza, aminek során kálcium-oxid keletkezett, ami a felületi rétegekben hámlást okozott a próbatesteken (ehhez az is hozzájárult, hogy a kialakult kálcium-oxid reagált a levegő víztartalmával is és egy részéből kálcium-hidroxid lett), illetve volt olyan próbtest is ami már magától a hőterheléstől tönkrement. A

mérésre alkalmas próbatestek vizsgálatai után minden vizsgálaton ez a kőzet adta a legkisebb szilárdsági értékeket abszolút és relatív értelemben egyaránt, ez alól csak a hajlító kísérlet képezett kivételt, ahol 4,7 % volt a maradó szilárdsága, míg a *labradorité* 3,9 % és a *gránit* elvesztette a szilárdságát, de ebben az esetben gyakorlatilag mindegyik említett kőzet szilárdsága elhanyagolhatóan kicsi. A hajlító húzó szilárdság esetében egy folyamatos csökkenést tapasztaltunk a hőmérséklet növelésével, míg a hasító-húzó vizsgálat eredményei egy stagnálást (enyhe növekedést, majd minimális csökkenést) mutatnak 50 °C és 300 °C között. Hajlításnál a *márvány* rendelkezett a legmagasabb referenciaértékkel, de a hasító-húzó vizsgálatnál már alacsonyabb kezdeti értékeket kaptunk a két mélységi magmás kőzethez viszonyítva. A rugalmassági modulus ebben az esetben is jól követi a nyomószilárdság értékeinek növekedést és csökkenését. Megfigyelhető ahogy a nyomószilárdság folymatosan és meredeken csökkent 300 °C után a kezdeti szilárdsági érték 20 %-ára, úgy a Young modulus is lecsökkent a kezdeti majdnem 17000 Mpa-ról, 635 Mpa-ra.

A forrásvízi mészkő is homogénnek tekinthető, viszont magasabb a pórustartalma a többi vizsgált kőzethez képest (ez az egyszeres polárszűrős felvételen is jól kivehető). A márványhoz hasonlóan itt is szilárdság és merevségcsökkenést okozott a kálcium karbonát átalakulása kálcium oxiddá és ennek következtében lehámlott a próbatestek külső rétege. A legmagasabb vizsgált hőmérsékleten ez a kőzet viselkedett a 4 vizsgált anyag közül a legkedvezőbben mind a három szilárdságvizsgálat esetében, azonban a rugalmassági modulusa annak ellenére, hogy kezdetben ennek volt a legnagyobb, végül szintén nagyon alacsony lett, a mélységi magmás kőzetek merevebbek maradtak. Hasításra abszolút értékekben 500 °C-tól, relatív értékekben már 50 °C-tól a mészkő rendelkezik a legnagyobb szilárdsági értékekkel és a maradó relatív szilárdság 800 °C-os hőterhelés után is 82 %-ra adódott. Hajítás esetén, a relatív és az abszolút szilárdsági értékek is csak 500 °C után a legkedvezőbbek és itt a maradó szilárdság sem olyan magas, mint a hasító vizsgálatnál, csupán 47%, de érdekes, hogy tapasztaltunk egy enyhe növekedést itt az 500 °C-os értékekhez képest, illetve ez még mindig többszöröse a másik három kőzet minimális maradó szilárdságának. Nyomószilárdság esetén nagyobb eltéréseket produkál ez a kőzet, mint a márvány, de hasonló tendenciákkal 500 °C-ig, de a legmagasabb hőmérsékleten, nem csökken a nyomószilárdság olyan drasztikusan és a labradorithoz hasonló maradó szilárdságot kaptunk abszolút és relatív értelemben is (megközelítőleg 41 MPa és 64 %). Annak ellenére, hogy ugyanaz a kémiai folyamat játszódik le a forrásvízi mészkőben és a márványban, a viselkedésük a folyamat lejátszódása után nagyon eltérő. Ennek további vizsgálatát indokoltnak tartjuk, hogy a szövetszerkezet, hogyan befolyásolja a kémiai reakció lejátszódásának gyorsaságát, és eltérve a vizsgált 2 órás hőterhelési időtől hogyan változik a *forrásvízi mészkő* szilárdsága.

Annak ellenére, hogy szilárdsági szempontok szerint megfelelhet az igényeknek a hőhatás után is a kőzet bizonyos esetekben, esztétikai szempontok alapján már kis hőterhelés után is indokolt lehet a cseréje a vizsgált elemeknek, mert már kis hőmérsékleten is elvesztik a fényüket és elszíneződhetnek

Az elvégzett vizsgálatok eredményei alapján a *forrásvízi mészkövet* javasolnánk burkolóelemnek és teherviselő elemnek is, mert kedvezőbben viselkedett a többi kőzethez képest. Továbbá a *labradoritot* is javasolnánk nyomásnak kitett teherhordó elemnek, mert nyomásra a magasabb hőmérsékleteken is jó tulajdonságokkal rendelkezett és merevebb maradt, mint a *mészkő*.

6 HIVATKOZÁSOK

[1] http://changing-guard.com/windsor-castle.html

[2] B. Chakrabarti, T. Yates, A. Lewry, Effect of fire damage on natural stonework in buildings, Elsevier Science Ltd, 1995

[3] A Ozguven , Y. Ozcelik, Effects of high temperature on physico-mechanical properties of Turkish natural building stones, Engineering Geology, 2014

[4] MSZ EN 1991-1-2:2005 Eurocode 1: A tartószerkezeteket érő hatások. 1-2. rész: Általános hatások. A tűznek kitett szerkezeteket érő hatások , Magyar Szabvány, Magyar Szabványügyi Testület, 2005

[5] Balázs L Gy, Horváth L, Kulcsár B, Lublóy É, Maros J, Mészöly T, Sas V, Takács L,
Vígh L G Szerkezetek tervezése tűzteherre az MSZ-EN szerint (vasbeton, acél, fa) Budapest:
Magyar Mérnöki Kamara, 2010. 174 p.(ISBN:978-615-5093-02-9)

[6] Török Á., Geológia mérnököknek, Műegyetemi Kiadó, 2007, ISBN 978 963 420 934 8

[7] Kopecskó K. (2006): Gőzölés hatása a cement kilinkerásványainak kloridion megkőtő képességére, PhD értekezés, Budapest

[8] Balázs Gy., Építőanyagok és kémia, Műegyetemi Kiadó, 1994, Jegyzet azonosító : 94493

7 KÖSZÖNETNYILVÁNÍTÁS

Köszönetet mondok az Építőanyagok és Magasépítési tanszéknek, hogy a kísérletekhez a szükséges laboratóriumi hátteret, vizsgálati anyagokat biztosította. Továbba köszönetet mondok a laboratórium munkatársainak a segítőkészségükért, Rónaky Viktóriának, Árpás Endrének, Pálinkás Bálintnak és Takács Krisztiánnak.

Ezúton szeretnék köszönetet nyilvánítani konzulenseimnek, **Dr. Lublóy Évának és Dr. Gálos Miklósnak** segítségükért, valamint a konzultációk során adott javaslataikért és építő jellegű kritikáikért.

8 MELLÉKLET

8.1 Forrásvízi mészkő mérési eredményei

8.1.1 Hasító-húzó szilárdság

Kőzet				
száma	Geometria	ai méretek	Tömeg	Törőerő
	a [mm]	d [mm]	m [g]	F [kN]
20/1	34,24	49,42	170,63	11,457
20/2	31,33	49,47	153,71	8,964
20/3	30,46	49,45	150,32	8,311
50/1	33,03	49,42	164,22	23,271
50/2	33,06	49,37	166,04	14,307
50/3	29,07	48,86	142,98	7,064
150/1	33,83	49,42	168,32	6,59
150/2	29,42	49,43	146,92	5,283
150/3	30,09	49,43	150,08	16,444
300/1	33	49,41	162,95	8,014
300/2	30,55	49,45	152,75	6,471
300/3	34,95	49,44	172,08	5,996
500/1	30,07	49,52	148,45	14,07
500/2	33,4	49,54	163,29	9,38
500/3	32,63	49,5	162,23	8,074
800/1	34,45	49,92	163,94	7,183
800/2	34,4	49,46	157,66	8,845
800/3	31,37	49,95	148,79	8,564

Kőzet			hasító-húzó	
száma	sűrüség	átlag	szilárdság	átlag
	[g/cm^3]		[MPa]	
20/1	2,59924068		6,77071317	
20/2	2,55380804		5,783617227	
20/3	2,57089666	2,57464846	5,517687338	6,02400591
50/1	2,59323775			
50/2	2,62490726		8,765619216	
50/3	2,62454292	2,61422931	4,973386328	6,86950277
150/1	2,59512682		3,941673755	
150/2	2,6036786		3,632848876	
150/3	2,60045747	2,5997543	11,05591446	6,2101457
300/1	2,57656475		4,914966299	
300/2	2,60476025		4,283451849	
300/3	2,56599991	2,58244163	3,470051993	4,22282338
500/1	2,5645776			
500/2	2,53764847		5,668920536	
500/3	2,58484223	2,5623561	4,998808186	5,33386436
800/1	2,43263468		4,176784452	
800/2	2,38663057		5,198586596	
800/3	2,42169019	2,41365182	5,465459084	4,94694338

8.1.2 Nyomószilárdság

Kőzet				
száma	Geometria	ai méretek	Tömeg	Törőerő
	a [mm]	d [mm]	m [g]	F [kN]
20/4	63,5	49,41	314,8	129,3
20/5	63,15	49,45	319,1	66,79
20/6	64,99	49,45	322,91	169,84
50/4	65,11	49,39	323,9	54,232
50/5	61,77	49,37	307,69	133,631
50/6	64,15	49,42	315,67	133,571
150/4	63,2	49,45	313,21	47,967
150/5	64,5	49,46	319,59	99,318
150/6	64,83	49,46	325,28	94,687
300/4	64,3	49,44	320,4	180,945
300/5	63,47	49,48	316,24	150,609
300/6	63,65	49,44	315,16	155,833
500/4	64,1	49,22	317,54	97,418
500/5	64,98	49,62	320,6	66,37
500/6	65,62	49,58	323,83	142,654
800/4	65,4	49,96	312,74	92,253
800/5	64,98	49,84	291,62	92,61
800/6	65,33	49,85	309,4	55,684

Kőzet száma	sűrüség	átlag	Nyomószilárdság [Mpa]	átlag
20/4	2 58670274		67 /682057	
20/5	2,00079274		34 79438742	
20/6	2 58840785	2 60253216	88 47849618	63 5803631
50/4	2,59785881	2,00200210	28 32095617	00,000001
50/5	2,60339382		69.841138	
50/6	2.56661963	2.58929075	69.6685928	55.9435623
150/4	2,58176253	,	24,98850698	
150/5	2,58021316		51,7189959	
150/6	2,61278371	2,59158646	49,3074424	42,0049818
300/4	2,59689837		94,3018051	
300/5	2,59250298		78,36495459	
300/6	2,58051331	2,58997155	81,21436455	84,6270414
500/4	2,60487889		51,22551505	
500/5	2,55270503		34,33907885	
500/6	2,557397	2,57166031	73,9266884	53,1637608
800/4	2,44056943		47,08320108	
800/5	2,30150474		47,49327958	
800/6	2,42777072	2,3899483	28,54502599	41,0405022

8.1.3 Hajlítószilárdság

Kőzet					
száma	Geometriai méretek			Tömeg	Törőerő
	a [mm]	b [mm]	c [mm]	m [g]	F [kN]
20/7	152,13	53,56	25,61	539,84	3,3
20/8	152,14	53,4	24,95	526,15	3,4
20/9	151,78	53,33	25,57	532,83	3,1
50/7	154	53,45	26,08	553,44	3,63
50/8	153,84	52,73	25,56	538,06	3,2
50/9	152,62	54,18	25,23	528,12	2,44
150/7	152,9	52,68	24,86	523,22	1,9
150/8	152,66	55,18	26,37	561,67	2,75
150/9	152,82	52,56	24,75	519,79	1,8
300/7	153,12	53,04	25,36	530	2,05
300/8	153,95	53,18	24,77	527,91	1,65
300/9	154	53,2	24,76	526,36	1,35
500/7	154,11	54,36	25,58	557,28	1,6
500/8	153,03	54,62	26,13	551,1	1,6
500/9	154,06	52,86	24,83	519,5	1,26
800/7	153,07	55,13	25,05	506,3	2,15
800/8	151,2	52,96	26,75	487,57	1,18
800/9	152,27	53,55	25,37	467,72	1,5

Kőzet száma	sűrüség	átlag	Hajlító-húzó szilárdság	átlag
	[g/cm^3]		[Mpa]	
20/7	2,58702156		4,027110134	
20/8	2,59569916		4,186551308	
20/9	2,574375	2,58569857	3,832200426	4,01528729
50/7	2,57806894		4,457227163	
50/8	2,59503258		4,092398684	
50/9	2,53142412	2,56817522	2,876564366	3,80873007
150/7	2,61294315		2,436787028	
150/8	2,5285069		3,06894339	
150/9	2,61467169	2,58537391	2,324383091	2,61003784
300/7	2,57330453		2,575992457	
300/8	2,60318993		2,057028066	
300/9	2,59477607	2,59042351	1,681125531	2,10471535
500/7	2,60053467		1,867595894	
500/8	2,52326421		1,841052475	
500/9	2,56916372	2,56432087	1,599522453	1,76939027
800/7	2,39509157		2,405889931	
800/8	2,27621574		1,48949603	
800/9	2,26095361	2,31075364	1,831530291	1,90897208

8.2 Gránit mérési eredményei

8.2.1 Hasító-húzó szilárdság

Kőzet				
száma	Geometria	ai méretek	Tömeg	Törőerő
	a [mm]	d [mm]	m [g]	F [kN]
20/1	30,63	49,58	158,52	17,513
20/2	28,75	49,61	146,64	16,563
20/3	29,64	49,61	153,15	11,339
50/1	28,74	49,81	148,08	11,517
50/2	28,09	49,05	137,65	10,851
50/3	30,11	49,78	155,15	8,786
150/1	33,15	49,62	166,43	11,457
150/2	29,17	49,67	147,56	9,32
150/3	29,84	49,55	153,17	8,727
300/1	27,87	49,71	143,07	12,763
300/2	27,42	49,48	138,74	10,672
300/3	28,06	49,71	143,25	11,873
500/1	28,98	49,7	148,8	6,418
500/2	30,25	49,88	153,72	8,607
500/3	29,05	49,79	151,1	<u>5,5</u> 21
800/1	33,49	50,65	167,42	1,662
800/2	26,49	50,51	133,04	2,256
800/3	30,33	50,4	152,3	nincs adat

Kőzet száma	sűrüség	átlag	hasító-húzó szilárdság	átlag
	[g/cm^3]	5	[MPa]	Ű
20/1	2,68197278		11,53206359	
20/2	2,64001559		11,61266575	
20/3	2,67442665	2,66547167	7,711295201	10,2853415
50/1	2,64549474			
50/2	2,59463813		7,875515899	
50/3	2,64887572	2,62966953	5,861726502	6,8686212
150/1	2,59755591		6,965152352	
150/2	2,61200642		6,432581883	
150/3	2,66328669	2,62428301	5,902316559	6,43335027
300/1	2,64639353		9,212384106	
300/2	2,6327232		7,865904606	
300/3	2,6317812	2,63696598	8,511949492	8,5300794
500/1	2,64802521			
500/2	2,60185117		5,704268757	
500/3	2,67278742	2,64088793	3,817064373	4,76066657
800/1	2,48235354		0,979797715	
800/2	2,50770176		1,686086179	
800/3	2,51823794	2,50276441		1,33294195

8.2.2. Nyomószilárdság

Kőzet				
száma	Geometria	ai méretek	Tömeg	Törőerő
	a [mm]	d [mm]	m [g]	F [kN]
20/4	57,42	49,79	298,26	152,63
20/5	63,07	49,52	322,59	128,59
20/6	60,2	49,45	306,59	189,67
50/4	62,98	49,67	323,14	80,499
50/5	62,57	49,76	321,04	108,46
50/6	63,52	49,57	323,41	168,122
150/4	62,42	49,11	312,57	212,586
150/5	62,86	49,85	322,79	212,824
150/6	63,73	49,7	328,25	131,909
300/4	63,23	49,61	322,65	67,973
300/5	60,73	49,73	313,9	145,741
300/6	63,2	49,86	326,08	159,098
500/4	62,94	49,73	322,67	145,385
500/5	63,18	49,92	326,27	148,413
500/6	61,29	49,98	317,03	132,147
800/4	64,54	50,62	326,4	69,991
800/5	63,55	50,6	320,93	64,352
800/6	63,64	50,82	322,56	69,16

Kőzet				
száma	sűrüség	átlag	Nyomószilárdság	átlag
	[g/cm^3]		[Mpa]	
20/4	2,66918033		78,43068262	
20/5	2,65703418		66,79997002	
20/6	2,65313437	2,65978296	98,80897533	81,3465427
50/4	2,64929358		41,5654521	
50/5	2,63974874		55,80064256	
50/6	2,63958384	2,64287539	87,15996621	61,508687
150/4	2,64492891		112,285877	
150/5	2,63236261		109,0989622	
150/6	2,65630771	2,64453307	68,0286721	96,4711704
300/4	2,64119445		35,18263212	
300/5	2,66244999		75,07151319	
300/6	2,64382606	2,64915684	81,52494512	63,9263635
500/4	2,64073776		74,8881368	
500/5	2,63984672		75,8670389	
500/6	2,63784079	2,63947509	67,38995213	72,7150426
800/4	2,51424301		34,79591491	
800/5	2,51260414		32,01779049	
800/6	2,50000779	2,50895164	34,11269305	33,6421328

8.2.3 Hajlító-húzó szilárdság

Kőzet					
száma	Geometriai méretek			Tömeg	Törőerő
	a [mm]	b [mm]	c [mm]	m [g]	F [kN]
20/7	152,11	51,5	25,73	529,34	2,5
20/8	152,78	49,82	25,03	510,99	2,25
20/9	147,8	49,2	24,19	495,81	2,15
50/7	149,27	47,6	26,11	480,7	1,85
50/8	147,07	49,54	28,94	555,57	2,4
50/9	149,5	48,42	26,3	496,39	2,4
150/7	147,7	49,55	25,11	481,66	1,8
150/8	147,93	49,46	26,05	491,41	2
150/9	147,53	49,69	25,04	474	1,74
300/7	147,89	49,22	25,37	482,34	1,4
300/8	153,1	52,08	25,54	536,71	2,1
300/9	152,88	50,72	24,94	506,51	2
500/7	149,63	47,82	26,35	490,25	0,8
500/8	150	48,31	26,65	503,19	0,7
500/9	149,99	48,19	26,89	505,15	0,7
800/7	154,24	52,16	27,15	536,51	nincs adat
800/8	153,19	49,74	26,84	497,41	nincs adat
800/9	150,7	50,84	24,72	459,25	nincs adat

Kőzet száma	sűrüség	átlag	Hajlító-húzó szilárdság	átlag
	[g/cm^3]		[Mpa]	
20/7	2,62621291		3,431781223	
20/8	2,68213926		3,411714023	
20/9	2,81864173	2,70899796	3,384888939	3,40946139
50/7	2,59112142		3,216267352	
50/8	2,6348759		3,701216649	
50/9	2,60736179	2,6111197	3,964041189	3,62717506
150/7	2,62101626		2,774232152	
150/8	2,57825514		3,099337933	
150/9	2,58222855	2,59383332	2,659154249	2,84424144
300/7	2,61187503		2,201427968	
300/8	2,6355583		2,787453557	
300/9	2,61915775	2,62219703	2,874044797	2,62097544
500/7	2,60021186		1,371710755	
500/8	2,60559248		1,164094399	
500/9	2,5990242	2,60160951	1,172812357	1,23620584
800/7	2,45625464			
800/8	2,43218051			
800/9	2,42483339	2,43775618		

8.3. Márvány mérési eredményei

8.3.1. Hasító-húzó szilárdság

Kőzet				
száma	Geometria	ai méretek	Tömeg	Törőerő
	a [mm]	d [mm]	m [g]	F [kN]
20/1	32,19	49,3	165,73	7,064
20/2	32,49	48,64	161,59	16,029
20/3	31,75	48,67	158,57	8,912
50/1	31,84	48,51	159,32	14,188
50/2	32,58	49,22	167,53	11,704
50/3	31,97	49,3	164,4	7,421
150/1	32,37	49,29	165,47	9,973
150/2	32,4	49,02	164,66	4,63
150/3	32,12	49,21	162,95	14,248
300/1	32,45	48,89	164,4	5,462
300/2	32,58	49	164,39	10,745
300/3	30,88	48,8	155,82	9,855
500/1	31,4	49,6	160,87	5,165
500/2	32,86	49,52	168,09	4,826
500/3	32,58	49,27	164,26	2,731
800/1	34,16	49,91	150,64	nincs adat
800/2	32,94	49,89	158,96	1,202
800/3	34	50,43	156,9	0,772

Kőzet			hasító-húzó	
száma	sűrüség	átlag	szilárdság	átlag
	[g/cm^3]		[MPa]	
20/1	2,69846419		4,451258281	
20/2	2,67798401		10,14292353	
20/3	2,68586975	2,68743932	5,767267585	6,7871498
50/1	2,70872573			
50/2	2,70388759		7,298634636	
50/3	2,69522907	2,70261413	4,70839485	6,00351474
150/1	2,68033622		6,250637332	
150/2	2,69418138		2,915161864	
150/3	2,6687165	2,68107803	9,014154652	6,05998462
300/1	2,70008466		3,44284093	
300/2	2,67708708		6,730684907	
300/3	2,69920959	2,69212711	6,539725431	5,57108376
500/1	2,65284823			
500/2	2,65731714		2,9657813	
500/3	2,64573265	2,65196601	1,701328033	2,33355467
800/1	2,2551615			
800/2	2,46983303		0,731420905	
800/3	2,3115135	2,34550268	0,450245535	0,59083322

8.3.2. Nyomószilárdság

Kőzet				
száma	Geometriai méretek		Tömeg	Törőerő
	a [mm]	d [mm]	m [g]	F [kN]
20/4	64,18	48,97	325,97	104,483
20/5	59,38	49,23	304,01	96,468
20/6	62,96	49,12	323,82	134,581
50/4	63,68	48,72	319,79	95,875
50/5	61,5	48,73	314,13	120,036
50/6	63,44	48,88	320,06	115,228
150/4	59,34	49,07	300,59	52,301
150/5	63,64	48,61	318,6	108,935
150/6	63,3	49,15	323,02	120,274
300/4	63,02	49,33	324,1	136,599
300/5	59,66	48,76	301,93	139,092
300/6	63,78	49,08	319,89	108,757
500/4	64,43	48,81	322,53	98,19
500/5	59,5	48,78	296,38	112,259
500/6	62,61	49,05	315,67	100,03
800/4	64,03	49,8	278,92	10,389
800/5	60,07	49,34	297,56	40,368
800/6	63,7	49,05	307,2	15,85

Kőzet				
száma	sűrüség	átlag	Nyomószilárdság	átlag
	[g/cm^3]		[Mpa]	
20/4	2,69803796		55,50291198	
20/5	2,69102881		50,70536887	
20/6	2,71551731	2,70152803	71,05544734	59,0879094
50/4	2,69511691		51,45423918	
50/5	2,74013411		64,39453854	
50/6	2,68990025	2,70838376	61,43643019	59,0950693
150/4	2,67994088		27,66994016	
150/5	2,69894915		58,72817955	
150/6	2,6909709	2,68995364	63,42420813	49,9407759
300/4	2,69220883		71,5081648	
300/5	2,71160214		74,5255348	
300/6	2,65239001	2,68540033	57,51464645	67,8494487
500/4	2,67666927		52,50250053	
500/5	2,66672774		60,09909338	
500/6	2,66957377	2,67099026	52,96422095	55,188605
800/4	2,23752457		5,336363488	
800/5	2,5920834		21,12366572	
800/6	2,55348963	2,46103253	8,392311327	11,6174468

Kőzet					
száma	Geometriai méretek			Tömeg	Törőerő
	a [mm]	b [mm]	c [mm]	m [g]	F [kN]
20/7	152,57	50,46	26,07	545,72	3,67
20/8	152,63	49,99	24,76	522,46	3,07
20/9	152,47	52,62	25,03	544,89	3,5
50/7	151,5	52,52	25,01	539,26	3
50/8	153,4	49,2	27,76	561,07	3,4
50/9	152,53	51,84	25,83	551,3	2,97
150/7	153,52	49,09	24,67	500,06	1,88
150/8	154,21	49,2	26,05	530,79	2,07
150/9	153,78	49	25,67	520,32	1,95
300/7	152,37	51,22	25,54	537,16	1,55
300/8	153,88	49,08	24,89	504,04	1,4
300/9	153,03	50,38	26,16	543,89	1,7
500/7	153,06	52,89	25,8	554,35	0,9
500/8	153,45	52,3	25,72	548,55	0,6
500/9	154,15	49,42	25,81	526,4	0,73
800/7	152,63	52,74	25,73	520,57	0,15
800/8	na	na	na	na	na
800/9	153,87	52,08	26,05	527,65	0,2

8.3.3. Hajlító-húzó szilárdság

Kőzet száma	sűrüség	átlag	Hajlító-húzó szilárdság	átlag
	[g/cm^3]		[Mpa]	g
20/7	2,71902028		5,355815376	
20/8	2,76553631		4,607764106	
20/9	2,71339327	2,73264995	4,504190862	4,82259011
50/7	2,70986194		3,882829983	
50/8	2,67797873		5,352847624	
50/9	2,69925132	2,69569733	3,997263177	4,41098026
150/7	2,68964507		2,979751349	
150/8	2,68557549		3,258939583	
150/9	2,68997791	2,68839949	3,107761222	3,11548405
300/7	2,69490668		2,162789477	
300/8	2,68134918		2,220320382	
300/9	2,69673699	2,69099762	2,49273266	2,29194751
500/7	2,65417204		1,140572984	
500/8	2,65752081		0,786407154	
500/9	2,67720487	2,6629659	1,134007453	1,0203292
800/7	2,51338675		0,19172209	
800/8				
800/9	2,52762874	2,52050775	0,265471767	0,22859693

8.4. Labradorit mérési eredményei

8.4.1. Hasító-húzó szilárdság

Kőzet száma	Geometriai méretek		Tömeg	Törőerő
	a [mm]	d [mm]	m [g]	F [kN]
20/1	32,39	49	171,53	21,253
20/2	33,79	49,53	183,92	12,051
20/3	34,86	49,26	165,08	7,48
50/1	31,63	49,55	172,19	7,777
50/2	32,36	49,15	172,66	10,033
50/3	33,41	49,54	178,83	21,015
150/1	29,61	49,48	156,36	11,636
150/2	28,2	49,07	148,09	5,937
150/3	30,8	49,34	164,95	13,654
300/1	31,93	49,08	167,37	6,768
300/2	32	49,54	176,73	12,051
300/3	32,49	49,53	171,31	8,37
500/1	32,32	49,28	171,02	1,722
500/2	32,8	49,25	172,98	7,124
500/3	32,77	49,5	175,19	2,671
800/1	33,1	52,08	175,03	4,096
800/2	30,93	49,41	161,2	1,959
800/3	32,72	49,54	174,83	5,937

Kőzet száma	sűrüség	átlag	hasító-húzó szilárdság	átlag
Szama	[g/cm^3]		[MPa]	
20/1	2,80974769		13,39100629	
20/2	2,8264054		7,20056486	
20/3	2,48604283	2,70739864	4,355919123	8,31583009
50/1	2,82456621			
50/2	2,813627		6,308103017	
50/3	2,77831984	2,80550435	12,69687712	9,50249007
150/1	2,74762979		7,942104813	
150/2	2,77827258		4,290440491	
150/3	2,80242279	2,77610838	8,984833569	7,07245962
300/1	2,77204281		4,318738193	
300/2	2,86667618		7,601811667	
300/3	2,73795743	2,79222547	5,201246286	5,70726538
500/1	2,77564868			
500/2	2,76974586		4,410053238	
500/3	2,77941129	2,77493528	1,646615684	3,02833446
800/1	2,4835499		2,376079562	
800/2	2,71947927		1,281857244	
800/3	2,77345422	2,6588278	3,662669666	2,44020216

8.4.2. Nyomószilárdság

Kőzet száma	Geometriai méretek		Tömeg	Törőerő
	a [mm]	d [mm]	m [g]	F [kN]
20/4	63,75	49,05	336,67	104,48
20/5	62,93	49,33	335,14	110,063
20/6	61,73	48,84	326,47	132,147
50/4	62,85	49,2	331,13	80,796
50/5	62,81	49,06	335,44	125,854
50/6	62,82	49,35	337,41	63,105
150/4	60,93	48,97	324,42	119,621
150/5	59,66	49,26	316,31	130,306
150/6	63,21	49,54	345,64	144,079
300/4	63,21	49,21	337,94	118,552
300/5	61,93	49,49	332,87	166,163
300/6	62,72	49,2	335,78	70,229
500/4	58,18	49,3	311,08	65,242
500/5	60,86	49,44	333,19	111,963
500/6	62,03	49,57	331,53	104,839
800/4	60,65	49,68	319,36	84,655
800/5	60,74	49,14	321,99	89,938
800/6	63,49	49,64	338,01	64,411

Kőzet	sűrüség	átlag	Nyomószilárdság	átlag
száma				
	[g/cm^3]		[Mpa]	
20/4	2,79625356		55,32042192	
20/5	2,7878965		57,61684304	
20/6	2,82439891	2,80284965	70,57263626	61,1699671
50/4	2,77263936		42,51968106	
50/5	2,82658019		66,61043637	
50/6	2,80941597	2,80287851	33,00804482	47,3793874
150/4	2,82843744		63,54444105	
150/5	2,78337166		68,40785009	
150/6	2,83828855	2,81669922	74,78577943	68,9126902
300/4	2,81240216		62,36378968	
300/5	2,79556125		86,42308404	
300/6	2,81740261	2,80845534	36,95869451	61,9151894
500/4	2,80243068		34,19509154	
500/5	2,85320798		58,35095197	
500/6	2,77085346	2,8088307	54,35198069	48,9660081
800/4	2,71779618		43,69379663	
800/5	2,7965825		47,44639987	
800/6	2,75226989	2,75554952	33,29866631	41,4796209

8.4.3. Hajlító-húzó szilárdság

Kőzet száma	Geometriai méretek			Tömeg	Törőerő
	a [mm]	b [mm]	c [mm]	m [g]	F [kN]
20/7	151,24	48,81	25,13	526,72	3,05
20/8	148,78	49,77	25,41	525,74	3
20/9	148,77	49,53	24,86	514,67	2,15
50/7	149,36	50,6	24,72	518,33	2,1
50/8	150,82	49,38	25,55	527,79	3,15
50/9	148,01	49,28	24,9	507,91	1,8
150/7	148,89	50,63	25,16	522,28	1,97
150/8	149,02	49,55	25,22	519,54	1,92
150/9	151,22	48,73	24,39	495,68	1,64
300/7	151,2	49,44	25,32	531,4	1,35
300/8	149,8	52,5	24,13	530,1	2,1
300/9	150,17	52,22	25,33	555,42	2,25
500/7	148,9	49,46	25,03	509,97	0,67
500/8	151,37	49,16	25,65	531,31	0,72
500/9	150,76	52,67	24,6	536,89	0,35
800/7	148,92	49,6	25,15	509,69	0,1
800/8	150,61	52,55	25,87	564,97	0,05
800/9	149,72	50,8	25,41	526,74	0,2

Kőzet	sűrüség	átlag	Hajlító-húzó szilárdság	átlag
szama	[g/cm^3]		[Mpa]	
20/7	2 83930367		4 917843322	
20/8	2,79417859		4,562675731	
20/9	2,80959705	2,81435977	3,317681935	4,266067
50/7	2,77442544		3,039268132	
50/8	2,77370475		4,905220889	
50/9	2,79656977	2,78156665	2,820081631	3,58819022
150/7	2,75371697		2,846057802	
150/8	2,78988107		2,959180962	
150/9	2,75793452	2,76717752	2,657393608	2,82087746
300/7	2,80755062		2,094593031	
300/8	2,79337579		2,721088435	
300/9	2,79618741	2,79903794	2,962601154	2,59276087
500/7	2,76652736		1,038278208	
500/8	2,78361351		1,136313446	
500/9	2,74853177	2,76622421	0,449137546	0,8745764
800/7	2,74367976		0,153658377	
800/8	2,75932229		0,064603064	
800/9	2,72551203	2,74283803	0,2860488	0,16810341