Készítette: Donovál Krisztina, Lévai Dóra

Telítetlen talajparaméterek pontos meghatározása

Konzulensek: Dr. Varga Gabriella, Dr. Mahler András 2013/2014/I.

Tartalom

1		A ta	inulmány célja	4
2		Elm	életi háttér	4
	2.	1	A telítetlen talajok	4
		2.1.	1 A telítetlen talaj fogalma	4
		2.1.	2 A telítetlen talajok fázismodellje	6
		2.1.	3 A telítetlen talajok anyagmodellje	6
		2.1.	4 A teltetlen talajok feszültségi állapotváltozói	7
		2.1.	5 A Mohr-Coulomb törési feltétel telítetlen talajok esetén	8
	2.2	2	A szívás	9
		2.2.	1 A szívás fogalma	9
		2.2.	2 A szívás szabályozására használt módszerek1	0
	2.3	3	A víztartási görbe1	2
		2.3.	1 A víztartási görbe definíciója1	2
		2.3.	2 A víztartási görbe matematikai leírása1	4
		2.3.	3 A víztartási görbe meghatározása számítással1	6
		2.3.	4 A víztartási görbe gyakorlati felhasználása1	6
		2.3.	5 A víztartási görbe és $arphi^{ extsf{b}}$ kapcsolata1	7
3		A lö	sztalajok bemutatása1	8
4		Az a	alkalmazott vizsgálatok1	8
	4.:	1	A mérések célja1	8
	4.	2	A víztartási görbe meghatározása1	9
	4.3	3	Közvetlen nyírókísérlet2	3
5		Erec	dmények2	5
	5.	1	A víztartási görbe meghatározása2	5
	5.2	2	A közvetlen nyírókísérlet eredményei2	8
	5.3	3	A szívás-nyírófeszültség diagramok2	9
	5.4	4	A nyírószilárdsági többletek meghatározása3	2
6		Gya	korlati példák3	5
	6.:	1	Földnyomás értékek módosulása3	5
	6.2	2	Alaptest alatti altalaj többletteherbírásának meghatározása3	5
	6.3	3	Rézsűstabilitás vizsgálata3	9
7		Össz	zefoglaló4	4
8		Szak	kirodalom5	0

1 A tanulmány célja

A hazai és nemzetközi geotechnikai gyakorlat az általános talajmechanikai, tervezési vagy állékonysági, stabilitási problémákat empirikus talajparaméterek segítségével oldja meg. Korábbi vizsgálatok igazolták, hogy a telítetlen talajok nyírószilárdsági paraméterei jelentősen módosulnak a talaj víztartalmának függvényében, ezt igazolja állékonysági kérdések elemzésekor a valódi tönkremenetelek visszaszámolása ("back analysise") is.

Az empirikus értékek alkalmazása nem feltétlenül a biztonság javára történő közelítést eredményezi, emiatt jelentős túlméretezéshez is vezethet. A talajok szilárdsági paramétereinek pontos meghatározása megoldást jelentene a tapasztalati értékek használatával kihívást jelentő problémák, mint például állékonysági kérdésekben a bekövetkezett tönkremenetelek pontos modellezése, majd elemzése, továbbá vízáramlások kezelése telítetlen talajokban a párolgásbeszivárgás figyelembe vételével (hulladéklerakókban és környezetükben, árvízvédelmi és víztartó gátakban).

Dolgozatunk célja így a telítetlen talajok talajfizikai jellemzőinek pontos meghatározása a gazdaságosabb tervezés érdekében, illetve az alkalmazott paraméterek mögötti elméleti háttérre való rávilágítás. Annak érdekében, hogy a hazai csúszásveszélyes területeken is pontosabb modellezéseket végezhessünk, Magyarországra jellemző lösztalaj paramétereit módosítottuk, és határoztunk meg az alapozások tervezésekor megjelenő teherbírás változást, továbbá a rézsűk stabilitási vizsgálatakor jelentkező biztonsági többlet változását.

2 Elméleti háttér

2.1 A telítetlen talajok

2.1.1 A telítetlen talaj fogalma

Telítetlen talajoknak nevezzük azokat az anyagokat, melyekben megtalálható mind a levegő, a víz, és a szilárd fázis is rendre póruslevegő, talajvíz és a szilárd talajváz formájában. A szakirodalom gyakran említi negyedik fázisként a talajban megjelenő határfelületi hártyát, hiszen tulajdonságai jelentősen eltérnek a vele kapcsolatban levő fázisokétól, továbbá határai is egyértelműen definiálhatóak.

4

A telítetlen talajmechanika a talajvíztükör feletti talajt nevezi telítetlennek. Amennyiben a talaj felszínén nincs vízáramlás, tehát sem párolgás, sem beszivárgás nem jelentkezik, a pórusvíznyomás változása lineárisan folytatódik a talajvíztükör felett, így negatív nyomást jelent az atmoszferikus nyomáshoz képest [2.1. ábra]. Ez a tulajdonság kapilláris jelenségekkel magyarázható. A folyadékok határfelületi rétegében lévő alkotórészek más energetikai állapotban vannak, mint a folyadék belsejében lévők, ezt nevezzük határfelületi hártyának. Ennek oka az, hogy a folyadék felületén a kémiai és fizikai tulajdonságokat meghatározó részecskék aszimmetrikus erőhatások miatt nagyobb energiájú állapotban vannak, mint a folyadék belsejében elhelyezkedő azonos felépítésű, egymáshoz képest energetikailag kiegyensúlyozott társaik. Az aszimmetrikus erőhatás oka, hogy a felületen a szomszédos molekuláktól származó kohéziós erők eredője a folyadék belseje felé mutat.

Tehát a víz molekuláris szerkezete miatt a felszínén kétirányú húzás alatt áll, amit a víz felületi feszültségének nevezünk. A felületi feszültség hatását ott tudja kifejteni, ahol három különböző halmazállapotú anyag egy vonal mentén érintkezik. Ennek eredményez az, hogy telítetlen talajokban a víz, levegő és szilárd fázis találkozásánál a talaj kapillárisaiban a víz a szabad vízfelszín fölé emelkedik, és a kapilláris csőben a vízfelszín (meniszkusz) húzás állapotában van [2.1. ábra]. [2]; [4]; [5]

- 2.1. ábra. Pórusvíznyomási ábra egyensúlyi helyzetben
 - (a) Közelítő (hagyományos) talajmechanikai modell
 - (b) Pontosabb, telítetlen talajmechanikai modell

2.1.2 A telítetlen talajok fázismodellje

A talajban megjelenő négy fázis határozza meg alapvetően a telítetlen állapotra jellemző tulajdonságokat [2.2. ábra].

szilárd fázis többivel А а ellentétben feltételezhetően összenyomhatatlan. A levegő fázis gázok és gőz keveréke, sűrűsége 0.9- $1.3*10^{-3}$ g/cm³ között változik, nedves állapotban kisebb, így а hagyományos talajmechanikai számításokban többnyire elhanyagolható.

A víz szilárd, folyékony és légnemű állapotban fordulhat elő a talajban, sűrűsége függ a hőmérséklettől és a nyomástól. A víz fázis dinamikai jellemzői közül az egyik legfontosabb a belső súrlódás vagy viszkozitás,

melyen a folyadékok azon tulajdonságát értjük, hogy a szomszédos különböző sebességű folyadékrétegek között a sebességek kiegyenlítésére szolgáló reakcióerők lépnek fel.

A fázisok közös határán olyan jelenségek észlelhetők, melyek csak molekuláris szemlélettel magyarázhatók, ilyenek a kohéziós- vagy normálnyomás, a tapadás vagy adhézió és a korábban említett felületi feszültség és a vele szorosan kapcsolatban álló kapilláris nyomás, melynek eredménye a határfelületi hártyának nevezett negyedik fázis. Ezen kapilláris hidak kialakulását folyadék hozzáadásával érhetjük el, és elsősorban ez a hártya biztosítja a nedves talaj szilárdságát. A határfelületi hártya legfontosabb tulajdonságát, a felületi feszültséget és kialakulásának okát az előző pontban tárgyaltuk, azonban itt említenénk meg a hártya egyéb sajátosságait, hogy képes átadni a kapilláris erőket a szilárd fázisra, és hogy ez a kapilláris erő okozza a talaj térfogatváltozását a kiszáradás és a nedvesedés során. [2]; [4]; [5]

2.1.3 A telítetlen talajok anyagmodellje

A telítetlen talajokat leíró legfontosabb anyagmodellek a feszültség-alakváltozás egyenletek, a Mohr-Coulomb féle képlékenységi feltétel és az áramlási problémákra vonatkozó Darcy törvények. A feszültség-alakváltozás összefüggésben két feszültségi és két alakváltozási csoport szerepel, így az összefüggést két független kétdimenziós felület írja le. A felületek a zérus nettó normálfeszültségi síkkal vett metszésvonalai a víztartási görbe és a zsugorodás-szívás görbe, továbbá a zérus szívás síkjával vett metszésvonala az invariánsok függvényében megadott kompressziós görbe.

A Darcy törvény minden fázisra érvényes. Mivel az áteresztőképesség függ a fázis térfogatától, így a kisebb térfogati arányú fázis kisebb áteresztőképességet jelent. Tehát a telített-telítetlen határállapotban a telített talajokra jellemző Darcy törvényt kapjuk, mivel a levegő fázis áteresztő képessége zérus.

Tanulmányunkban a Mohr-Coulomb törési feltétellel szeretnénk részletesebben foglalkozni. A feltétel kétdimenziós felület, ahol a szívás szempontjából vizsgált változást a φ^{b} szög írja le, melynek értéke a szívás növelésével φ -ről közel zérusra csökken. A felület a telített-telítetlen állapot határán a telített talajokra jellemző Mohr-Coulomb törési egyenesre redukálódik. [2]; [4]; [5]

2.1.4 A teltetlen talajok feszültségi állapotváltozói

Ahhoz, hogy a Mohr-Coulomb féle törési feltételt kiterjeszthessük telítetlen talajok esetére, értelmeznünk kell a feszültségi állapotváltozókat mind telített, mind telítetlen esetben.

Kontinuummechanikai értelmezés szerint az állapotváltozók a rendszer állapotát jellemzik az anyagjellemzőktől függetlenül. A talajok viselkedésének leírásához megfelelő feszültségi állapotváltozókra van szükségünk, mivel sem a semleges feszültség, sem a folyadék és levegő fázis feszültsége nem jellemzik egyértelműen a talajt. Az állapotváltozókat mérhető feszültségek függvényében érdemes megadni, talajok esetén a teljes feszültség (σ), a póruslégnyomás (u_a) és a pórusvíznyomás (u_w) segítségével. Célszerű a lehető legkevesebb feszültségi állapotváltozó használata. Ezt úgy érhetjük el, hogy egy "referencia" változót jelölünk ki, és képezzük a többi feszültségnek ezzel való különbségét. A kombinációk közül a független állapotváltozó esetén a referenciaváltozó szerepe elhanyagolható lesz.

Telített talaj esetén a hatékony feszültséget tekinthetjük feszültségi állapotváltozónak, melyet először Terzaghi definiált: "Ha a hézagok vízzel telítettek, és a víz "u" nyomással jellemezhető, a teljes feszültség két részből áll. Az egyik rész "u", a vízben és a szilárd részben minden irányban, azonos nagyságban hat. Ez a semleges feszültség (pórusvíznyomás). A semleges feszültség feletti többletet – a hatékony feszültséget – kizárólag a talaj szilárd része viseli. A feszültség

7

változás minden olyan mérhető hatása, mint a kompresszió, nyíródás és a nyírószilárdság csökkenése a hatékony feszültség változásának eredményeképpen jön létre." Ezt bizonyítja, hogy a telített talaj referenciaváltozóiból (teljes feszültség és pórusvíznyomás) képzett kombinációk közül a (σ - u_w), u_w esetén a hatékony feszültség (σ - u_w) megfelelő független állapotváltozó, hiszen a pórusvíznyomás szerepe általában elhanyagolható, mivel a szemcsék kompresszibilitása kicsi, és a víznek nincs nyírószilárdsága.

Telítetlen talajok esetén a fázisok nagyobb száma miatt több független feszültségi állapotváltozó bevezetése szükséges. Mint lehetséges referenciaváltozó, a teljes feszültség (σ), a póruslégnyomás (u_a) és a pórusvíznyomás (u_w) jöhet szóba. A lehetséges állapotváltozó kombinációk:

 $(\sigma - \mathbf{u}_a)$, $(\mathbf{u}_a - \mathbf{u}_w)$, \mathbf{u}_a

 $(\sigma - \mathbf{u}_{w}), (\mathbf{u}_{a} - \mathbf{u}_{w}), \mathbf{u}_{w}$

 $(\sigma - \mathbf{u}_{a}), (\sigma - \mathbf{u}_{w}), \sigma$

 u_a sok esetben állandó, így a ($\sigma - u_a$) redukált feszültség és a ($u_a - u_w$) szívás jelenti a két független feszültségi állapotváltozót. [2]; [4]; [5]

2.1.5 A Mohr-Coulomb törési feltétel telítetlen talajok esetén

Mivel a telítetlen talajok szilárdságát két független feszültségi állapotváltozó szabja meg (redukált feszültség és szívás), a telített talajoknál megismert törési egyenest egy törési felület helyettesíti:

 $\tau = (\sigma - \mathbf{u}_a) \operatorname{tg} \varphi + (\mathbf{u}_a - \mathbf{u}_w) \operatorname{tg} \varphi^{\mathbf{b}} + \mathbf{c}$

ahol:

au – nyírószilárdság

 $\sigma'' = \sigma - u_a - nettó/ redukált normálfeszültség$

 $s = u_a - u_w - szívás$

c – telített kohézió

 φ – súrlódási szög σ " szerint

 $\varphi^{\tt b}$ – súrlódási szög "s" szerint, kapilláris kohézió

Az alábbi ábra telítetlen talaj törési felületét mutatja [2.3. ábra]. A felület két jellemző metszete, ahol a nettó normálfeszültség zérus (sárga egyenes), illetve, ahol a szívás értéke zérus (zöld

egyenes). Utóbbi a telített állapothoz tartozó sík, itt a felület a Mohr-Coulomb féle törési egyenessé egyszerűsödik: $u_a = u_w$

 $\tau = (\sigma - \mathbf{u}_{w}) \operatorname{tg} \varphi + \mathbf{c}$

Szükséges megjegyezni, hogy az ábrázolt törési feltétel csak abban az esetben lesz sík felület, ha a szívás tengelyen logaritmikus skálát veszünk fel. Így az ábráról megállapítható a korábban említett feltételezés, mi szerint φ^{b} a szívás növekedésével zérushoz tart. A három tengelyen történő ábrázolás magyarázatot ad a telítetlen talajokban rejlő nyílószilárdsági többletre is. A telített talajokra vonatkozó Coulomb-egyeneshez tartozó c' kohézió a nyírószilárdság-szívás diagramon is megjelenik, és a szívás növekedésével nő, mely növekményt az (u_a - u_w) tg φ^{b} kifejezés jelenti. Tehát telítetlen talajok nyírószilárdsági többlete a telített kohézió növelésével vehető figyelembe. [8]

2.3. ábra. Telítetlen talajok törési felülete

2.2 A szívás

2.2.1 A szívás fogalma

A pórusvíznyomás talajvíztükör feletti lineáris változásából adódik a telítetlen talajok legfontosabb tulajdonsága, hogy bennük a pórusvíznyomás kisebb a póruslevegő nyomásánál [2.1. ábra]. E két talajjellemző különbségét nevezik szívásnak. A szívás a kapilláris szívás és az

ozmotikus szívás összegeként írható le (Y = (u_a - u_w) + π), ahol a kapilláris szívás (u_a - u_w) a légnyomás és a talajvízzel azonos sótartalmú víz feszültségének különbségeként definiálható, az ozmotikus szívás (π) pedig a talajvízzel azonos sótartalmú víz és a kémiailag tiszta víz feszültségének különbsége. Mivel csak a kapilláris szívás nagysága függ a talaj víztartalmától, a víztartalom változása csak a szívás kapilláris komponensét változtatja lényegesen, így egy átlagos mérnöki probléma megoldásakor szíváson a kapilláris szívást értjük. Mérések szempontjából az ozmotikus szívás jelentősége nagy, mivel csak ez a komponens szabályozható a különböző módszerekkel. [2]; [4]; [5]

2.2.2 A szívás szabályozására használt módszerek

- a) Egyszerű mechanikai módszerek: Ekkor gravitációs vagy vákuumos eljárással légköri szinten tartják a póruslevegő-nyomást és csökkentett szinten a pórusvíznyomást.
- b) Tengelyeltolási technika: Itt a pórusvíznyomást tartják állandó szinten, míg a póruslevegő-nyomást növelik. Ez a módszer 15 MPa szívásig használható.
- c) Ozmotikus szívás mérése: Féligáteresztő hártyát helyeznek a víztér és a minta közé. A vizsgálat 1,5-2 MPa szívásig alkalmazható.
- d) 30 MPa szívásig a szívásérték beállítható a relatív nedvességtartalom szabályozásával.

Méréseink során gravitációs vagy vákuumos módszert, és a tengelyeltolási technikát alkalmazó nyomásmembrános készüléket használtuk, így ezt a két eljárást szeretnénk részletesen bemutatni.

A gravitációs vagy vákuumos módszer esetén csökkentjük a víznyomást a minta alján, majd az egyensúly beállta után meghatározzuk az ehhez tartozó víztartalmat. A vízfázisra ható szívást úgy hozzuk létre, hogy a mintát alulról határoló membránhoz hajlékony csővel kapcsolódó mérőtartályt függőlegesen mozgatjuk.

A rendszer egyik legfontosabb alkotóeleme a membrán, amely az alacsonyan tartott vízfelszín által kifejtett szívást a mintához továbbítja egy hajlékony csőben. Az anyagának olyannak kell lennie, hogy a létrehozott szívástartományon belül átbocsássa a vizet, de visszatartsa a levegőt, különben az a membránon áthaladna, és az összekötő cső felső részén összegyűlne, így megszakítaná a szívást továbbító vizet. A jelenség elkerülése végett a membránt a szívás mértékének függvényében kell megválasztani. Egyre nagyobb mértékű szívásnál egyre finomabb pórusú anyagot kell választani, mert a durvább pórusú anyagok nagyobb szívásnál áteresztik a levegőt, viszont a finomabb pórusú anyagoknak alacsony a vízáteresztő képessége, ezért 0 kPa $<(u_a-u_w) < 10$ kPa között homoklapos, és 10 kPa $<(u_a-u_w) < 100$ kPa között kaolinlapos berendezést használunk. A berendezéseket csupán a töltőanyag milyensége különbözteti meg egymástól, felépítésük az alábbi ábrán látható [2.4. ábra].

2.4. ábra. Homoklapos berendezés a talaj nedvességpotenciáljának meghatározására

- 1. Átlátszatlan PVC fedél emelőfüllel
- 2. Átlátszó plexi kád
- 3. 100 cm3- es sárgaréz hengerekben elhelyezett talajminta
- 4. A hengerek alsó nyílását lezáró nylon szitaszövet, szorító gumikarikával
- 5. Nylon szitaszövet a szűrőlap felszínén
- 6. Töltőanyag
- 7. Azbesztgyapot
- 8. Átlátszó plexiből készült perforált tartólap
- 9. Tartólap lábazata
- 10. Üvegcső a vákuumtérben esetleg megjelenő légbuborékok eltávolítására
- 11. Kétfuratú gumidugó
- 12. Légbuborék mentesítő cső kivezetése a vákuumforráshoz
- 13. cm-beosztással ellátott acélállvány
- 14. Nívópalack
- 15. Állandó vízszintet biztosító edény
- 16. Rögzíthető fémkonzol
- 17. Vízgyűjtő edény

A nyomásmembrános készüléket nagyobb szívás értékeknél használják, 100 kPa $< (u_a - u_w) <$ 1600 kPa között. Az eljárás során levegővel túlnyomást hozunk létre a minta körüli térben, miközben a víz nyomását is szabályozzuk, mely a minta alján zérus.

Ez az eljárás a tengelyeltolási technika (Hilf 1948 és Rétháti-Imre 1991). Tehát a talajminta környezetében megnöveljük a légnyomást, nő a pórusvíznyomás, a póruslevegőnyomás és a teljes feszültség, viszont a normálfeszültség és a szívás (u_a-u_w) állandó marad. Olyan a talajminta, mintha egy gumimembránnal lenne fedve a felszínén lévő meniszkuszfelületek miatt. A póruslevegőnyomás növelésével bármekkora szívás értékek hozhatóak létre, ha a pórusvíznyomás értékét úgy szabályozzuk, hogy szabad kifolyást biztosítunk (u_w = 0).

Ennél a mérési módszernél is ügyelni kell a membrán anyagára. Olyan anyagra kell helyezni a mintát, amely a létrehozott nyomásnál a vizet átereszti, de a levegőt nem. Jelentős a nyomáskülönbség a membrán alsó és felső felülete között, felül a létrehozott, alul pedig atmoszférikus nyomás uralkodik. Emiatt a membrán anyaga celofán, amelyet a mérés megkezdése előtt vízbe kell áztatni, hogy elhelyezhető legyen, könnyebben különben törékeny lenne. A készülék 20-30 cm átmérőjű vastag acélból készült, amelyet légmentesen zár le egy vastag falú fedél [2.4. ábra]. [1]; [5]

2.4. ábra. A nyomásmembrános készülék

2.3 A víztartási görbe

2.3.1 A víztartási görbe definíciója

A kinematikai állapotváltozóknak a feszültségi állapotváltozótól való függését két független felület írja le. A két felület adott síkkal vett két metszete ugyanaz a függvény, ezt nevezzük kompressziós görbének, amely az átlagos hatékony normálfeszültség (σ ') függvényében írja le a térfogati alakváltozást (ε). A két felületnek a σ "=0 síkkal vett metszete két különböző görbe, ezek a víztartási görbe és a zsugorodási görbe vagy kiszáradási görbe. A víztartási görbe a legfontosabb telítetlen talaj függvény és csak telítetlen talajon végzett kísérlettel határozható meg, a talaj nedvességtartalmát a szívás függvényében ábrázolja szemilogaritmikus koordinátarendszerben.

2.5. ábra Különböző szemeloszlású talajok jellegzetes víztartási görbéje

Α különböző szemeloszlású talajoknál pórustér-eloszlással а magyarázhatók az eltérő víztartási Három lényegesen görbék. eltérő szemeloszlású talaj (szemcsés, átmeneti és kötött) víztartási görbéje látható a 2.5. ábrán. Míg agyagok esetén egy bizonyos mértékű szívást elérve, majd azt növelve a térfogati víztartalom változása lineárisnak mondható, homokos talajoknál а víztartalom jelentős csökkenése már jóval kisebb szívás esetén, hirtelen következik be.

A víztartási görbe talajtani jelölésrendszerét mutatja a 2.6. ábra. [2]; [4]; [5]

Az ábrán jelölt pontok jelentése:

- hy higroszkóposság, talajban az a víztartalom, amely akkor alakul ki, ha az 50%-os relatív páratartalmú levegővel kerül kapcsolatba.
- HV holtvíztartalom, a növény hervadásnak indul ennél a víztartalomnál.
- VK_{sz} szabadföldi vízkapacitás, az a vízmennyiség, amelyet a természetes rétegezettségű és mély talajvízszintű talaj, amely nem jut mértékadó kapilláris vízutánpótláshoz és a felszínére jutó víz mennyiségéből befogadni, elraktározni és gravitációs erő hatásának ellenére visszatartani képes.

2.6. ábra. Talajtani jelölésrendszer

- DV hasznosítható vízkészlet, a szabadföldi vízkapacitás és a holtvíztartalom különbsége, és a növények által felvehető vízmennyiség.
- VK_T teljes vízkapacitás, teljesen telített talaj térfogatszázalékban meghatározott nedvességtartalma.
- o P₀-összporozitás, közelítően megegyezik a teljes vízkapacitással

2.3.2 A víztartási görbe matematikai leírása

A laboratóriumi mérés során a víztartási görbének csak néhány pontját tudjuk meghatározni, mert csak meghatározott szívás (ψ) értékekhez tudunk víztartalmat (v) számolni. Ezért a felhasználás érdekében szükséges az ismert pontokra matematikailag leírható függvényt illeszteni.

A következőkben bemutatunk néhány empirikus víztartalom – szívás függvényt, az illesztés során maximálisan meghatározható paraméterek számának függvényében. Az r alsó index a reziduális víztartalomra illetve az ehhez tartozó szívásra, az s alsó index pedig a telített állapot víztartalmára utal. [5]

Williams (1983) modellje:

lns = a + b lnvahol: v térfogati víztartalom $s = u_a - u_w szívás$ *a, b* paraméterek

Gardner (1958) modellje:

$$v = v_r + \frac{v_s - v_r}{1 + (as)^n}$$

ahol v térfogati víztartalom

 $s = u_a - u_w$ szívás

v_r, *v_s*, *a*, és *n* paraméterek

Brooks – Corey (1964) modellje:

$$v = v_r + \left(v_s - v_r\right) \left(\frac{1}{a\Psi}\right)^n$$

ahol v térfogati víztartalom

$$s = u_a$$
- u_w szívás
 v_r , v_s , a paraméterek

McKie – Bumb (1984) modellje:

$$v = v_r + (v_s - v_r)e^{\frac{a-s}{b}}$$
$$v = v_r + \frac{v_s - v_r}{1 + e^{\frac{s-a}{b}}}$$

ahol v térfogati víztartalom

 $s = u_a - u_w$ szívás

 v_r , v_s , a, és b paraméterek

Fredlund – Xing (1994) modellje:

$$v - v_r = \frac{v_s - v_r}{\left\{ \ln \left[e + \left(\frac{u_a - u_w}{a} \right)^n \right] \right\}^m}$$

ahol v térfogati víztartalom

$$s = u_a - u_w$$
 szívás

v_s, *v_r*, *a*, *n*, és *m* paraméterek

$$v = \left[1 - \frac{\ln\left(1 + \frac{s}{\Psi_r}\right)}{\ln\left(1 + \frac{1000000}{s_r}\right)}\right] \frac{v_s}{\left\{\ln\left[e + (as)^n\right]^n}$$

ahol v térfogati víztartalom,

$$s = u_a - u_w$$
 szívás

 Ψ_r , s_r , a, n, és m paraméterek

van Genuchten (1980) modellje:

$$v = v_r + \frac{v_s - v_r}{\left(1 + (as)^n \right)^{\left(1 - \frac{1}{n}\right)}}$$

ahol v térfogati víztartalom

 $s = u_a - u_w$ szívás

v_s, *v_r*, *a*, *n*, és *m* paraméterek

2.3.3 A víztartási görbe meghatározása számítással

A gyakorlatban fontos a görbe meghatározása közelítő módszerekkel, mert a laboratóriumi mérések időigényesek és költségesek.

A víztartási görbét főként a talaj szemeloszlása és a pórustér eloszlása határozza meg. A pórustér modellezésére elméleteket dolgoztak ki adott szemeloszlás esetén. Tehát egy adott talaj szemeloszlási görbéjéből, az elméletek felhasználásával előállítható a talaj víztartási görbéje. (Arya és Paris 1981).

Regressziós modellt alkottak a víztartási görbe meghatározására, és az összefüggést regressziós egyenlettel írják le. A szívás értékéhez tartozó víztartalom számítható a mért vagy adott paraméterek felhasználásával. Ezek a talajparaméterek: a szemeloszlás, szervesanyag-tartalom, és a tömörség. (Rajkai 1993).

A talaj víztartási és a szemeloszlási görbéje között összefüggés tapasztalható. Laboratóriumi körülmények között meghatározott víztartási és szemeloszlási görbéből adatbázist hoztak létre, így becsülni lehet egy talaj szemeloszlási görbéjéből a víztartási görbéjét.

A gyakorlatban lehetetlen minden esetben megmérni a víztartási görbét, ezért csak a gondosan kiválasztott szemeloszlási görbéhez mérik meg, egyéb esetben a szemeloszlási entrópia alapján "interpolálják" az eredményt. [2]; [4]; [5]

2.3.4 A víztartási görbe gyakorlati felhasználása

A görbe alkalmazásának egyik legjelentősebb területe a már korábban ismertetett Mohr-Coulomb feltétel módosulása a hagyományos törési feltételhez képest, emellett számos még gyakorlati felhasználása ismeretes.

Áramlásokra felírható egyenletekben felhasználásra kerül a talaj "tározási jellemzője", mely a víztartási görbe meredeksége:

$$m_2^w = \frac{\partial v}{\partial (u_a - u_w)}$$

ahol : v – térfogati víztartalom,

 u_a - u_w -szívás.

A szívás függvényében a víztartási görbe felhasználásával megadható az áteresztőképességi együttható, mivel ez a talajparaméter három talajfizikai jellemzőtől függ, mely változók – telítettség, hézagtényező, víztartalom - közül telítetlen talajok esetén kettő független. Így az áteresztőképességi együttható lényegesen csak a víztartalomtól függ.

A görbe felhasználható különleges térfogatváltozási feladatok empirikus megoldásában. Példaként említhető Richard módszere, mely duzzadó talaj emelkedésének számítására alkalmas, és a talajminta laboratóriumi víztartási görbéjét használja fel. Az adott mélységben mért szívást alapul véve számítja a víztartalom változását, amit egy empirikus összefüggés alapján térfogatváltozásra számít át.

A talajtanban a víztartási görbe segítségével modellezhető a természetes állapotú talaj vízháztartása. A talajnedvesség tényleges eloszlása és a talaj víztartási görbéjének különbsége megmutatja, hogy hol jelentkezik hiány és víztöbblet a szelvényben. Emellett növények által felvehető vízmennyiség meghatározásához is használható a görbe. [2]; [4]; [5]

2.3.5 A víztartási görbe és φ^{b} kapcsolata

A mérési tapasztalatok azt mutatják, hogy a Mohr-Coulomb törési feltétel telítetlen talajok esetén nem lineáris, tehát a φ^{b} szög nem állandó, a szívás függvényében változik. Ez az oka

2.6. ábra. Víztartási görbe

annak, hogy a víztartási görbe három jól elkülöníthető tartományra bontható. Az alábbi ábrán iszaptalaj jellemző víztartási görbéje látható [2.6. ábra]. Ha a szívás kisebb, mint a levegő belépési szívás, akkor a talajminta vízzel gyakorlatilag telített, a víztartalom nem változik, a görbe közel vízszintes. Ebben az állapotban (a levegő belépési szívás eléréséig) $\varphi^{b} = \varphi$. Ezután a szívás

növekedésével rohamosan csökken a víztartalom, és nő a levegőtartalom, telítetlen állapot áll elő. Míg a szívás a levegő belépési szívás értékétől a reziduális víztartalomhoz tartozó szívás értékéig nő, φ^{b} értéke φ -ről zérusra csökken. Amennyiben a szívás a reziduális víztartalomhoz tartozó szívás érték fölött van, $\varphi^{b} \sim 0$, a szívás növekedésével csak kis mértékben csökken a víztartalom, a görbe ellapul. [2]; [4]; [5]

3 A lösztalajok bemutatása

Hazánkban számos problémát a lösz okoz, ezért kapta ebben a témában és a kísérleteinkben is a fő szerepet. A lösztalaj legnagyobb és talán egyetlen hátránya, hogy roskadásra hajlamos, tehát víz és terhelés együttes hatására nagymértékű összenyomódást és alakváltozást szenved.

Általában sárgás színű, de előfordul sárgásbarna változata is a természetben. Fő ásványa a kvarc, valamint található benne földpát, csillám, agyagásvány és mész. Az utóbbi kettő kötőanyagként is megjelenik. A lösz makropórusokat, szabad szemmel is látható likacsokat tartalmaz. A szegletvíz, ami a talajrészecskék érintkezési pontjainál található, a kapilláris víz egyik formája, egy gyenge felületi kötést hoz létre a keletkezéskor. Ez azonban idővel egyre szilárdabbá válik, valószínűleg a vízfilmek részbeni elpárolgása miatt kiváló mészhártyák és egyéb cementáló anyagok miatt. Így a makroporózus, laza szerkezet megmarad akkor is, hogyha további rétegek rakódnak rá. Ha a löszt megterheljük, a mészhártyákban és a cementáló kötésekben finom hajszálrepedések képződnek, a stabilitás azonban megmarad a szegletvizek látszólagos kohéziója révén. Viszont, ha a megterhelt löszt vízzel árasztjuk el, ez a hatás megszűnik, és a szerkezet összeroskad, összeomlik. A mi esetünkben nem a szokásos nagy hézagtényezős lösz állt a rendelkezésünkre, hanem agyagosabb és tömöttebb, ezért vízhatására 5-6 %-ot roskadt.

A lösz belső súrlódási szöge 15-35°, kohéziója pedig 15-120 kPa között változik, kőzettani és szemeloszlási tulajdonságai egyenletesek. Szemeloszlását 0,01 és 0,05 mm átmérőjű szemcsék adják, és a szemeloszlási görbéje meredek lefutású. Rendkívül érzékeny a vízre, ezt az is bizonyítja, hogy a kohéziója víz hatására 10-50%-ot is eshet, valamint a belső súrlódási szöge 60-70%-ára is csökkenhet. [6]

4 Az alkalmazott vizsgálatok

4.1 A mérések célja

A vizsgálatokhoz alkalmazott hazánkra jellemző lösztalaj nyírószilárdsági paramétereinek pontosításához szükségünk volt a telítetlen talajokra jellemző nyírófeszültség-szívás diagram, illetve a φ^{b} kapilláris kohézió meghatározására. Első lépésben meghatároztuk a talaj víztartási görbéjét, majd különböző víztartalmak mellett mértük a nyírószilárdsági paramétereket. Az ezen víztartalmakhoz tartozó szívás értékeket leolvastuk a korábban felrajzolt víztartási görbéről,

majd a kapott szívás-nyírófeszültség diagramok segítségével definiáltuk a φ^{b} illetve a kohézió értékét.

4.2 A víztartási görbe meghatározása

A víztartási görbét lépcsős terhelésű kísérlettel határozzuk meg. Egy vizsgált mintát különböző, egymást követő szívás hatásának tesszük ki és mérjük a szívás értékéhez tartozó víztartalmat. A mérések végén ezeket az értékeket koordináta rendszerben ábrázoljuk, amelynek a vízszintes tengelyén a szívás illetve a kapilláris szívás logaritmusát, a függőleges tengelyen pedig a víztartalmat illetve a térfogati víztartalmat ábrázoljuk aritmetikus skálán.

A mérés során meghatározandó adat a víztartalom, a szívás értéke pedig általunk létrehozott mennyiség.

Általában nem elegendő egy módszer használata a teljes víztartási görbe meghatározásához.

A méréseinket lehetőségünk volt a Magyar Tudományos Akadémia Agrártudományi Kutatóközpont Talajtani és Agrokémiai Intézetében végezni Dr. Rajkai Kálmán közreműködésével és Bányás Ágnes laboráns segítségével.

A méréssorozat a kutató intézetben összesen 4 hetet vett igénybe, a további vizsgálatokat a Budapesti Műszaki és Gazdaságtudományi egyetem talajmechanikai laboratóriumában folytattuk.

Elsőként kiszúrtunk három mintát ugyanabból a fúrásból, és telítettük azokat. A három minta közül kettőt a gravitációs-vákuumos módszerhez használtunk fel, egyet pedig nyomásmembrános készülékhez tettünk félre.

Első módszer: Gravitációs vagy vákuum módszer egy "félig-áteresztő" lappal

A telítés megkezdése előtt szitaszövetet rögzítettünk a két mintának arra a felére, aminek a kupakja lyukacsos volt, hogy megakadályozzuk a talaj kiszóródását. Kupakokra a párolgás elkerülése végett van szükség, a lyukacsos kupakra pedig azért, hogy a felesleges levegő távozni tudjon, miközben telítődik a minta. A telítést úgy végeztük, hogy egy műanyag "medencébe" helyeztük a két mintát úgy, hogy a minták csak félig merültek el a vízben. Fontos megemlíteni, hogy desztillált vizet használtunk a telítéshez, hogy elkerüljük a különböző élősködők megjelenését a talajban, amelyek befolyásolhatják a mérések eredményét. Az esetünkben

használt talajnak legalább 5 napra volt szüksége, hogy teljesen telítődjön, ezért mi is 5 napig hagytuk a medencében a mintákat.

A telítés után lemértük a minták tömegét (a kiszúró hengerrel és tartozékokkal együtt).

Ezután raktuk bele az első úgynevezett "box"-ba [4.2.kép], amelyben pF 0 értékű szívást alkalmaztunk, melynek vízoszlop cm-ben kifejezett szívóereje 1. Ez az érték úgy jön létre, hogy a szívás értékét meghatározó szabad vízfelszín és a minták középvonala közötti távolság 1 cm. Ezt követően a "box"-ban hagytuk a mintákat 6 napon keresztül. Mielőtt áttértünk volna a következő lépcsőre a mérésfolyamatban, lemértük a minták tömegét. Ezt minden lépcső között megtettük [4.1. kép]. Minden alkalommal tapasztalhattuk, hogy a víztartalom csökkent mind a két mintánál hasonló mennyiségben.

4.1. kép A 3-as jelű mintánk két szívásmérés között

A továbbiakban a különböző mértékű szívást úgy lehetne változtatni, hogy a mintát alulról határoló membránhoz hajlékony csővel kapcsolódó mérőtartályt függőlegesen mozgatjuk. Ez a módszer nagyon időigényes lenne, mert a víztartalom csökkenésével a minta áteresztőképessége nagyon lecsökken, az egyensúly beállásához akár 100 óra is szükséges lehet. A mi esetünkben lehetőség volt különböző box-ok használatához, amelyek különböző szívás értékekhez voltak beállítva, ezért jelentősen lecsökkent a mérés teljes hossza.

Ezután raktuk a pF 1 értékhez tartozó dobozba a mintákat, és hagytuk abban 4 napig. pF 1 értéknél már szükség van porózus lapra, amelynek anyaga durva homok. A minták és a durva homok között szitaszövetet helyeztünk el.

A következő fokozat a pF 2 volt (vízoszlop magassága: 100 cm), ennél az értéknél a porózus lap anyaga már finom homok volt. Ebben a dobozban is 4 napot hagytuk a mintákat. Az utolsó érték a pF 2,3 (vízoszlop magassága 200 cm). Ennél a fokozatnál kaolint használtunk porózus lap anyagaként.

4.2. kép Különböző szívásértékekhez beállított "box"-ok

Az utolsó szívás után is megmértük a minták tömegét, majd előzetesen megmért fém dobozokba raktuk őket és úgy is megmértük [4.3. kép]. Ezután helyeztük be a szárítóberendezésbe a mintákat, amelyeket 105 ⁰C-on két napon keresztül szárítottunk. Végül a dobozokkal együtt ismét megmértük a minták tömegét, így pár egyszerű egyenlettel megkaptuk a víztartalmakat a különböző szívás értékekhez.

4.3. kép Szárításra váró minták a fémdobozokban

Második módszer: Nyomásmemrános készülék:

A fent említett félre rakott mintát kiszedtük a kiszúró hengerből és telítettük egy keverőpohárban. Előkészítettük a nyomásmembrános készülékeket, megnedvesítettük az aljukat, majd ráhelyeztük az előzetesen desztillált vízbe beáztatott szitaszövetet, és celofánt. Két réteg celofán került fel a nagyobb biztonság érdekében, mivel a nagy nyomás hatására elszakadhat, ha csak egy réteget helyezünk a minták alá. Két készüléket használtunk, egyet pF 3,4 értékű szívás előállításához, és egyet pF 4,2 értékű szíváshoz. A nagyon híg állapotú mintánkat 4 db 4 cm átmérőjű 1 cm magas műanyag gyűrűbe kanalaztuk úgy, hogy a két-két gyűrűt a celofánokra helyeztük előzetesen. Végül egy kis kupakban megnedvesített vattát helyeztünk el a készülékekben, mielőtt légmentesen lezártuk volna, azért, hogy a megfelelő páratartalmat biztosítsuk a mérés közben [4.4. és 4.5. kép].

4.4. kép pF 4,2 szívás értékhez tartozó készülék, a gyűrűbe kanalazott mintákkal

Ezután lezártuk a két készülék kamráját és a légnyomást kompresszor és levegőpalack segítségével létrehoztuk. 4 nap elteltével, az egyensúly beálltával a kamrában a nyomást lecsökkentettük és kivettük a mintákat, kiszedtük a gyűrűkből és fém dobozokba raktuk. A dobozok tömegét előzetesen lemértük, majd a mintával együtt is megmértük, ezután a mintákat szárító berendezésbe raktuk és 105 ⁰C-on két napig szárítottuk. A szárítás után ismét lemértük a dobozokat a mintákkal együtt, ezek után meg tudtuk határozni a víztartalmakat.

4.5. kép A már lezárt és a még nyitott nyomásmembrános készülék

4.3 Közvetlen nyírókísérlet

A különböző víztartalmakhoz tartozó Mohr-Coulomb-féle törési feltételt (Coulomb-egyenest) a Budapesti Műszaki és Gazdaságtudományi Egyetem Talajmechanikai Laboratóriumában határoztuk meg közvetlen nyírókísérlet segítségével.

A vizsgálathoz zavartalan, prizmatikus talajmintákat vettünk 6x6x2 cm-es mérettel. A közvetlen nyírókísérlet eszköze a nyíródoboz [4.6. kép], mely egy alsó és egy felső egymásra helyezett keretből áll, melyek egymáshoz képest vízszintes elmozdulásra képesek. A vizsgálni kívánt talajmintát két szűrőkő közé helyeztük. A Coulomb-egyenes három pontjának meghatározása érdekében három különböző nagyságú (50 kPa, 100 kPa, 200 kPa) állandó függőleges normális terhelés mellett végeztük el a nyírókísérletet ügyelve arra, hogy a terhelésekhez tartozó minták víztartalma azonos legyen, továbbá a minták tömege egyenesen arányos legyen a normális terhelés nagyságával [4.7. kép]. Mivel a kezdeti feszültségállapot és a törést okozó feszültségállapot, tehát a terhelés sebessége nem csak a nyírószilárdság értékét, de a víztartalom változását is befolyásolja, *gyors kísérletet* végeztünk. Ez azt jelenti, hogy a talajminta konszolidációjára nem volt lehetőség, így a pórusvíznyomás nem szűnt meg, a minta térfogata azonos maradt - szemcseátrendeződés nem történt -, tehát a minta víztartalma a kísérlet során közel változatlan volt.

4.6. kép Nyíródoboz

A mérés során az alsó keretet fixen rögzítettük, a felső keretre pedig vízszintes irányú nyíróerőt (τ) adtunk úgy, hogy a nyíródoboz két kerete állandó sebességgel mozduljon el egymáshoz képest. Így a talajminta vízszintes irányú állandó deformációjához (Δ s) szükséges csúsztató erőt mértük. A törési síkot tehát a berendezés kialakításával eleve kijelöltük, és tulajdonképpen azt vizsgáltuk, hogy a kijelölt csúszólapon mekkora feszültségek hozzák létre a határállapotot. Az egyes normálfeszültségekhez tartozó τ - Δ s diagramokról leolvasott maximális nyírási ellenállás (a mozgás megindulását meghatározó feszültség) segítségével megadható az adott mintára vonatkozó Coulomb-egyenes, és meghatározható a nyírószilárdsági egyenes két paramétere, a belső súrlódási szög és a kohézió.

A közvetlen nyírókísérletet hét különböző nagyságú víztartalommal rendelkező minta esetén végeztük el, légszáraz és természetes állapotban, a nyíródobozban telített minta esetén, és három közel azonos víztartalmú mintán, melyeket egy olyan fúrásszelvényből szúrtunk ki, melyet előző nap szűrőkőre állítva vizes edénybe helyeztünk, így a kapilláris vízfelszívás eredményeképpen a szelvény magassága mentén csökkenő víztartalmú rétegeket kaptunk. A hetedik minta víztartalmát magunk állítottuk be a szükséges értékre úgy, hogy kiszámoltuk a minta nedves tömegéhez hozzáadandó víz tömegét. Erre azért volt szükség, hogy egy hiányzó Coulombegyenest pótoljunk úgy, hogy a kapott egyenesekhez tartozó térfogati víztartalmak közötti differencia közel azonos legyen.

4.7. kép Különböző terhelésekkel elnyírt minták

5 Eredmények

5.1 A víztartási görbe meghatározása

A víztartási görbe meghatározását két különböző matematikai módszerrel végeztük el.

A görbét a Fredlund – Xing (1994) modell,

$$v - v_r = \frac{v_s - v_r}{\left\{ \ln \left[e + \left(\frac{u_a - u_w}{a} \right)^n \right] \right\}^m}$$

ahol v térfogati víztartalom

 $s = u_a - u_w$ szívás

v_s, *v_r*, *a*, *n*, és *m* paraméterek

$$v = \left\lfloor 1 - \frac{\ln\left(1 + \frac{s}{\Psi_r}\right)}{\ln\left(1 + \frac{1000000}{s_r}\right)} \right\rfloor \frac{v_s}{\left\{\ln\left[e + (as)^m\right]\right\}^n}$$

ahol v térfogati víztartalom,

 $s = u_a - u_w$ szívás

 Ψ_r , s_r , a, n, és m paraméterek

és Van Genuchten (1980) modell használatával határoztuk meg:

$$v = v_r + \frac{v_s - v_r}{\left(1 + (as)^n \right)^{\left(1 - \frac{1}{n}\right)}}$$

ahol v térfogati víztartalom

 $s = u_a$ - u_w szívás v_s , v_r , a, n, és m paraméterek

Mivel a kutatásainkban nem a görbe meghatározása, hanem annak gyakorlati felhasználása hangsúlyos, a görbe illesztésénél használt a paraméterek értékeire Dr. Rajkai Kálmán adott ajánlást, a pontokra való illesztésben pedig Dr. Mahler András nyújtott segítséget. [5.1. táblázat]

		Van Genuchten		Fredlund			
	Sza	Számított (illesztett) 'v' értékek					
s (kPa)		v (%)		v (%)			
0,1		44,2%		44,7%			
1		42,4%		44,1%			
5		38,4%		40,2%			
10		35,6%		36,2%			
100		23,4%		21,3%			
500		15,8%		16,1%			
2000		11,1%		13,6%			
10000		7,4%		11,5%			
Illesztési paraméterek:							
	vr=	1,0%	vs=	44,7%			
	vs=	44,7%	αf=	7,6			
	a=	0,077	nf=	1,3			
	n=	0,74	mf=	0,6			
	m =	0,39	st=	1,00E+06			

5.1. táblázat Víztartási görbe paraméterei

Mind a két talajmintához, mind a két módszerrel meghatároztuk a víztartási görbét, és a kettő közül a pontosabban illeszkedő görbével számoltunk a továbbiakban.

A kész víztartási görbénken jól látható a három elkülöníthető szakasz, amelyet már részleteztünk a 2.3.5. A *víztartási görbe és a* φ^b fejezet alatt.

A görbe első szakaszán [5.1 ábra] a talajminta szinte teljesen telített vízzel, a víztartalom nem változik ezért a görbe közel vízszintes. 1 kPa és 100 kPa szívás között rohamosan csökken a víztartalom, mely ezután már csak kismértékben változik, és a görbe ellapul. A két számítási módszer között a különbség abban nyilvánul meg, hogy a két görbe máshogy

végződik. Van Genuchten görbéje egyértelműen 0-ban végződik, míg Fredlundé aszimptotikusan tart 0-hoz.

5.1. ábra A víztartási görbe Van Genuchten és Fredlund alapján

5.2 A közvetlen nyírókísérlet eredményei

Az	alábbi	táblázat	tartalmazza	a	közvetlen	nyírókísérletek	eredményeit	[5.2.	táblázat].	А
kapott	Coulor	nb-egyen	eseket az 5.3	.áł	brán ábrázo	oltuk.				

	I. Term. állapot	III. Telített	IV. Kap. vízfelsz.	V. Kap. vízfelsz.	VI. Kap. vízfelsz.	VII. Légszáraz	VIII. Beállított víztartalom
Nyírt minta nedves tömege (g)	125,97	114,77	132,83	132,87	135,93	101,47	110,83
Nyírt minta száraz tömege (g)	113,28	92,88	107,75	108,68	110,42	101,25	92,98
Nedves tömeg szárításhoz (g)	107,2	55,27	116,5	122,5	129,5	104,6	126,9
Száraz tömeg (g)	96,4	44,73	94,5	100,2	105,2	104,37	106,46
w (m%)	11,20	23,56	23,28	22,26	23,10	0,22	19,20
s (V%)	58,93	48,32	56,05	56,53	57,44	52,67	48,37
1 (V%)	23,45	21,29	9,11	9,87	7,13	47,02	26,84
v (V%)	17,63	30,40	34,84	33,59	35,43	0,31	24,79
e (V%)	0,70	1,07	0,78	0,77	0,74	0,90	1,07
ϕ (fok)	30,7	27,6	30,1	30,5	31,1	32,9	29,3
c (kPa)	19,7	2,6	3,8	0	2,1	28,3	10,4

5.2. táblázat Nyírókísérlet eredményei

A diagramon jól látható, hogy a víztartalom növekedésével az adott terhelések mellett egyre kisebb nyírószilárdságot kapunk. A legalsó egyenes eltérést mutat, mivel a többi mintához képest itt a kisebb víztartalomhoz kisebb nyírószilárdság tartozik. Ennek oka az lehet, hogy ezt a mintát a nyíródoboz vízzel történő feltöltésével telítettük, és ez a talaj vázszerkezetének átrendeződéséhez vezetett.

5.3. táblázat Coulomb-egyenesek

5.3 A szívás-nyírófeszültség diagramok

A közvetlen nyírókísérletek alapján készített σ - τ diagramokról leolvastuk az egyes normálfeszültségekhez tartozó nyírószilárdságokat. Az elnyírt talajminták víztartalmának ismeretében, a kétfajta (Van Genuchten, Fredlund) víztartási görbéről a víztartalmakhoz tartozó szívásértékeket határoztuk meg [5.4.-5.7. táblázat]. Ezeket a szívás-nyírószilárdság pontokat ábrázoltuk - a nyíró kísérletnél alkalmazott terhelések szerint külön - szemi-logaritmikus koordináta rendszerben. [5.2.-5.9. ábra]

5.2. 5.3. ábra 0 kPa -hoz tartozó szívás - nyírószilárdság diagramok (Frendlund; Van Genuchten)

σ: 0 kPa		Van Genuchten	Fredlund	
Minta	Víztartalom [V%]	Szívás [kPa]	Szívás [kPa]	Nyírófesz. [kPa]
VII	0,3	3000	3000	28,3
Ι	17,6	330	280	19,7
VIII	24,8	78	50	10,4
III	30,4	28	22	2,6
V	33,6	15	14,3	0,1
IV	34,8	11,7	12,2	3,8
VI	35,4	10,4	11,2	2,1

5.4. táblázat 0 kPa -hoz tartozó értékek

5.3. 5.5. ábra 50 kPa -hoz tartozó szívás - nyírószilárdság diagramok (Frendlund, Van Genuchten)

σ: 50 kPa		Van Genuchten	Frendlund	
Minta	Víztartalom [V%]	Szívás [kPa]	Szívás [kPa]	Nyírófesz. [kPa]
VII	0,3	3000	3000	60,54
Ι	17,6	330	280	49,39
VIII	24,8	78	50	38,5
III	30,4	28	22	28,79
V	33,6	15	14,3	29,5
IV	34,8	11,7	12,2	32,75
VI	35,4	10,4	11,2	31,37

5.5. táblázat 50 kPa –hoz tartozó értékek

5.4. 5.7. ábra 100 kPa -hoz tartozó szívás - nyírószilárdság diagramok (Frendlund, Van Genuchten)

σ: 100 kPa		Van Genuchten	Frendlund	
Minta	Víztartalom [V%]	Szívás [kPa]	Szívás [kPa]	Nyírófesz. [kPa]
VII	0,3	3000	3000	92,85
Ι	17,6	330	280	79,04
VIII	24,8	78	50	66,6
III	30,4	28	22	54,97
V	33,6	15	14,3	58,99
IV	34,8	11,7	12,2	61,72
VI	35,4	10,4	11,2	61,55

5.6. táblázat 100 kPa -hoz tartozó értékek

5.5. 5.9. ábra 200 kPa –hoz tartozó szívás – nyírószilárdság diagramok (Frendlund, Van Genuchten)

σ: 200 kPa		Van Genuchten	Frendlund	
Minta	Víztartalom [V%]	Szívás [kPa]	Szívás [kPa]	Nyírófesz. [kPa]
VII	0,3	3000	3000	157,48
Ι	17,6	330	280	138,43
VIII	24,8	78	50	122,8
III	30,4	28	22	107,34
V	33,6	15	14,3	117,98
IV	34,8	11,7	12,2	119,66
VI	35,4	10,4	11,2	121,92

5.7. táblázat 200 kPa –hoz tartozó értékek

5.4 A nyírószilárdsági többletek meghatározása

A telített állapothoz képest figyelembe felvehető kohéziós többlet értékét három különböző víztartalom (szívás) mellett határoztuk meg, melyeket a kapott víztartási görbe jellegzetes pontjai adtak: 30 kPa (inflexiós pont), 600 kPa (meredekség hirtelen váltása) és 2000 kPa (a görbe ellapulása). A telített állapothoz tartozó szívás értéket 10 kPa-ra vettük fel, mert a méréseink során kapott, a telített mintákhoz tartozó szívás értékek mindegyik normálfeszültség mellett és mindkét módszerrel kapott víztartási görbét használva 10 kPa környékére esett [5.3. pont]. Ugyanilyen megfontolásból az ehhez az állapothoz tartozó kohézió értékét 0 kPa-nak feltételeztük.

A kohéziók meghatározásához a kapott víztartási görbéket és a szívás-nyírószilárdság diagramokat használtuk fel, melyeken a szívást logaritmikus léptékben ábrázoltuk, így a

függvényeket egyenesként kaptuk meg. Az egyenesekről leolvasható a használni kívánt többlet, melynek magyarázatát a 2.1.5. pontban ismertettük:

 $c^* = c + (u_a - u_w) \tan \varphi^b$. Az $(u_a - u_w) \tan \varphi^b$ kifejezést a vizsgálni kívánt víztartalmú és a telített állapothoz tartozó nyírószilárdságok különbségeként értelmeztük [5.10.ábra].

5.6. ábra Szívás-nyírófeszültség diagram általános esetben

A többletet külön-külön meghatároztuk a két módszerrel kapott víztartási görbék segítségével előállított τ -szívás egyenesekről, majd a kapott értékeket átlagoltuk, így a lehető legpontosabb eredményre jutottunk.

Elsőként a Van Genuchten módszerével meghatározott víztartási görbével, és a hozzá tartozó τ szívás diagramokkal foglalkoztunk. A választott 4 szívás értékhez a görbéről leolvastuk a
víztartalmakat, majd a τ -szívás egyenesek meredekségeinek átlagát felhasználva [5.8. táblázat]
meghatároztuk a kohézió növekmények nagyságát: c'= 5,8855*ln(s/10) ahol 5,8855 a görbék
meredekségeinek átlaga, "s" a szívás. Ezt követően meghatároztuk φ^{b} értékeit, melyek az adott
szívásnál a görbe meredekségei fokban kifejezve, tehát: φ^{b} = arctan(5,8855/s) [5.9. táblázat].

	A függvények meredekségei ln skálán				
σ [kPa]	Fredlund	Van Genuchten			
0	5,0202	4,9691			
50	5,6266	5,5262			
100	6,1793	6,0234			
200	7,2902	7,0233			
átlag	6,0291	5,8855			

5.8. táblázat Szívás-nyírófeszültség függvények meredekségeinek átlaga ln skálán

Van Genuchten									
	Víztartalom [V%]	Szívás [kPa]	c' [kPa]	c [kPa]	c* [kPa]	$\varphi^{\mathtt{b}}$			
1 (telített)	35,6	10	0,00		0,00	30,48			
2	30,0	30	6,47	0	6,47	11,10			
3	15,1	600	24,10	0	24,10	0,56			
4	11,1	2000	31,18		31,18	0,17			

5.9. táblázat Kohézió és $\varphi^{\rm b}$ Van Genuchten görbéjének alkalmazásával

Mivel Van Genuchten víztartási görbéjéről megkaptuk a vizsgált víztartalmakat, a Fredlund módszeréhez tartozó τ -szívás egyenesek vizsgálatához a víztartási görbéről a szívás értékeket kellett leolvasnunk, így a vizsgált víztartalmak a különböző módszerek esetén egyeznek. A pontos kohézió értékeket, és a φ^{b} szöget az előzőhöz hasonló módon határoztuk meg, Fredlund víztartási görbéjéhez tartozó τ -szívás egyenesek meredekségeinek átlagát felhasználva [5.10. táblázat].

Fredlund						
	Víztartalom [V%]	Szívás [kPa]	c' [kPa]	c [kPa]	c* [kPa]	$arphi^{ extbf{b}}$
1 (telített)	35,6	10,9	0,00		0,00	28,95
2	30,0	23,3	4,58		4,58	14,51
3	15,1	800	25,90	0	25,90	0,43
4	11,1	15000	43,57	-	43,57	0,02

5.10. táblázat Kohézió és $\varphi^{\rm b}$ Fredlund görbéjének alkalmazásával

A kapott értékeket az 5.11. táblázat tartalmazza. Az eredmények igazolják a korábbi állításokat, mi szerint a víztartalom csökkenésével a kohézió nagymértékben nő, a φ^{b} szög pedig a talaj belső súrlódási szögéről közel zérusra csökken.

	Víztartalom [V%]	Víztartalom [m%]	c* [kPa]	$arphi^{ extbf{b}}$
1 (telített)	35,6	23,69	0,00	29,71
2	30,0	19,96	5,52	12,80
3	15,1	10,05	25,00	0,50
4	11,1	7,39	37,38	0,10

5.11. táblázat Kohézió és $\varphi^{\rm b}$ eredmények

6 Gyakorlati példák

6.1 Földnyomás értékek módosulása

Az aktív és passzív földnyomás értékek változását 3 m mélyen vizsgáltuk, az eredményeket a 6.1. táblázat tartalmazza.

A víztartalom csökkenésével a talajban figyelembe vehető szívás nő, így a szívásból származó, telítetlen talajban ébredő húzóerő az egyre kisebb víztartalom mellett egyre jobban csökkenti az ébredő aktív földnyomás értékét. Az eredmények azt mutatják, hogy körülbelül 14 m%-os víztartalom esetén az aktív földnyomás zérus, ezalatt pedig húzásban mutatkozik, mely húzást a hagyományos számítások során elhanyagolunk.

A passzív földnyomás változása a víztartalom csökkenésével éppen ellenkező. Ennek magyarázata az, hogy a szívás, és így a talajban ébredő húzás a passzív földnyomást segíti, a talaj összenyomódásában az okozott húzóerővel nagy szerepet játszik.

	Víztartalom [m%]	c* [kPa]	$\sigma_{xa}(3m)$	$\sigma_{xp}(3m)$	E _a [kN/m]	E _p [kN/m]
1	23,69	0,00	21,19	128,62	31,78	192,92
2	19,96	5,52	14,15	145,95	21,23	218,92
3	10,05	25,00	-10,67	207,10	-16,00	310,65
4	7,39	37,38	-26,44	245,97	-39,66	368,95

6.1. táblázat Földnyomás értékek módosulása

6.2 Alaptest alatti altalaj többletteherbírásának meghatározása

"Minden építmény az önsúlyát és a rájutó terheléseket az altalajnak adja át, s állékonysága, valamint tartóssága attól függ, hogy sikerült-e az építmény és a talaj közötti kapcsolatot helyesen

kialakítani. Az építmény, illetve annak alapozása az altalajban feszültségeket és alakváltozásokat ébreszt" [Dr. Farkas József: Alapozás]

Azt szeretnénk bemutatni, hogy adott alaptest méretek mellett hogyan változik az altalaj teherbírásának tervezési értéke a talaj víztartalmának, illetve kohéziójának változásával. A vizsgálathoz a 6.1. képen látható kialakítást vizsgáltuk. A legfelső réteg szerves szennyezésű feltöltés, az alaptestek a vizsgált lösztalajban helyezkednek el, mely alatt kékesszürke kövér agyag található.

6.1. kép A vizsgált kialakítás

A talajvízszint karakterisztikus értékét -6,10 m-re vettük fel, a terhek az alábbiak:

- Állandó terhek:
 - A falak függőleges terhe: $G_{Vk} := 225 \frac{kN}{m}$
 - A pillérek függőleges terhe: $G_{pk} := 270 \text{kN}$
 - \circ Felszíni terhelés: $q_{felsz} := 10 kPa$
- Hasznos terhek:
 - A falak hasznos terhe: $Q_{vk} := 149 \frac{kN}{m}$
 - A pillérek hasznos terhe: $Q_{pk} := 253 \text{kN}$

A vizsgálatot mind sávalap, mind pontalap esetén elvégeztük. Meghatároztuk az alaptestre ható függőleges teher tervezési értékét, sávalap esetén figyelembe vettük a pincefalra ható nyugalmi földnyomás segítségével az alaptestre ható vízszintes erőt. Az alap alatti altalaj teherbírásának karakterisztikus értékét az MSZ EN 1997-1 szabvány szerint (EUROCODE) számítottuk:

$$R_k / (B' \cdot L') = c' \cdot N_c \cdot b_c \cdot s_c \cdot i_c + q' \cdot N_q \cdot b_q \cdot s_q \cdot i_q + 0.5 \cdot \gamma' \cdot B' \cdot N_\gamma \cdot b_\gamma \cdot s_\gamma \cdot i_\gamma$$

ahol:

c	az alap alatti talaj kohéziója természetes fekvésben (kPa),
q'	hatékony takarási feszültség az alapozási síkon (kPa)
γ'	az alap alatti talaj hatékony térfogatsúlya (kN/m ³)
B'	az alap kisebb vízszintes mérete (m),
L'	az alap nagyobb vízszintes mérete (m),
N_q , N_γ , és N_c ,	az alap alatti talaj súrlódási szögétől függő teherbírási tényezők,
b _q , és b _c ,	az alapfelület hajlásának tényezői,
i_q , i_γ , és i_c ,	a terhelőerő ferdeségét figyelembe vevő csökkentő tényezők,
s_q , s_γ , és s_c ,	alaki tényezők

A talaj teherbírásának tervezési értékét a következőképpen számítottuk:

$$\mathbf{R}_{\mathrm{d}} = \mathbf{R}_{\mathrm{k}} / \gamma_{\mathrm{R}}$$

ahol:

 γ_R :

a talajtörési ellenállás parciális tényezője

Az eredményeket sávalap és pontalap esetén a 6.2. és a 6.3. táblázatok tartalmazzák. A 6.1. ábrán a talajtörési ellenállás változása látható a víztartalom növekedésével.

	Sávalap méretezése									
	Víztartalom [m%]	c* [kPa]	Alaptest méretei		V [l.N/m]	D [ltN/m]	Vibograditada [0/]			
			H [m]	B [m]			Kinasznansag [70]			
1	23,69	0,00	1,8	2,5	679,13	683,45	99,37			
2	19,96	5,52				854,88	79,44			
3	10,05	25,00				1489,74	45,59			
4	7,39	37,38				1909,15	35,57			

6.2. táblázat Talajtörési ellenállás változása sávalap esetén

	Pontalap méretezése									
	Vistorialare [m0/]	c* [kPa]	Alaptest méretei		V [l-N]	D [1-N]]	Vibermáltság [0/]			
			H [m]	B [m]			Killaszlialtsag [70]			
1	23,69	0,00	1,2		875,22	961,56	91,02			
2	19,96	5,52		10		1349,71	64,85			
3	10,05	25,00		1,0		2719,48	32,18			
4	7,39	37,38				3590,00	24,38			

6.3. táblázat Talajtörési ellenállás változása pontalap esetén

6.1. ábra A talajtörési ellenállás változása a víztartalom függvényében

Az eredmények azt mutatják, hogy a talaj telítődésével a talajtörési ellenállás akár a harmadára is csökkenhet, továbbá, hogy a telített állapotra történő maximális kihasználtság a talaj száradásával a harmadára is módosulhat. Ez azt jelenti, hogy a telített állapotra történő méretezés valóban jelentős túlméretezéshez vezetne, de a talaj víztartalmának növekedését nem szabad figyelmen kívül hagynunk. A tapasztalati értékek bizonytalanságuk miatt a biztonság kárára is közelíthetnek, hiszen a víztartalom helytelen megítélése a paraméterek jelentős

módosulását eredményezik. A kapott adatok is ezt igazolják, hiszen a víztartalom csak 5 m%-os növekedése is már az alaptest kihasználtságának 30%-os emelkedését eredményezi.

A kapott értékek egyaránt alkalmasak a méretezéskor használandó paraméterek pontosítására, illetve valós tönkremenetelek hiteles modellezéséhez. [3]

6.3 Rézsűstabilitás vizsgálata

A rézsűállékonyság vizsgálat az egyik legáltalánosabb eljárás a természetes, illetve ember alkotta rézsűk biztonsági tényezőjének megállapítására. A gyakorlat a telítetlen talajjellemzőket figyelmen kívül hagyva teszi ezt. A negatív pórusvíznyomásból származó szilárdsági többlet elhanyagolása ésszerű feltételezés azokban az esetekben, amikor a kialakuló csúszólap a talajvízszint alá kerül. Azokban a helyzetekben, amikor a talajvíz szintje mélyen van, vagy a felszínen található felületi károk befolyásolhatják a kialakuló csúszólap alakját, a negatív pórusvíznyomást már nem lehet elhanyagolni.

A telítetlen talajparaméterek változásának szemléltetésére egy általános kialakítású, 1:1,5 lejtésű rézsűt választottunk, melyhez tartozó elcsúszással szembeni biztonságokat meghatároztuk telített, és az általunk meghatározott telítetlen talajjellemzők segítségével, majd a kapott eredményeket összehasonlítottuk. "A rézsűk és bármely geotechnikai szerkezet általános állékonyságának vizsgálatára a 3. tervezési módszert (DA-3), a parciális tényezőcsoportok A2 "+" M2 "+" R3 kombinációját kell alkalmazni." [EC7]

A vizsgálatot Plaxis és Geoslope nevű végeselemes programok segítségével végeztük el.

A Plaxis program használatakor az általános állékonyság vizsgálata esetén a nyírószilárdsági paraméterek tervezési értékeként a karakterisztikus értékeiket vettük számításba. Így a rézsű stabil, ha a kapott biztonság nagyobb annál, mint amit az M2 értékcsoport tartalmaz, tehát a globális állékonyságra előírt parciális tényező értéke (1,35).

Az állékonyságvizsgálat esetén a φ -c redukció módszerét alkalmaztuk: a biztonságot a tényleges és a stabilitáshoz legalább szükséges belső súrlódási szög tangense, illetve a tényleges és a stabilitáshoz legkevesebb szükséges kohézió hányadosaként értelmeztük.

Az eredményeket a 6.4. táblázat illetve 6.4. ábra tartalmazza a víztartalmak függvényében. A kapott csúszólapot illetve elmozduló földtömeget a két szélsőséges esetben, telített állapotban, és a választott legkisebb víztartalom esetén ábrázoltuk [6.2. és 6.3. ábra]. A víztartalom csökkenésével az elmozdulni kívánó földtömeg egyre kisebb, a biztonság 0,71-ről 2,04-re nő.

6.2. ábra Elmozdulások alakulása telített esetben

6.3. ábra Elmozdulások a	lakulása a 4.esetben
--------------------------	----------------------

	Víztartalom [m%]	c* [kPa]	φ [°]	Biztonsági tényező
1	23,69	0,00		0,71
2	19,96	5,52	25	1,02
3	10,05	25,00	23	1,68
4	7,39	37,38		2,04

6.4. táblázat A biztonsági tényező változása

6.4. ábra A biztonsági tényező változása a víztartalom függvényében

A Geoslope program segítségével is meghatároztuk a biztonsági tényezőket a hagyományos, Bishop-, Janbu- és Morgenstern-Price-módszerekkel. Ezek az eljárások statikai elveken alapulnak (azaz statikus erők vagy nyomatékok egyensúlyán) anélkül, hogy a talajtömeg elmozdulásait vizsgálnák. A program adott körcsúszólap középpontok és érintők közül választja ki azt a középpont-érintő kombinációt, melyhez a legkisebb biztonsági tényező tartozik az egyes eljárásokkal vizsgálva. A kapott biztonsági tényezőket a 6.5. táblázat és a 6.7. ábra tartalmazza a víztartalmak függvényében. Ennél a vizsgálatnál azt a két szélsőséges esetet (telített és legkisebb víztartalom) ábrázoljuk, melyek a hagyományos módszerhez tartoznak [6.5. és 6.6. ábra], mert az ezzel a módszerrel kapott biztonsági tényezők közelítik meg legjobban a Plaxis programmal kapottakat, továbbá a kapott csúszólapok is erős hasonlóságot mutatnak.

6.5. ábra A csúszólap alakulása a hagyományos módszerrel, telített esetben

6.6. ábra A csúszólap alakulása a hagyományos módszerrel, a 4. esetben

	Víztartalom [m%]	c* [kPa]	φ [°]	$arphi^{b}\left[^{o} ight]$	Biztonsági tényező			
					Hagyományos	Bishop	Janbu	Morgenstern- Price
1	23,69	0,00		29,71	0,72	0,73	0,72	0,73
2	19,96	5,52	25	12,80	1,01	1,05	1,00	1,05
3	10,05	25,00	23	0,50	1,65	1,73	1,63	1,72
4	7,39	37,38		0,10	2,01	2,10	1,97	2,09

6.5. táblázat A biztonsági tényező alakulása az egyes módszerek esetén

6.7. ábra A biztonsági tényező változása a víztartalom függvényében az egyes módszerek esetén

A különböző programokkal kapott biztonságok hasonlóképpen változnak, a víztartalom csökkenésével ~0,7-ről ~2-re nőnek. Ezekben az esetekben, ahogy alapozások tervezésekor is, a paraméterek tapasztalati úton történő felvétele a körülmények minimális módosulásával a biztonság akár 25%-os csökkenését eredményezheti. Ezt igazolják példánkban a 10,05 és 7,39 m%-os esetekben mutatkozó különbségek.

Az eredmények tökéletesen alkalmazhatók valós tönkremenetelek modellezésére, illetve a bekövetkezett stabilitásvesztések folyamatának és okának megértésére. [2]; [5]; [8]

7 Összefoglaló

A telítetlen talajokban a pórusvíznyomás változása lineárisan folytatódik a talajvíztükör felett, így negatív nyomást jelent az atmoszferikus nyomáshoz képest. E nyomáskülönbséget nevezzük szívásnak, melyből nyírószilárdsági többlet származik. Ezt a többletet a Coulomb-féle törési felülettel magyaráztuk, mely leírásához a szívást, mint újabb feszültségi állapotváltozót vezettük be. Így a figyelembe vehető kohézió értékét a c + (u_a - u_w) tg φ^{b} kifejezéssel meg tudtuk határozni.

Az általunk meghatározott, a víztartalom által befolyásolt kohéziós értékek gyakorlati alkalmazása során azt tapasztaltuk, hogy a pontos paraméterek használatával kiküszöbölhetők lennének a közelítő értékek bizonytalanságából eredő pontatlanságok, melyek méretezés és stabilitásvizsgálat szempontjából nem hagyhatók figyelmen kívül.

Kutatásaink során megtanultuk a korábbi tanulmányainkból ismert talajparamétereket más szemmel nézni, új talajjellemzőket illetve talajvizsgálati módszereket ismertünk meg, emellett sikerült a talajmechanikában alkalmazott szilárdsági paraméterek mögötti elméleti háttérre rávilágítani, és egy eddig hazánkban alig alkalmazott tézist Magyarországra jellemző talajon igazolni.

Mellékletek

Szakirodalom

- [1] Buzás István: Talaj- és agrokémiai vizsgálati módszerkönyv 1. A talaj fizikai, vízgazdálkodási és ásványtani vizsgálata
- [2] Charles W.W., Bruce Menzies: Advanced unsaturated soil mechanics and engeneering
- [3] Dr. Farkas József: Alapozás
- [4] Fredlund and Rahardjo: Soil Mechanics for Unsaturated Soils
- [5] Imre Emőke, Rajkai Kálmán, Firgi Tibor, Czap Zoltán, Telekes Gábor: Telítetlen talajok mechanikája
- [6] Horusitzky Henrik: A lösz
- [7] Kabai: Geotechnika I.
- [8] Kézdi: Talajmechanika I.