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PREFACE 

This thesis is about the making of a computer program capable of calculating rectangular 

Mindlin plates resting on elastic Winkler foundation. I devote the program to be helpful to the 

students and be a useful tool in the preliminary design of simple structures. To achieve 

these goals, my expectations towards the software are high calculation speed, self-

explanatory graphical user interface and the ability to visualize the results in a clear 

manner. It is important that the program is free and it will be available for download at the web 

site of the Department of Structural Mechanics (http://www.me.bme.hu). 

The program is intended to provide solution of four section types, so in the first chapter I 

present the common mechanical models of these types of plates. The first type deals with 

isotropic homogeneous plates. In this context, I will detail first the classical Kirchoff and later 

introduce the Mindlin theory as an extension using first-order shear theory. The second type 

treats sandwich constructions. The third involves composite material plates including 

anisotropy and symmetrically laminated considerations while the last deals with plates 

including voids. 

After the theoretical introduction, in the second chapter I introduce the original solution of 

Professor Ernest Hinton* for rectangular isotropic plates based on Mindlin plate theory. The 

original code went beyond an overhaul, and this final version will be detailed. The program 

itself is constructed in FORTRAN computational language and provides solution for simply 

supported plates.  

The third section covers the making of the graphical user interface (GUI). For this task I 

have chosen the fully object oriented VISUAL BASIC .NET 4.5 as a programming environment. 

This part proved to have the biggest extent, so the reader can meet in more details with the 

different solution techniques and tricks. At the end of this chapter the numerical and graphical 

results of the program will be verified by finite element calculations. 

In the last chapter there is a short comparison of the created program with the leading inland 

civil engineering software, namely AXIS and FEM-Design. It is important to emphasize, that is 

was not between the goals of creating this program to produce a rival of these software, but to 

provide an easy way to get results very quickly in case of some simple plated structures. 

The standard educational routine does not include programming courses, therefore I find 

it to be a very important result, that through the thesis I managed to learn two different 

programming language from the bottom and this knowledge could be a useful tool in the future. 

  

http://www.me.bme.hu/
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BEVEZETŐ 

Jelen munka tárgya egy olyan számítógépes program megírása, mely lehetővé teszi négyzet 

alaprajzú, csuklósan megtámasztott, rugalmasan megtámasztott lemezek számítását a 

Mindlin lemezelmélet szerint. A program készítésének célja, hogy hasznos eszköz legyen 

mind a hallgatóság, mind a gyakorló mérnökök kezében akár az előtervezés 

folyamatában. Hogy ezeket a célokat elérjem, előzetes elvárásaim a gyors futási idő, 

könnyen kezelhető grafikus felület és a látványos eredmény feldolgozás voltak. A 

program ingyenes, elkészültével letölthető lesz a Tartószerkezetek Mechanikája Tanszék 

honlapjáról (http://www.me.bme.hu).  

A program négy keresztmetszet típust támogat, az első fejezetben ezeknek a lemezeknek 

a szokásos mechanikai modelljeit mutatom be. Az első típus a homogén lemez, aminek 

kapcsán bemutatásra kerülnek a klasszikus Kirchoff, majd a Mindlin – Reissner lemezelmélet 

az előbbi kiterjesztéseként. A második típus a szendvics keresztmetszetű lemez. A harmadik 

szimmetrikusan laminált lemezekkel foglalkozik, az utolsó pedig az egyik irányban üreges 

lemezek számításának módját mutatja be. 

Az elméleti áttekintés után, a második fejezetben bemutatom Ernest Hinton megoldását. Az 

eredeti kód FORTRAN77 nyelven íródott, azonban a jelentős mértékű átalakítás miatt csak a 

végső, javított verziót közlöm. 

A harmadik fejezet bemutatja az elkészült grafikus felhasználói felületet. Ehhez a munkához 

az immár teljesen objektum orientált VISUAL BASIC .NET 4.5 programnyelvet választottam. 

Ez a munka bizonyult a legterjedelmesebbnek, ezért részletesebben bemutatásra kerülnek 

majd a különböző megoldások. A fejezet végén mind a numerikus, mind a grafikai eredmények 

verifikálásra kerülnek végeselemes számolások révén. 

Az utolsó fejezetben ismertetek egy szubjektív összehasonlítást az elkészült program és az 

ANSYS, valamint a vezető hazai építőmérnöki statikai méretező programok (Axis, FEM-

Design) között a számítási idő tekintetében. Hangsúlyozom, hogy a program céljai között nem 

szerepelt, hogy felvegye a versenyt az említett szoftverekkel, ugyanakkor bizonyos egyszerű 

esetekben gyors és megbízható eredményre vezet. 

Végül megemlítem, hogy az építőmérnöki kari tanrend nem tartalmaz programozási 

kurzusokat, így a fent említett két programozási nyelvet önállóan tanultam meg, a megszerzett 

tudást pedig mindenféleképpen hasznosnak tartom a továbbiakban. 

  

http://www.me.bme.hu/
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TERMINOLOGY 

Greek letter scalars 

𝜀𝑖𝑗  normal strain 

𝛾𝑖𝑗 shear strain 

𝜅𝑥  curvature with respect to 
axis x 

𝜅𝑦  curvature with respect to 

axis y 

𝜅𝑥𝑦  warping 

𝜎𝑖𝑗  normal stress 

𝜏𝑖𝑗  shear stress 

𝜈𝑖𝑗  Poisson’s ratio 

𝜈𝑓  Poisson’s ratio of the fiber 

(1.3) 

𝜈𝑓  Poisson’s ratio of the facing 

(1.8) 

𝜈𝑐  Poisson’s ratio of the core 
(1.8) 

𝜈𝑚  Poisson’s ratio of the matrix 
(1.3) 

𝜗𝑥  rotation of a normal with 
respect to axis x 

𝜗𝑦  rotation of a normal with 

respect to axis y 

𝜃  angle between the material 
and problem coordinate 
system 

𝜉  x coordinate of the center of 
the load 

𝜂  y coordinate of the center of 
the load 

Π  strain energy  

 

Scalars 

𝑡𝑓  thickness of the facing (1.8, 

1.9) 

𝑡𝑐  thickness of the core (1.8) 

𝑡𝑤  thickness of the web (1.9) 

𝑎  side length of the plate 
parallel to axis x 

𝑏  side length of the plate 
parallel to axis y 

𝑤  width of a void in a voided 
plate 

ℎ  height of a void in a voided 
plate 

𝑘  bedding constant of Winkler 
foundation 

𝑚  running parameter of the 
Fourier summation 

𝑛  running parameter of the 
Fourier summation 

𝑢0  displacement of the middle 
plane of the plate in x 
direction 

𝑣0  displacement of the middle 
plane of the plate in x 
direction 

𝑤0  displacement of the middle 
plane of the plate in x 
direction 

𝑢  displacement of a point in x 
direction 

𝑢  side length of the load patch 
parallel to axis x (2.1) 

𝑣  displacement of a point in y 
direction 

𝑣  side length of the load patch 
parallel to axis y (2.1) 

𝑤  displacement of a point in z 
direction 

𝑧  distance from the middle 
plane of the plate 

𝑡  thickness of the plate 

𝐸  Young’s modulus (without 
subscripts) 
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𝐸𝑖𝑗  nonlinear strain term (with 

subscripts) 

𝐸𝑓  Young’s modulus of the fiber 

(1.3) 

𝐸𝑓  Young’s modulus of the 

facing (1.8) 

𝐸𝑐  Young’s modulus of the core 
(1.8) 

𝐸𝑚  Young’s modulus of the 
matrix material (1.3) 

𝐺  shear modulus 

𝐺𝑓  shear modulus of the facing 

(1.8) 

𝐺𝑐  shear modulus of the core 
(1.8) 

�̅�  membrane stiffness of the 
plate 

�̅�  bending stiffness of the plate 

𝑀𝑥  bending moment with 
respect to axis x 

𝑀𝑦  bending moment with 

respect to axis y 

𝑀𝑥𝑦  twisting moment  

𝑄𝑥  vertical shear force of an 
infinitesimal volume, on the 
side whith normal vector 
parallel with axis x 

𝑄𝑦  vertical shear force of an 

infinitesimal volume, on the 
side whit normal vector 
parallel with axis y 

𝑞  vertical load 

𝑝(𝑥, 𝑦)  vertical load 

𝐾𝑠  shear modification factor 

𝑙𝑖𝑗  direction cosine 

𝑣𝑓  fiber volume friction (1.3) 

𝑣𝑚  matrix volume friction (1.3) 

𝑁  number of laminas in a 
laminate 

𝑘  index of the actual lamina in 
a laminate 

𝐴𝑚𝑛  Fourier coefficient 

𝐵𝑚𝑛  Fourier coefficient 

𝐶𝑚𝑛  Fourier coefficient 

𝑞𝑚𝑛  Fourier coefficient 

𝑃  load intensity 

 

Vectors 

{𝜀}  normal strain vector 

{𝜀0}  strain vector of the middle 
plane 

{𝜅}  curvature vector 

{𝜎}  stress vector 

{𝑁}  vector of normal forces 

{𝑀}  vector of moments 

(𝑒�̂�)𝑚  orthonormal basis vectors in 
the material coordinate 
system  

(𝑒�̂�)𝑝  orthonormal basis vectors in 

the problem coordinate 
system  

 

Matrices 

[𝑄]  material stiffness matrix of 
the plate 

[𝐴]  sub matrix of [𝑄] 

[𝐵]  sub matrix of [𝑄] 

[𝐷]  sub matrix of [𝑄] 

[𝐿]  transformation matrix 

 

Tensors 

𝐶𝑖𝑗𝑘𝑙  fourth order stiffness tensor 

of material parameters 

𝑆𝑖𝑗𝑘𝑙  fourth order compliance 

tensor of material 
parameters 
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[𝜎]𝑚  stress tensor with respect to 
the material coordinate 
system 

[𝜎]𝑝  stress tensor with respect to 

the problem coordinate 
system 

 

FORTRAN variables 

A()  angle of principal laminate direction 

C  core thickness  

E  Elastic modulus 

E11, E22  elastic modulus in the first and in the second principal directions  

EF  elastic modulus of the facing  

GC   shear modulus of the core  

G12   in plane shear modulus 

HD   center to center distance between flanges  

WD   center to center distance between webs  

H1()   z coordinate of boundary of laminate  

IQQ  = 1 for homogeneous plates 

  = 2 for sandwich plates 

  = 3 for voided plates 

  = 4 for laminated plates 

M   number of laminates in a laminated plate 

T   plate thickness 

TF   thickness of the flanges  

TW   thickness of the web  

VNU   Poisson’s ratio 

V12   in plane Poisson’s ratio 

VF  Poisson’s ratio of the facing material  

AA, BB   in plane dimensions of the plate in x and y directions respectively 

ETA, ETB  x and y coordinate of the center of the load 

G1   shear modification factor 

GFS   foundation modulus 

IQ  = 1 for uniform load 

  = 2 for concentrated load 

  = 3 for rectangular patch load 

  = 4 for pyramid patch load 

IT  = 1 for non-symmetric loads 

  = 2 for symmetric loads 

NPON   number of output points 

NUM   number of Fourier terms 

PZ   load intensity 

U, V    side length of patch loads parallel to axis x and y respectively 

PI   π 

W()  deflection 

WUX(),WUY() rotations of the cross sections in case of the kinematic assumptions of 

the Mindlin – Reissner theory 
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CX(),CY(),CXY()  curvatures with respect to axis x and y and the mixed 

curvature parameter, called warping  

BMX(),BMY(),BMXY() bending moments 𝑀𝑥, 𝑀𝑦 and twisting moment 𝑀𝑥𝑦 

QX(),QY() – shear forces 𝑄𝑥 and 𝑄𝑦  
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1. PLATE THEORY 

In continuum mechanics, plate theories are mathematical descriptions of mechanics for 

calculating deformations and stresses in flat plates. A plate is defined as a planar structural 

element, whose thickness is small with respect to its other dimensions. This property is 

utilized to reduce the three-dimensional problem to a two-dimensional one.  

There are numerous plate theories that have been developed. The most widely used are 

the classical Kirchoff-Love and the Mindlin-Reissner theories, these will be introduced in 

the next pages. Although the numerical solution is concerned only with the Mindlin – 

Reissner theory, I find it necessary for the possible users to have a theoretical summary.  

1.1. Kirchoff - Love plate theory 

The theory of thin plates was developed in 1888 by Love1 using assumptions proposed 

by Kirchoff2. Although this theory is not related to the main objective of the thesis, it worth 

mentioning for comparison and as a fundamental basis for further thoughts. 

A plate can be considered to be thin, if its thickness is typically less than a 1/20 of the 

smallest side length. 

Assumptions 

The classical theory of plates holds for thin plates, and uses the next assumptions: 

 There is no deformation in the middle plane of the plate. This plane remains 

neutral during bending. 

If there are external forces acting in the middle plane of the plate, this assumption 

does not hold and the effect of in-plane stresses on bending should be taken into 

account. 

The criteria can completely satisfied only, if the plate is bent into a developable 

surface. In other cases, strains arise in the middle plane. If the deflections are 

small, the corresponding stresses are negligible. 

                                                           
1 Augustus Edward Hough Love (17 April 1863 – 5 June 1940). British mathematician, famous for his work on the 
mathematical theory of elasticity and wave propagation (Wikipedia). 
2 Gustav Kirchoff (12 March 1824 – 17 October 1887). German physicist who contributed to the fundamental 
understanding of electrical circuits, spectroscopy, and the emission of black-body radiation by heated objects 
(Wikipedia). 

Figure 1 – Coordinate axes and the corresponding displacements 

of a simple plate (Airoldi). 
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 Straight lines normal to the mid-surface remain normal to the mid-surface after 

deformation. 

This assumption is equivalent to the disregard of the effect of shear forces on the 

deflection. In most cases it is satisfactory, but there are situations when the effect 

of shear becomes important and corrections should be made in the theory. 

 The deflection of the mid-plane is small with respect to the plate thickness. 

It means, that the theory is developed under small strain and rotation 

assumptions. Therefore equilibrium can be referred to the undeformed 

configuration and the small strain tensor can be used. 

 Normal stresses acting on planes that are parallel to the faces can be neglected. 

Using these four assumptions, all stress components can be expressed in the terms of 

the deflection w, which is a function of the coordinates x and y. The deflection function has 

to satisfy a linear partial differential equation, which, together with the boundary conditions, 

totally defines w. After we obtained the deflection, we can calculate the stresses at any 

point of the plate.  

Strains and displacements 

According to the third assumption, the elements of the strain tensor are:  

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
; 𝜀𝑦𝑦 =

𝜕𝑣

𝜕𝑦
; 𝜀𝑧𝑧 =

𝜕𝑤

𝜕𝑧
; 

𝛾𝑦𝑧 =
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
; 𝛾𝑧𝑥 =

𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
; 𝛾𝑥𝑦 =

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
. 

The normality condition is a constraint for the 

motion of the plate. It leads to express the in-

plane displacements of an arbitrary point as a 

function of the derivative of the vertical 

displacement 𝑤0, and the distance of the point 

from the mid-plane.  

𝑢𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = −𝑧
𝜕𝑤0
𝜕𝑥
, 

𝑣𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = −𝑧
𝜕𝑤0
𝜕𝑦
. 

If we add the displacements of the mid-plane, 

the following relations are obtained:  

𝑢 = 𝑢0 − 𝑧
𝜕𝑤0
𝜕𝑥
, 

𝑣 = 𝑣0 − 𝑧
𝜕𝑤0
𝜕𝑦
. 

Again, as a consequence of the third condition, 

the vertical displacement of any point is identical 
Figure 2 – Displacement of the middle surface 

(Airoldi). 

(1.2) 

(1.1) 

(1.4) 

(1.3) 

(1.5) 

(1.6) 



 Bence Balogh  

 COMPUTER PROGRAM FOR THE CALCULATION OF MINDLIN PLATES 

 

 

13  

to the vertical displacement of the mid-plane. Thus the displacement field of a general 

point can be obtained:  

𝑢(𝑥0, 𝑦0, 𝑧) = 𝑢0(𝑥0, 𝑦0) − 𝑧
𝜕𝑤0

𝜕𝑥
, 

𝑣(𝑥0, 𝑦0, 𝑧) = 𝑣0(𝑥0, 𝑦0) − 𝑧
𝜕𝑤0

𝜕𝑦
, 

𝑤(𝑥0, 𝑦0, 𝑧) ≅ 𝑤0(𝑥0, 𝑦0). 

The expressions for the displacements can be substituted back into the definition of the 

strain terms, so the strain state of the plate can be expressed as: 

𝜀𝑥𝑥 =
𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤0

𝜕𝑥2
, 

𝜀𝑦𝑦 =
𝜕𝑣0

𝜕𝑦
− 𝑧

𝜕2𝑤0

𝜕𝑦2
, 

𝜀𝑧𝑧 = 0, 

𝛾𝑦𝑧 =
𝜕

𝜕𝑧
(𝑣0(𝑥0, 𝑦0) − 𝑧

𝜕𝑤0

𝜕𝑦
) +

𝜕𝑤0

𝜕𝑦
= −

𝜕𝑤0

𝜕𝑦
+
𝜕𝑤0

𝜕𝑦
= 0, 

𝛾𝑧𝑥 =
𝜕

𝜕𝑧
(𝑢0(𝑥0, 𝑦0) − 𝑧

𝜕𝑤0

𝜕𝑥
) +

𝜕𝑤0

𝜕𝑥
= −

𝜕𝑤0

𝜕𝑥
+
𝜕𝑤0

𝜕𝑥
= 0, 

𝛾𝑥𝑦 =
𝜕𝑢0

𝜕𝑦
+
𝜕𝑣0

𝜕𝑥
− 2𝑧

𝜕2𝑤0

𝜕𝑥𝜕𝑦
. 

These relations are in good agreement with the fourth assumption.  

The strain state can be considered as a sum of strains due to membrane deformation 

and flexural deformation. Therefore 

𝜀𝑥𝑥 = 𝜀0𝑥𝑥 − 𝑧
𝜕2𝑤0

𝜕𝑥2
= 𝜀0𝑥𝑥 − 𝑧 𝜅𝑥 , 

𝜀𝑦𝑦 = 𝜀0𝑦𝑦 − 𝑧
𝜕2𝑤0

𝜕𝑦2
= 𝜀0𝑦𝑦 − 𝑧 𝜅𝑦 , 

𝛾𝑥𝑦 = 𝛾0𝑥𝑦 − 2𝑧
𝜕2𝑤0

𝜕𝑥𝜕𝑦
= 𝛾0𝑥𝑦 − 𝑧 𝜅𝑥𝑦 . 

In the later relations 𝜅𝑥 and 𝜅𝑦 are curvatures with respect to axis x and y, while 𝜅𝑥𝑦 is a 

mixed curvature parameter called warping. 

The strain state can be expressed also in vector notation:  

{𝜀} = {𝜀0} + 𝑧{𝜅}. 

Constitutive equations 

We apply Hooke’s model do describe the connection between stresses and strains. It is 

only a first order approximation of the real material behavior, but it holds, if the forces and 

deformations are small enough. 

According to the assumptions, a thin plate can be studied only considering a plane stress 

state, therefore the form of the material model in matrix notation:  

(1.8) 

(1.9) 

(1.7) 

(1.15) 

(1.14) 

(1.13) 

(1.11) 

(1.12) 

(1.10) 

(1.18) 

(1.17) 

(1.16) 

(1.19) 
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{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
} =

[
 
 
 
 
 
𝐸

1 − 𝜈2
𝜈𝐸

1 − 𝜈2
0

𝜈𝐸

1 − 𝜈2
𝐸

1 − 𝜈2
0

0 0
𝐸

2(1 + 𝜈)]
 
 
 
 
 

{

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
} = [𝑄]{𝜀} = [𝑄]{𝜀0} + [𝑄]𝑧{𝜅}. 

The generalized force parameters are shown on Figure 3. These can be determined by 

integrating the stress components along the plate thickness, so we obtain the resultants 

and the moments per unit length.  

{𝑁} = {

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = ∫ {𝜎}𝑑𝑧 = ∫ ([𝑄]{𝜀0} + [𝑄]𝑧{𝜅})𝑑𝑧 = [𝑄]𝑡{𝜀0}
𝑡/2

−𝑡/2

𝑡/2

−𝑡/2
, 

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = [
1 𝜈 1
𝜈 1 0
0 0 (1 − 𝜈)/2

]
𝐸𝑡

(1−𝜈2)⏟  
�̅�⏟                

[𝐴]

{

𝜀0𝑥𝑥
𝜀0𝑦𝑦
𝛾0𝑥𝑦

}. 

{𝑀} = {

𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦

} = ∫ {𝜎}𝑧𝑑𝑧 = ∫ ([𝑄]𝑧{𝜀0} + [𝑄]𝑧
2{𝜅})𝑑𝑧 = [𝑄]

𝑡2

12
{𝜅}

𝑡/2

−𝑡/2

𝑡/2

−𝑡/2
, 

{

𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦

} = [
1 𝜈 1
𝜈 1 0
0 0 (1 − 𝜈)/2

]
𝐸𝑡3

12(1−𝜈2)⏟    
�̅�⏟                  

[𝐷]

{

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

}. 

These equations can be arranged into a more compact form, by introducing the sub-

matrices[𝐴],[𝐵],[𝐷], though this form is used for orthotropic laminates. 

{
{𝑁}
{𝑀}

} = [
[𝐴] [𝐵]

[𝐵]𝑇 [𝐷]
] {
{𝜀0}

{𝜅}
}. 

The matrix constructed by such sub-matrices is the material stiffness matrix of the plate. 

Sub-matrix [𝐵] represents a coupling between flexural and membrane deformations, 

therefore it is a null matrix in the case of isotropic laminates. Note that it is null because 

the boundaries of integration differ only in sign. Later we will discuss laminated plates, 

where this condition is not valid. 

Figure 3 – Stress resultants. 

(1.20) 

(1.24) 

(1.23) 

(1.22) 

(1.21) 

(1.25) 
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In the above expressions, �̅� and �̅� characterizes the membrane and bending stiffness. 

The latter one is also called as the flexural rigidity of plates. 

Bending equations of isotropic plates 

Let us consider a plate of uniform thickness, equal to t, and be the xy plane the middle 

plane of the plate before loading. Let x and y axes coincide with one of the longitudinal 

edges, and let the positive direction of the vertical z axis be upward, as shown on Figure 

4, as well as the free body diagram of an elementary volume, cut out of the plate by four 

planes parallel to the xy and yz planes.  

One can see internal forces of one element as bending moments 𝑀𝑥 and 𝑀𝑦, twisting 

moments 𝑀𝑥𝑦 and 𝑀𝑦𝑥 and vertical shearing forces 𝑄𝑥  and 𝑄𝑦. Though transverse shear 

stresses are neglected as a consequence of normality restrictions, transverse forces are 

applied to the plate. It means, that though shear stress exists, the shear stiffness of the 

plate is very high, let say infinite compared to the bending stiffness. Anyway, such shear 

forces causes bending and must be taken into account in equilibrium considerations. The 

connection of the internal forces and moments with the stresses are: 

𝑀𝑥 = ∫ 𝜎𝑥 ∙ 𝑧 𝑑𝑧,     𝑀𝑦 = ∫ 𝜎𝑦 ∙ 𝑧 𝑑𝑧
𝑡

2

−
𝑡

2

,
𝑡/2

−𝑡/2
 

𝑀𝑥𝑦 = ∫ 𝜏𝑥𝑦 𝑑𝑧,      
𝑡/2

−𝑡/2
𝑀𝑦𝑥 = ∫ 𝜏𝑦𝑥  𝑑𝑧,      

𝑡/2

−𝑡/2
 

𝑄𝑥 = ∫ 𝜏𝑥𝑧 𝑑𝑧,      
𝑡/2

−𝑡/2

𝑄𝑦 = ∫ 𝜏𝑦𝑧 𝑑𝑧.      
𝑡/2

−𝑡/2

 

Formerly we restricted the loads to be normal to the surface. Denote the intensity of this 

load by 𝑞, so the load acting on the element is 𝑞 ∙ 𝑑𝑥 ∙ 𝑑𝑦. Since the stress component σz 

is neglected, we are not able to apply this load on the upper face of the plate. Instead, the 

transverse load appears as a discontinuity in the magnitude of the shear stresses, which 

vary according to the parabolic law through the thickness. If the effect of the surface load 

becomes of special interest, thick-plate theory has to be used. 

 If in addition to the former assumptions we suppose, that the edges of the plate are free 

to move in the plane of the plate, we can neglect any strain in the mid-plane of the plate 

during bending. 

On the basis of the figures above, we can write the equilibrium equations: 

Figure 4 – Forces and moments acting on an infinitesimal volume. The ‘/’ sign means partial 

differentiation with respect to the subsequent character(s) (Airoldi). 

(1.27) 

(1.28) 

(1.26) 
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𝜕𝑄𝑥

𝜕𝑥
 𝑑𝑥 𝑑𝑦 + 

𝜕𝑄𝑦

𝜕𝑦
 𝑑𝑦 𝑑𝑥 + 𝑞 𝑑𝑥 𝑑𝑦 = 0, 

𝜕𝑀𝑥𝑦

𝜕𝑥
 𝑑𝑥 𝑑𝑦 − 

𝜕𝑀𝑦

𝜕𝑦
 𝑑𝑦 𝑑𝑥 + 𝑄𝑦  𝑑𝑥 𝑑𝑦 = 0, 

𝜕𝑀𝑦𝑥

𝜕𝑦
 𝑑𝑥 𝑑𝑦 + 

𝜕𝑀𝑥

𝜕𝑥
 𝑑𝑦 𝑑𝑥 − 𝑄𝑥 𝑑𝑥 𝑑𝑦 = 0. 

As it can be seen, the moments due to the lateral load and the change of the shearing 

forces are neglected, because this members are small compared to those retained.  

After simplification we obtain: 

𝜕𝑄𝑥

𝜕𝑥
+ 

𝜕𝑄𝑦

𝜕𝑦
+ 𝑞 = 0, 

𝜕𝑀𝑥𝑦

𝜕𝑥
− 

𝜕𝑀𝑥

𝜕𝑦
+ 𝑄𝑦 = 0, 

𝜕𝑀𝑦𝑥

𝜕𝑦
+ 

𝜕𝑀𝑦

𝜕𝑥
− 𝑄𝑥 = 0. 

We can rule out the shearing forces by expressing them from the last two equations and 

substituting into the first: 

𝜕2𝑀𝑥
𝜕𝑥2

+
𝜕2𝑀𝑦𝑥

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝜕𝑦2
−
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
= −𝑞. 

Due to the fact that 𝜏𝑥𝑦 = 𝜏𝑦𝑥 we can conclude, that 𝑀𝑥𝑦 = −𝑀𝑦𝑥, so finally we present 

the equation of equilibrium in the following form:  

𝜕2𝑀𝑥
𝜕𝑥2

+
𝜕2𝑀𝑦

𝜕𝑦2
− 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
= −𝑞. 

In matrix notation: 

{
𝜕2

𝜕𝑥2
𝜕2

𝜕𝑦2
−2

𝜕2

𝜕𝑥𝜕𝑦
}{

𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦

} = −𝑞. 

Here we can substitute the expressions for the moments from equation (1.24), so we 

obtain: 

{
𝜕2

𝜕𝑥2
𝜕2

𝜕𝑦2
−2

𝜕2

𝜕𝑥𝜕𝑦
} [
1 𝜈 1
𝜈 1 0
0 0 (1 − 𝜈)/2

] �̅�

{
  
 

  
 −

𝜕2𝑤

𝜕𝑥2

−
𝜕2𝑤

𝜕𝑦2

−2
𝜕2𝑤

𝜕𝑥𝜕𝑦}
  
 

  
 

= −𝑞. 

From this matrix form a fourth order differential equation can be obtained3: 

                                                           
3 This equation was obtained first by Lagrange in 1811 (Wikipedia). 

(1.29) 

(1.31) 

(1.30) 

(1.34) 

(1.33) 

(1.32) 

(1.35) 

(1.36) 

(1.37) 

(1.38) 

(1.39) 
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𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤

𝜕𝑦4
=
𝑞

�̅�
. 

Then the solution of bending of plates simplifies to the 

integration of the latter equation. If for a particular case, a 

solution of this differential equation satisfies the prescribed 

boundary conditions, bending moments can be calculated 

by means of equations (1.22) and (1.24). Thereafter we 

determine the shearing forces from the rotational 

equilibrium equations (1.32)-(1.34), which lead to the 

stresses. Shear stresses 𝜏𝑥𝑧 and 𝜏𝑦𝑧 can be obtained by 

assuming, that they are distributed along the thickness of 

the plate according to the parabolic law. This assumption 

is called from the ‘cylindrical bending of plates’, where we 

state, that the distribution of transverse shear stress 𝜏𝑥𝑧 can be found only considering the 

state of stress induced by 𝑀𝑦 and 𝑄𝑥, without any parameters along the y direction, and 

𝜏𝑦𝑧 similarly. Despite the transverse shear stress can only be approximately recovered, 

the underestimation of deflections and other parameters can be neglected in case of 

isotropic plates if side to thickness ratio remains over 20, otherwise higher order theory 

shall be used. 

1.2. Mindlin - Reissner plate theory 

Two similar, but not identical theory were proposed by Raymond Mindlin4 in 1951 and 

Eric Reissner5 in 1945. Both of them are intended for the calculation of thick plates, where 

the normal to the mid-surface remains straight, but not necessarily perpendicular to the 

mid-surface after the deformations. The main difference is that Reissner’s theory does not 

invoke the plane stress condition and the plate thickness may change during the 

deformation. The Mindlin – Reissner theory obeys the assumptions of Mindlin, thus it is 

more properly called Mindlin plate theory. This theory is also called the first-order shear 

deformation theory of plates, since it implies a linear displacement variation through 

the thickness. The Mindlin theory 

holds, even if the side to thickness 

ratio goes under 20. 

Kinematic assumptions 

Mindlin theory allows to take into 

account the effects of a constant 

transverse shear stress state by 

removing the normality conditions 

from the kinematic assumptions of 

classical plate theory. All other 

assumptions are kept. 

                                                           
4 Raymond David Mindlin (17 September 1906 – 22 November 1987). American mechanical engineer who made 
seminal contributions to many branches of applied mechanics, applied physics, and engineering sciences 
(Wikipedia). 
5 Eric Reissner (5 January 1913 – 1 November 1996). German-born American engineer who dealt with the theory 
of elasticity, the theory of plates, shells and beams, dynamics of structures and turbulence, aerodynamics and 
wing theory (Wikipedia). 

Figure 5 – Assumed distribution 

of the shear stresses (Airoldi). 

Figure 6 - Displacement of the middle surface (Airoldi). 
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 On Figure 6 𝜗𝑥 and 𝜗𝑦 are the rotations of the sections that were originally normal to the 

mid-plane after the deformations. Thus the displacement field is: 

𝑢(𝑥0, 𝑦0, 𝑧) = 𝑢0(𝑥0, 𝑦0) − 𝑧𝜗𝑥, 

𝑣(𝑥0, 𝑦0, 𝑧) = 𝑣0(𝑥0, 𝑦0) − 𝑧𝜗𝑦, 

𝑤(𝑥0, 𝑦0, 𝑧) ≅ 𝑤0(𝑥0, 𝑦0). 

Due to the new kinematic assumptions, we have to redefine the curvatures and the in-

plane strain components. 

𝜀𝑥𝑥 =
𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕𝜗𝑥
𝜕𝑥

= 𝜀0𝑥𝑥 − 𝑧
𝜕𝜗𝑥
𝜕𝑥

= 𝜀0𝑥𝑥 + 𝑧 𝜅𝑥, 

𝜀𝑦𝑦 =
𝜕𝑣0
𝜕𝑦

− 𝑧
𝜕𝜗𝑦

𝜕𝑦
= 𝜀0𝑦𝑦 − 𝑧

𝜕𝜗𝑦

𝜕𝑦
= 𝜀0𝑦𝑦 + 𝑧 𝜅𝑦, 

𝛾𝑥𝑦 =
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥

−  𝑧
𝜕𝜗𝑥
𝜕𝑦

− 𝑧
𝜕𝜗𝑥
𝜕𝑥

= 𝛾0𝑥𝑦 −  𝑧
𝜕𝜗𝑥
𝜕𝑦

− 𝑧
𝜕𝜗𝑥
𝜕𝑥

= 𝛾0𝑥𝑦 + 𝑧 𝜅𝑥𝑦. 

For the transverse shear components the following relations hold: 

𝛾𝑧𝑥 =
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
=
𝜕𝑤0
𝜕𝑥

+
𝜕

𝜕𝑧
(𝑢0(𝑥0, 𝑦0) − 𝑧𝜗𝑥) =

𝜕𝑤0
𝜕𝑥

− 𝜗𝑥 = 𝛾𝑥 , 

𝛾𝑧𝑦 =
𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
=
𝜕𝑤0
𝜕𝑦

+
𝜕

𝜕𝑧
(𝑣0(𝑥0, 𝑦0) − 𝑧𝜗𝑦) =

𝜕𝑤0
𝜕𝑦

− 𝜗𝑦 = 𝛾𝑦. 

After all, plane deformation can be considered as a superimposition of a bending mode 

and a shear mode. If 𝛾 = 0, pure bending is obtained (A case), whereas if 𝜗 = 0 a pure 

shear situation occurs (B case) as it is visualized on Figure 7. 

Constitutive equations 

Equations (1.20), (1.22) and (1.24) formulated in the 

previous chapter still hold with the redefined curvature 

tensor, but an additional constitutive relation has to be 

considered between the average shear strain and the 

shearing forces. As it was mentioned, in the classical 

plate theory the shear modulus is infinite. Now this 

statement is not valid, so it calls for further equations. 

{
𝑄𝑥
𝑄𝑦
} = ∫ {

𝜏𝑥𝑧
𝜏𝑦𝑧
} 𝑑𝑡 = ∫ [

𝐺 0
0 𝐺

] {
𝛾𝑥
𝛾𝑦
} 𝑑𝑡 =

𝑡/2

−𝑡/2

𝑡/2

−𝑡/2

[
𝐺𝑡 0
0 𝐺𝑡

] {
𝛾𝑥
𝛾𝑦
}. 

Figure 7 – Superposition of plane deformations (Airoldi). 

Figure 8 – Shear forces (Airoldi). 

(1.41) 

(1.40) 

(1.42) 

(1.45) 

(1.44) 

(1.43) 

(1.47) 

(1.46) 

(1.48) 
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Shear correction factor 

As it was previously mentioned, Mindlin theory considers a constant transverse shear 

stress state. Such solution does not properly estimate the shear deformation work, a more 

realistic solution could be obtained by parabolic shear stress distribution. Therefore a 

correction factor is introduced to better approximate the contribution of the shear 

deformation work. The factor is based on the comparison of the strain energy per unit 

width corresponding to the constant and the parabolic shear stress distribution. 

Π𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 = ∫
1

2

𝜏𝑥𝑧
2

𝐺
𝑑𝑧

𝑡/2

−𝑡/2

= ∫
1

2

(𝑄𝑥
3
2𝑡)

2

(1 − (
2𝑧
𝑡 )

2

)

2

𝐺
𝑑𝑧

𝑡/2

−𝑡/2

=
1

2
(𝑄𝑥

3

2𝑡
)
2 1

𝐺
∫ (1 − 2 (

2𝑧

𝑡
)
2

+ (
2𝑧

𝑡
)
4

)𝑑𝑧

𝑡/2

−𝑡/2

=
1

2
(𝑄𝑥

3

2𝑡
)
2 1

𝐺
|𝑧 −

2

3
(
2𝑧

𝑡
)
3 𝑡

2
|
−𝑡/2

𝑡/2

=
3𝑄𝑥

2

5𝐺𝑡
, 

Π𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = ∫
1

2

𝜏𝑥𝑧
2

𝐺
𝑑𝑧 = ∫

1

2

(𝑄𝑥/𝑡)
2

𝐺
𝑑𝑧 =

1

2

𝑡/2

−𝑡/2

𝑡/2

−𝑡/2

𝑄𝑥
2

𝐺𝑡
. 

The ratio of the strain energies in this case is: 

Π𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
Π𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐

=
5

6
= 𝐾𝑠. 

If the shear modulus is corrected with this value, the shear energy correspond to one of 

parabolic shear stress distribution. Thus the corrected version of (1.48) is: 

{
𝑄𝑥
𝑄𝑦
} = 𝐾𝑠 [

𝐺𝑡 0
0 𝐺𝑡

] {
𝛾𝑥
𝛾𝑦
}. 

Equilibrium equations 

Equations of vertical equilibrium and rotations for Mindlin theory are identical to those 

formed in (1.32)-(1.34). By substituting the expressions for 𝜅𝑥, 𝜅𝑦, 𝜅𝑥𝑦, 𝛾𝑥 and 𝛾𝑦 from 

(1.43)-(1.45) into the constitutive relations (1.24) and (1.48), we obtain the following 

equations: 

{

𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦

} = [
1 𝜈 1
𝜈 1 0
0 0 (1 − 𝜈)/2

]
𝐸𝑡3

12(1 − 𝜈2)⏟      
�̅�⏟                    

[𝐷] {
  
 

  
 −

𝜕𝜗𝑥
𝜕𝑥

−
𝜕𝜗𝑦

𝜕𝑦

− 
𝜕𝜗𝑥
𝜕𝑦

−
𝜕𝜗𝑥
𝜕𝑥 }
  
 

  
 

, 

(1.49) 

(1.50) 

(1.51) 

(1.52) 

(1.53) 
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{
𝑄𝑥
𝑄𝑦
} = 𝐾𝑠 [

𝐺𝑡 0
0 𝐺𝑡

]

{
 

 
𝜕𝑤0
𝜕𝑥

− 𝜗𝑥

𝜕𝑤0
𝜕𝑦

− 𝜗𝑦}
 

 
. 

If we substitute these into (1.32)-(1.34), than we obtain the three separate 2nd order 

differential equations of the Mindlin plate theory as follows. 

𝐾𝑠𝐺𝑡 (
𝜕2𝑤

𝜕𝑥2
−
𝜕𝜗𝑥
𝜕𝑥
) + 𝐾𝑠𝐺𝑡 (

𝜕2𝑤

𝜕𝑦2
−
𝜕𝜗𝑦

𝜕𝑦
) = −𝑝(𝑥, 𝑦), 

𝐾𝑠𝐺𝑡 (
𝜕𝑤

𝜕𝑥
− 𝜗𝑥) = −�̅�

𝜕2𝜗𝑥
𝜕𝑥2

− 𝜈�̅�
𝜕2𝜗𝑦

𝜕𝑥𝜕𝑦
−
1 − 𝜈

2
�̅� (

𝜕𝜗𝑦

𝜕𝑦𝜕𝑥
+
𝜕2𝜗𝑥
𝜕𝑦2

), 

𝐾𝑠𝐺𝑡 (
𝜕𝑤

𝜕𝑦
− 𝜗𝑦) = −�̅�

𝜕2𝜗𝑦

𝜕𝑥2
− 𝜈�̅�

𝜕2𝜗𝑥
𝜕𝑥𝜕𝑦

−
1 − 𝜈

2
�̅� (

𝜕𝜗𝑥
𝜕𝑦𝜕𝑥

+
𝜕2𝜗𝑦

𝜕𝑦2
). 

1.3. Constitutive equations of laminated composite plates 

Composite materials consist two or more materials which together produce beneficial 

properties that cannot be achieved with any of the constituents alone. In this point I 

introduce the stress-strain relations which are needed for the further investigation. 

Generalized Hooke’s Model 

At first, let me take some comments on the Hooke’s model, mentioned in the previous 

chapters. So far, the subjects of our investigations were homogeneous isotropic plates, 

which have the advantage of material symmetry in every directions, thus the number of 

independent material parameters could be reduced to 2. At more complicated materials 

we lose from the symmetry and a more general way of discussion is needed. 

If the stress components are assumed to be linear functions of the strain components 

and we assume that the reference configuration is stress free, then the most general form 

of the linear constitutive equations with indicial notation: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 ∙ 𝜀𝑘𝑙 ,      𝜀𝑘𝑙 = 𝜀𝑙𝑘 , 

where 𝐶𝑖𝑗𝑘𝑙 is the fourth order stiffness tensor of material parameters. This tensor has 81 

scalar components which can be reduced by utilizing symmetry conditions, as discussed 

next. 

The equation of angular momentum is a momentum equation written on an infinitesimal 

cube with unit size cut out from a solid body. This principle requires the stress tensor to 

be symmetric, so 𝜎𝑖𝑗 = 𝜎𝑗𝑖. Then it follows, that 𝐶𝑖𝑗𝑘𝑙 must be symmetric in the first two 

subscripts and the number of independent material parameters reduces to 54. Since the 

strain tensor is symmetric by definition, then 𝐶𝑖𝑗𝑘𝑙 must be symmetric in the last two 

subscripts as well, further reducing the independent parameters to 36. 

A material is said to be elastic, if the material behavior is only a function of the current 

state of deformation. In the special case, in which the work done by the stresses during a 

deformation is dependent only on the initial state and the current configuration, the 

material is called hyperelastic. Utilizing this property the independent material parameters 

can be reduced to 21, because 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗. To show this I express equation (1.58) with 

(1.54) 

(1.55) 

(1.56) 

(1.57) 

(1.58) 
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single subscript notation. This notation is called engineering notation or Kelvin-Voigt 

notation. 

Thus we have: 

𝜎1 = 𝜎11,   𝜎2 = 𝜎22,   𝜎3 = 𝜎33,   𝜎4 = 𝜎23,   𝜎5 = 𝜎13,   𝜎6 = 𝜎12, 

𝜀1 = 𝜀11,   𝜀2 = 𝜀22,   𝜀3 = 𝜀33,   𝜀4 = 2𝜀23,   𝜀5 = 2𝜀13,   𝜀6 = 2𝜀12. 

Equation (1.58) now takes the form 

𝜎𝑖 = 𝐶𝑖𝑗 ∙ 𝜀𝑗, 

or in matrix notation 

{
 
 

 
 
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6}
 
 

 
 

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13
𝐶21 𝐶22 𝐶23
𝐶31 𝐶32 𝐶33

𝐶14 𝐶15 𝐶16
𝐶24 𝐶25 𝐶26
𝐶34 𝐶35 𝐶36

𝐶41 𝐶42 𝐶43
𝐶51 𝐶52 𝐶53
𝐶61 𝐶62 𝐶63

𝐶44 𝐶45 𝐶46
𝐶54 𝐶55 𝐶56
𝐶64 𝐶65 𝐶66]

 
 
 
 
 

{
 
 

 
 
𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6}
 
 

 
 

. 

Here the coefficients 𝐶𝑖𝑗 (i, j=1,…,6) are symmetric, so we have 6 + 5 + 4 + 3 + 2 + 1 =

21 independent stiffness coefficients for the most general elastic material. 

We assume that the stress-strain relations are invertible, thus 

𝜀𝑖 = 𝑆𝑖𝑗 ∙ 𝜎𝑗, 

{
 
 

 
 
𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6}
 
 

 
 

=

[
 
 
 
 
 
𝑆11 𝑆12
𝑆21 𝑆22

𝑆13 𝑆14 𝑆15 𝑆16
𝑆23 𝑆24 𝑆25 𝑆26

𝑆31 𝑆32
𝑆41
𝑆51
𝑆61

𝑆42
𝑆52
𝑆62

𝑆33 𝑆34 𝑆35 𝑆36
𝑆43
𝑆53
𝑆63

𝑆44 𝑆45 𝑆46
𝑆54
𝑆64

𝑆55 𝑆56
𝑆65 𝑆66]

 
 
 
 
 

{
 
 

 
 
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6}
 
 

 
 

, 

where 𝑆𝑖𝑗 are the material compliance parameters and [𝑆] is the compliance tensor. 

Coordinate systems and transformation 

First suppose that (𝑥1, 𝑥2, 𝑥3) denote the coordinate 

system with respect to which equations (1.61) and (1.62) 

are defined. We call it material coordinate system. The 

coordinate system (𝑥, 𝑦, 𝑧) used to write the equations of 

motion and strain-displacement equations will be called the 

problem coordinates to distinguish them from the material 

coordinate system. Note that the phrase “material 

coordinates” of advanced mechanics should not be 

confused with the present term. Both of the mentioned 

coordinate systems are fixed in the body and the two 

systems are oriented with respect to each other. When 

elastic material parameters at a point have the same values 

for every pair of coordinate systems that are mirror images 

of each other in a certain plate, that plane is called a 

material plane of symmetry. It is important that symmetry 

Figure 9 – Stresses acting on an 

elementary volume. (Reddy, 
2004) 

(1.61) 

(1.60) 

(1.59) 

(1.62) 

(1.63) 

(1.64) 

where i, j=1,…,6 
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under discussion is a directional property, not a positional. Therefore a material can have 

certain elastic symmetry and different properties from point to point. 

The details of coordinate transformation and the deduction of the below expressions can 

be found in the appendix of (Lengyel, 2012). Now shortly, vector {𝑎} has components 𝑎𝑖 

with respect to the rectangular Cartesian basis (𝑒1, 𝑒2, 𝑒3) and its components referred to 

another rectangular Cartesian basis (𝑒1̂, 𝑒2̂, 𝑒3̂) are 𝑎�̂�. The two sets of components are 

related according to 

𝑎�̂� = 𝑙𝑖𝑗𝑎𝑗,     𝑙𝑖𝑗 = 𝑒�̂�𝑒𝑗, 

where 𝑙𝑖𝑗 are called the direction cosines. Similarly, the components of a second order 

tensor [𝐴] transform according to the rule 

𝐴𝑖�̂� = 𝑙𝑖𝑚𝑙𝑗𝑢𝐴𝑚𝑛  or  [𝐴]̂ = [𝐿][𝐴][𝐿]𝑇 . 

Special case: Consider the case, when axes �̂� and 𝑧 as the out of plane axes of the plate 

in the two Cartesian coordinate systems are identical. The transformation corresponds to 

a rotation about the common axis by a certain angle 𝛼. The transformation matrix becomes 

[𝐿] = [
𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼 0
−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 0
0 0 1

]. 

Realize, that this condition always holds in the case of flat plates with one or more layers 

of constant thickness. 

Material Symmetry 

Further reduction in the number of independent stiffness (or compliance) parameters 

comes from the material symmetry. 

When three mutually orthogonal planes of material symmetry exist, the number of elastic 

coefficients is reduced to 9, and such materials are called orthotropic. The stress-strain 

relations for such a case: 

{
 
 

 
 
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6}
 
 

 
 

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13
𝐶21 𝐶22 𝐶23
𝐶31 𝐶32 𝐶33

[0]

[0]
𝐶44 0 0
0 𝐶55 0
0 0 𝐶66]

 
 
 
 
 

{
 
 

 
 
𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6}
 
 

 
 

, 

{
 
 

 
 
𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6}
 
 

 
 

=

[
 
 
 
 
 
𝑆11 𝑆12 𝑆13
𝑆21 𝑆22 𝑆23
𝑆31 𝑆32 𝑆33

[0]

[0]
𝑆44 0 0
0 𝑆55 0
0 0 𝑆66]

 
 
 
 
 

{
 
 

 
 
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6}
 
 

 
 

. 

More often, the material parameters are determined from laboratory experiments. 

Without the details, I enclose how to relate the stresses to the strains with engineering 

constants, in case of an orthotropic material. 

(1.65) 

(1.66) 

(1.67) 

(1.68) 

(1.69) 
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{
 
 

 
 
𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6}
 
 

 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
1

𝐸1
−
𝜈21
𝐸2

−
𝜈31
𝐸3

−
𝜈12
𝐸1

1

𝐸2
−
𝜈32
𝐸3

−
𝜈13
𝐸1

−
𝜈23
𝐸2

1

𝐸3

[0]

[0]

1

𝐺23
0 0

0
1

𝐺13
0

0 0
1

𝐺12]
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 

 
 
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6}
 
 

 
 

. 

In equation (1.70) 𝐸1, 𝐸2, 𝐸3 are Young’s moduli in 1,2 and 3 material directions, 𝜈𝑖𝑗 is 

Poisson’s ratio, defined as the ratio of transverse shear in the jth direction to the axial strain 

in the ith direction when stressed in the ith direction, and 𝐺23, 𝐺13, 𝐺12 are shear moduli in 

the 2-3, 1-3, and 1-2 planes, respectively. It is a symmetric matrix, therefore the 9 

independent coefficients for an orthotropic material are: 

𝐸1, 𝐸2, 𝐸3, 𝐺23, 𝐺13, 𝐺12, 𝜈12, 𝜈13, 𝜈23. 

Because of the assumptions of the plate theories, we restrict our studies to plane stress 

situations which simplifies the above equations to: 

 

{

𝜀1
𝜀2
𝜀6
} = [

𝑆11 𝑆12 0
𝑆12 𝑆22 0
0 0 𝑆66

] {

𝜎1
𝜎2
𝜎6
} =

[
 
 
 
 
 
 
1

𝐸1
−
𝜈21
𝐸2

0

−
𝜈12
𝐸1

1

𝐸2
0

0 0
1

𝐺12]
 
 
 
 
 
 

{

𝜎1
𝜎2
𝜎6
}, 

and 

{

𝜎1
𝜎2
𝜎6
} = [

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] {

𝜀1
𝜀2
𝜀6
}, 

where 𝑄𝑖𝑗 are the plane stress-reduced stiffnesses, given by inverting the compliance 

matrix 

𝑄11 =
𝑆22

𝑆11𝑆22−𝑆12
2 =

𝐸1

1−𝜈12𝜈21
, 

𝑄12 =
𝑆12

𝑆11𝑆22−𝑆12
2 =

𝜈21𝐸1

1−𝜈12𝜈21
, 

𝑄22 =
𝑆11

𝑆11𝑆22−𝑆12
2 =

𝐸2

1−𝜈12𝜈21
, 

𝑄66 =
1

𝑆66
= 𝐺12. 

(1.70) 

(1.71) 

(1.72) 

(1.73) 

(1.76) 

(1.75) 

(1.74) 

(1.77) 
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It is to note, that the reduced stiffnesses have only four independent material constants, 

namely 𝐸1, 𝐸2, 𝜈12 and 𝐺12. 

The transverse shear stresses are related to the transverse shear strains in an 

orthotropic material by the relations 

{
𝜎4
𝜎5
} = [

𝑄44 0
0 𝑄55

] {
𝜀4
𝜀5
},    𝑄44 = 𝐺23,    𝑄55 = 𝐺13. 

Lamina and Laminates 

A lamina or ply is a fundamental 

building block, a sheet of a 

composite material. Such a layer is 

often fiber-reinforced. The fibers can 

be continuous or discontinuous, 

woven, unidirectional, bidirectional or 

randomly distributed as seen on 

Figure 10. 

A laminate is a collection of laminas 

stacked to produce the desired 

stiffness and thickness. The 

individual laminas can have the 

same or various orientations. The 

sequence of these various 

orientations is called lamination 

scheme or stacking sequence. 

The chapter is devoted to the 

theoretical study of laminated 

structures, therefore manufacturing 

or design questions are omitted. In 

the remaining portion of the section 

we study the mechanical behavior of 

a single lamina, treating it as an 

orthotropic, linear elastic continuum. 

Characterization of a 

unidirectional lamina 

A unidirectional fiber-reinforced 

lamina is treated as an orthotropic 

material with symmetry planes 

parallel and transverse to the 

laminate fiber direction. The material 

coordinate axis 𝑥1 is parallel to the 

fiber, 𝑥2 is transverse to the fiber in 

the plane of the plate, and 𝑥3 is 

perpendicular to the plane of the 

lamina, as seen on Figure 11. The orthotropic material parameters are obtained either by 

laboratory tests or theoretical approach. 

Figure 10 – Fiber oriantations and the development of a laminate. 

(Reddy, 2004) 

(1.78) 



 Bence Balogh  

 COMPUTER PROGRAM FOR THE CALCULATION OF MINDLIN PLATES 

 

 

25  

The theoretical approach, or with other words micromechanics approach, determines the 

engineering constants based on the next assumptions: 

 perfect bending exists between fibers 

and matrix, 

 fibers are parallel and uniformly 

distributed throughout, 

 the matrix is free of voids or 

microcracks and initially in a stress-free 

state, 

 both fibers and matrix are isotropic and 

obeys Hooke’s model, 

 the applied loads are either parallel or 

perpendicular to the fiber direction. 

The elastic moduli and Poisson’s ratio of a fiber-reinforced material can be expressed in 

terms of moduli, Poisson’s ratios, and volume frictions of the constituents. To this let 

introduce 

𝐸𝑓 =  modulus of the fiber;                𝐸𝑚 =  modulus of the matrix;   

𝜈𝑓 =  Poisson’s ratio of the fiber;     𝜈𝑚 =  Poisson’s ratio of the matrix;  

𝑣𝑓 =  fiber volume friction;               𝑣𝑚 =  matrix volume friction.  

Then the lamina engineering constants are given by 

𝐸1 = 𝐸𝑓𝑣𝑓 + 𝐸𝑚𝑣𝑚, 

𝐸2 =
𝐸𝑓𝐸𝑚

𝐸𝑓𝑣𝑚 + 𝐸𝑚𝑣𝑓
, 

𝜈12 = 𝑣𝑓𝜈𝑓 + 𝑣𝑚𝜈𝑚, 

𝐺12 =
𝐺𝑓𝐺𝑚

𝐺𝑓𝑣𝑚 + 𝐺𝑚𝑣𝑓
. 

where 𝐸1 is the longitudinal modulus, 𝐸2 is transverse modulus, 𝜈12 is the major Poisson’s 

ratio, and 𝐺12 is the shear modulus, and 

𝐺𝑓 =
𝐸𝑓

2(1 + 𝜈𝑓)
,   𝐺𝑚 =

𝐸𝑚
2(1 + 𝜈𝑚)

. 

The 9 independent material parameters can also be determined experimentally using an 

appropriate test specimen made up from the material under consideration. One can found 

detailed instructions on the experimental arrangements and the execution method in the 

work of Reddy (2004). Here I enclose some values of several materials to service a basis 

for the later investigations. 

Figure 11 – Unidirectional composite lamina with 

the material coordinate system. (Reddy, 2004) 

(1.82) 

(1.81) 

(1.80) 

(1.79) 

(1.83) 
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 1. Table: Values of engineering constants for some materials*. 

Material E1 E2 G12 G13 G23 ν12

Aluminimum 10.60 10.60 3.38 3.38 3.38 0.33

Copper 18.00 18.00 6.39 6.39 6.39 0.33

Steel 30.00 30.00 11.24 11.24 11.24 0.29

Gr.-Ep (AS) 20.00 1.30 1.03 1.03 0.90 0.30

Gr.-Ep (T) 19.00 1.50 1.00 0.90 0.90 0.22

Gl.-Ep (1) 7.80 2.60 1.30 1.30 0.50 0.25

Gl.-Ep (2) 5.60 1.20 0.60 0.60 0.50 0.26

Br.-Ep 30.00 3.00 1.00 1.00 0.60 0.30

*Moduli are in msi = million psi; 1 psi= 6.894.76 N/m2

*Gr.-Ep(AS) = graphite-epoxy (AS/3501); Gr.-Ep(T) = graphite-epoxy (T3000/934); Gl.-Ep = glass-epoxy; 

Br.-Ep = boron-epoxy  
 2. Table: Additional values of material constants*. 

Material E3 ν13 ν23 α1 α2

Aluminimum 10.60 0.33 0.33 13.10 13.10

Copper 18.00 0.33 0.33 18.00 18.00

Steel 30.00 0.29 0.29 10.00 10.00

Gr.-Ep (AS) 1.30 0.30 0.49 1.00 30.00

Gr.-Ep (T) 1.50 0.22 0.49 -0.17 15.60

Gl.-Ep (1) 2.60 0.25 0.34 3.50 11.40

Gl.-Ep (2) 1.30 0.26 0.34 4.80 12.30

Br.-Ep 3.00 0.25 0.25 2.50 8.00

*Value of E3 is understood in msi, and α1 and α2 are 10-6 in./in./oF

Coordinate transformations 

After discussing material symmetry, clarifying the definitions of a lamina and a laminate 

and the determination of its engineering constants, continue the train of thought about the 

coordinate systems and coordinate transformation. 

The constitutive relations (1.68) 

and (1.69) were written with 

respect to the principal material 

coordinate system of the actual 

lamina, which in most of the 

situations does not coincide with 

the problem coordinate system. 

Furthermore, a laminate in 

general case is composed of a set 

of laminas with different directions 

of their principal material 

coordinate systems. Therefore 

there is a need to transform the 

relations among stresses and 

Figure 12 – A lamina with material and problem coordinate 

system. (Reddy, 2004) 
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strains for each layer into the problem coordinate system. As explained before, the 𝑥3 axis 

of every lamina always coincides with the 𝑧 axis of the problem coordinate system, and 

this causes the transformation matrix of expression (1.67). As a reminder I repeat this 

transformation matrix with notations of Figure 12: 

[𝐿] = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

], 

and the coordinates of a material point in the two coordinate systems are related as 

follows:  

{

𝑥1
𝑥2
𝑥3
} = [𝐿] {

𝑥
𝑦
𝑧
}. 

Transformation of stress components 

Now we have to investigate the 

relationship between the stress 

components in the material and in the 

problem coordinate system. Denote the 

components of the stress tensor with 

respect to the material coordinate system 

with 𝜎11, 𝜎12, … , 𝜎33 and with 

𝜎𝑥𝑥, 𝜎𝑥𝑦, … , 𝜎𝑧𝑧 in the problem coordinate 

system. In matrix form: 

[𝜎]𝑚 = [

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

], 

[𝜎]𝑝 = [

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

]. 

According to equation (1.66) the 

matrices transform to each other with the 

next formula: 

[𝜎]𝑚 = [𝐿][𝜎]𝑝[𝐿]
𝑇 , 

[𝜎]𝑝 = [𝐿]
𝑇[𝜎]𝑝[𝐿], 

here matrix [𝐿] is the 3x3 matrix of 

direction cosines 𝑙𝑖𝑗, where 

𝑙𝑖𝑗 = (𝑒�̂�)𝑚(𝑒�̂�)𝑝. 

In expression (1.90) (𝑒�̂�)𝑚 and (𝑒�̂�)𝑝 are orthonormal basis vectors in the material and 

the problem coordinate systems respectively. 

After performing the operations in expression (1.89) and rearranging to have the single 

subscript stress components we obtain 

(39) 

(40a,b) 

Figure 13 – A free body diagram with stress 

components in different coordinate systems. (Reddy, 
2004) 

(1.84) 

(1.85) 

(1.88) 

(1.89) 

(1.90) 

(1.87) 

(1.86) 
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{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦}

 
 

 
 

=

[
 
 
 
 
 
𝑐𝑜𝑠2𝜃
𝑠𝑖𝑛2𝜃
0
0
0

𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2𝜃
𝑐𝑜𝑠2𝜃
0
0
0

−𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

0
0
1
0
0
0

0
0
0

𝑐𝑜𝑠𝜃
−𝑠𝑖𝑛𝜃
0

0
0
0
𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃
0

−𝑠𝑖𝑛2𝜃
𝑠𝑖𝑛2𝜃
0
0
0

𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃]
 
 
 
 
 

{
 
 

 
 
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6}
 
 

 
 

, 

{𝜎}𝑝 = [𝑇]{𝜎}𝑚. 

The inverse relationship between {𝜎}𝑝 and {𝜎}𝑚 can be obtained by substituting – 𝜃 in 

the place of 𝜃 in expression (1.91). 

{
 
 

 
 
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6}
 
 

 
 

=

[
 
 
 
 
 
𝑐𝑜𝑠2𝜃
𝑠𝑖𝑛2𝜃
0
0
0

−𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2𝜃
𝑐𝑜𝑠2𝜃
0
0
0

𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

0
0
1
0
0
0

0
0
0

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃
0

0
0
0

−𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃
0

𝑠𝑖𝑛2𝜃
−𝑠𝑖𝑛2𝜃
0
0
0

𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃]
 
 
 
 
 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦}

 
 

 
 

, 

{𝜎}𝑚 = [𝑅]{𝜎}𝑝. 

Transformation of strain components 

Since the strain tensor is also second order, the expressions for the transformations 

formulated for the stress components are valid. Therefore 

[𝜀]𝑚 = [𝐿][𝜀]𝑝[𝐿]
𝑇 ,    [𝜀]𝑝 = [𝐿]

𝑇[𝜀]𝑝[𝐿]. 

Matrices [𝑇] and [𝑅] of expressions (1.92) and (1.94) are the same, so the single 

subscript versions can be formulated as follows 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
2𝜀𝑦𝑧
2𝜀𝑥𝑧
2𝜀𝑥𝑦}

 
 

 
 

=

[
 
 
 
 
 
𝑐𝑜𝑠2𝜃
𝑠𝑖𝑛2𝜃
0
0
0

𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2𝜃
𝑐𝑜𝑠2𝜃
0
0
0

−𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

0
0
1
0
0
0

0
0
0

𝑐𝑜𝑠𝜃
−𝑠𝑖𝑛𝜃
0

0
0
0
𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃
0

−𝑠𝑖𝑛2𝜃
𝑠𝑖𝑛2𝜃
0
0
0

𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃]
 
 
 
 
 

{
 
 

 
 
𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6}
 
 

 
 

, 

{𝜀}𝑝 = [𝑇]{𝜀}𝑚, 

and the inverse relations 

{
 
 

 
 
𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6}
 
 

 
 

=

[
 
 
 
 
 
𝑐𝑜𝑠2𝜃
𝑠𝑖𝑛2𝜃
0
0
0

−𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2𝜃
𝑐𝑜𝑠2𝜃
0
0
0

𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

0
0
1
0
0
0

0
0
0

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃
0

0
0
0

−𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃
0

𝑠𝑖𝑛2𝜃
−𝑠𝑖𝑛2𝜃
0
0
0

𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃]
 
 
 
 
 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
2𝜀𝑦𝑧
2𝜀𝑥𝑧
2𝜀𝑥𝑦}

 
 

 
 

, 

{𝜀}𝑚 = [𝑅]{𝜀}𝑝. 

Transformation of material coefficients 

After the stresses and strains are transformed, the only quantities left are the material 

coefficients which are components of a fourth order tensor. To obtain the transformation 

expressions we use the relations between the stresses and strains with the already known 

transformation formulas. 

(1.91) 

(1.92) 

(1.93) 

(1.94) 

(1.95) 

(1.96) 

(1.97) 

(1.98) 

(1.99) 
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{𝜎}𝑝 = [𝑇]{𝜎}𝑚 = [𝑇][𝐶]𝑚{𝜀}𝑚 = [𝑇][𝐶]𝑚[𝑇]
𝑇{𝜀}𝑝 = [𝐶]𝑝{𝜀}𝑝. 

Thus 

[𝐶]𝑝 = [𝑇][𝐶]𝑚[𝑇]
𝑇, 

where [𝐶]𝑝 and [𝐶]𝑚 are the material stiffness matrices in the “problem” and in the 

“material” coordinate systems. From now on I will denote the components of [𝐶]𝑚 as 𝐶𝑖𝑗, 

while 𝐶𝑖𝑗̅̅ ̅̅  will be the components of the problem stiffness matrix [𝐶]𝑝. By carrying out the 

matrix operations of equation (1.101), the desired material coefficients can be obtained, 

so equations (1.73) and (1.78) turn to 

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

} = [

�̅�11 �̅�12 �̅�16
�̅�12 �̅�22 �̅�26
�̅�16 �̅�26 �̅�66

] {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
}, 

{
𝜏𝑦𝑧
𝜏𝑥𝑧
} = [

�̅�44 �̅�45
�̅�45 �̅�55

] {
𝛾𝑦𝑧
𝛾𝑥𝑧
}, 

where 

 �̅�11 = 𝑄11𝑐𝑜𝑠
4𝜃 + 2(𝑄12 + 2𝑄66)𝑠𝑖𝑛

2𝜃𝑐𝑜𝑠2𝜃 + 𝑄22𝑠𝑖𝑛
4𝜃, 

 �̅�12 = (𝑄11 + 𝑄22 − 4𝑄66)𝑠𝑖𝑛
2𝜃𝑐𝑜𝑠2𝜃 + 𝑄12(𝑠𝑖𝑛

4𝜃 + 𝑐𝑜𝑠4𝜃), 

 �̅�22 = 𝑄11𝑠𝑖𝑛
4𝜃 + 2(𝑄12 + 2𝑄66)𝑠𝑖𝑛

2𝜃𝑐𝑜𝑠2𝜃+𝑄22𝑐𝑜𝑠
4𝜃, 

 �̅�16 = (𝑄11 − 𝑄12 − 2𝑄66)𝑠𝑖𝑛𝜃𝑐𝑜𝑠
3𝜃 + (𝑄12 − 𝑄22 + 2𝑄66)𝑐𝑜𝑠𝜃𝑠𝑖𝑛

3𝜃, 

 �̅�26 = (𝑄11 − 𝑄12 − 2𝑄66)𝑐𝑜𝑠𝜃𝑠𝑖𝑛
3𝜃 + (𝑄12 −𝑄22 + 2𝑄66)𝑠𝑖𝑛𝜃𝑐𝑜𝑠

3𝜃, 

 �̅�66 = (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66)𝑠𝑖𝑛
2𝜃𝑐𝑜𝑠2𝜃 + 𝑄66(𝑠𝑖𝑛

4𝜃 + 𝑐𝑜𝑠4𝜃), 

 �̅�44 = 𝑄44𝑐𝑜𝑠
2𝜃 + 𝑄55𝑠𝑖𝑛

2𝜃, 

 �̅�45 = (𝑄55 −𝑄44) 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃, 

 �̅�55 = 𝑄55𝑐𝑜𝑠
2𝜃 + 𝑄44𝑠𝑖𝑛

2𝜃. 

(1.100) 

(1.101) 

(1.102) 

(1.103) 

(1.110) 

(1.109) 

(1.108) 

(1.106) 

(1.107) 

(1.105) 

(1.104) 

(1.112) 

(1.111) 
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Plane stress 

constitutive relations 

Most laminates are 

thin and has an 

approximately plane 

state of stress. For a 

lamina in the 𝑥1 − 𝑥2 
plane, the transverse 

stress components are 

𝜎33, 𝜎13 and 𝜎23, as can 

be seen in Figure 14. 

Although these 

components are small 

compared to 𝜎11, 𝜎22 

and 𝜎12, they can lead 

to failures in laminated 

structures, hence they 

are weak in transverse 

direction. For this 

reason these components are not neglected in the shear theories of laminated plates. 

Even so, some equivalent single layer theories neglect 𝜎33, so the constitutive equations 

should be modified to match this fact. For homogeneous case this relations are formulated 

in expressions (1.72)-(1.78). These are valid for each separate lamina if we regard the 

indices with respect to the material coordinate system of the layer under consideration. 

1.4. Classical theory of laminated composite plates with small strains 

and small rotations 

In the past, analysis of composite plates have been performed on the basis of the 

following theories: 

1) Equivalent single-layer theories (2-D) 

a) Classical laminated plate theory 

b) Shear deformation laminated plate theories 

2) Three-dimensional elasticity theory (3-D) 

a) Traditional 3-D elasticity formulations 

b) Layerwise theories 

The equivalent single layer plate theories (ESL) uses assumptions to decrease the 

dimension of the problem to 2-D. In these, a laminated plate is considered as a statically 

equivalent single layer having complex constitutive behavior. The simplest ESL theory is 

the classical laminated plate theory, which is an extension of the Kirchoff-Love theory, 

discussed in point 1.1. 

Figure 14 – The approximately plane stress state of an elementary volume 

in a lamina. (Reddy, 2004) 
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Assumptions 

The assumptions are 

identical to those discussed 

in point 1.1 at the Kirchoff-

Love plate theory. 

Displacements and strains 

Let consider a laminated 

composite layer of total 

thickness ℎ with 𝑁 

orthotropic layers. Each layer 

has its own material 

coordinate system in the 

principal direction, so the kth 

lamina has coordinates 

(𝑥1
𝑘, 𝑥2

𝑘 , 𝑥3
𝑘) and is oriented 

at angle 𝜃𝑘 to the laminate 

(problem) coordinate axis 𝑥. 

It is convenient to take the x-

y plane in the mid-plane of 

the plate, furthermore let axis 

𝑧 to point downward. The kth 

layer then is located vertically 

between 𝑧 = 𝑧𝑘 and 𝑧 =

𝑧𝑘+1. 

In formulating the theory we make some assumptions6 (A) and restrictions (R) as stated 

below: 

 The layers are perfectly bonded together (A). 

 Each of the layers has a linearly elastic material behavior and has three planes 

of material symmetry (orthotropic) (R). 

 Every layer is of uniform thickness (R). 

 The strains and displacements are small compared to the total thickness of the 

laminate (R). 

 The transverse shear stresses on the bottom and top faces of the laminate are 

zero (R). 

The assumed displacement field is the same as before at expressions (1.7)-(1.9), so 

𝑢(𝑥0, 𝑦0, 𝑧) = 𝑢0(𝑥0, 𝑦0) − 𝑧
𝜕𝑤0

𝜕𝑥
, 

𝑣(𝑥0, 𝑦0, 𝑧) = 𝑣0(𝑥0, 𝑦0) − 𝑧
𝜕𝑤0

𝜕𝑦
, 

                                                           
6 An assumption is that which is necessary to formulate a mathematical model, while a restriction is not a 
necessary condition for the same operation. 

Figure 15 – Coordinate system and layer numbering of a laminate. 

(Reddy, 2004) 

(1.113) 

(1.114) 
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𝑤(𝑥0, 𝑦0, 𝑧) ≅ 𝑤0(𝑥0, 𝑦0). 

The strains are related to the 

displacement with the help of the 

infinitesimal strain tensor, which 

components are listed in the 

equations of expressions (1.10)-

(1.15). 

Lamina constitutive relations 

In the previous chapter I discussed 

in details the necessary 

considerations on the constitutive 

model of a lamina. We diagnosed, 

that at every lamina the constitutive 

relations of equations (1.72)-(1.78) 

should be transferred to the laminate 

(problem) coordinate system 

according to the transformation law, 

so in each lamina the stresses are 

related to the strains with equations 

by (1.102) and (1.103). 

Note that in these expressions the coefficients �̅�𝑖𝑗 can vary from layer to layer, so the 

stress variation through the laminate thickness is not necessarily linear, even if the strain 

variation is linear. Typical stress and strain variations are shown in Figure 17. 

Resultant laminate forces and moments 

The calculation of the resultants can be done with expressions (1.21) and (1.23), so we 

have to integrate the stresses in each layer as follows 

{𝑁}(𝑘) = {

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

}

(𝑘)

= ∫ {𝜎}(𝑘)𝑑𝑧,     {𝑀}(𝑘) = {

𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦

}

(𝑘)

= ∫ 𝑧{𝜎}(𝑘)𝑑𝑧
𝑧𝑘+1

𝑧𝑘

𝑡/2

−𝑡/2

. 

Figure 16 – Geometry of the middle plane based on Kirchoff 

assumptions. (Reddy, 2004) 

Figure 17 – Variation of stresses and strains through the layers. (Reddy, 

2004) 

(1.115) 

(1.116) 
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The entire collection of force and moments resultants for an N-layer laminate can be 

obtained by summing these layer components, so 

{𝑁} = {

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = ∫ {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
} 𝑑𝑧 = ∑ ∫ {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
}

(𝑘)

𝑑𝑧
𝑧𝑘+1
𝑧𝑘

𝑁
𝑘=1

𝑡/2

−𝑡/2
, 

{𝑀} = {

𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦

} = ∫ 𝑧 {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
} 𝑑𝑧 = ∑ ∫ 𝑧 {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
}

(𝑘)

𝑑𝑧
𝑧𝑘+1
𝑧𝑘

𝑁
𝑘=1

𝑡/2

−𝑡/2
. 

These expressions can be rearranged, if we take advantage of that the stiffness matrix 

is constant within a lamina. Utilizing this property and using equations (1.20), (1.102) and 

(1.103) we come to 

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = ∑ [

�̅�11 �̅�12 �̅�13
�̅�12 �̅�22 �̅�23
�̅�13 �̅�23 �̅�33

]

(𝑘)

{∫ {

𝜀0𝑥𝑥
𝜀0𝑦𝑦
𝛾0𝑥𝑦

}𝑑𝑧
𝑧𝑘+1
𝑧𝑘

+ ∫ 𝑧 {

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

} 𝑑𝑧
𝑧𝑘+1
𝑧𝑘

}𝑁
𝑘=1 , 

{𝑁} = ∑ [�̅�](𝑘) {∫ {𝜀0} +
𝑧𝑘+1
𝑧𝑘

𝑧{𝜅} 𝑑𝑧}𝑁
𝑘=1 , 

{

𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦

} = ∑ [

�̅�11 �̅�12 �̅�13
�̅�12 �̅�22 �̅�23
�̅�13 �̅�23 �̅�33

]

(𝑘)

{∫ 𝑧 {

𝜀0𝑥𝑥
𝜀0𝑦𝑦
𝛾0𝑥𝑦

}𝑑𝑧
𝑧𝑘+1
𝑧𝑘

+ ∫ 𝑧2 {

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

} 𝑑𝑧
𝑧𝑘+1
𝑧𝑘

}𝑁
𝑘=1 , 

{𝑀} = ∑ [�̅�](𝑘) {∫ 𝑧{𝜀0} +
𝑧𝑘+1
𝑧𝑘

𝑧2{𝜅} 𝑑𝑧}𝑁
𝑘=1 . 

We should now recall, that {𝜀0} and {𝜅} are not dependent on coordinate 𝑧 so they can 

be removed from within the summation signs. Thus the primer equation can be written as 

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = [

𝐴11 𝐴12 𝐴16
𝐴12 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

] {

𝜀0𝑥𝑥
𝜀0𝑦𝑦
𝛾0𝑥𝑦

} + [

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

] {

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

}, 

{

𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦

} = [

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

] {

𝜀0𝑥𝑥
𝜀0𝑦𝑦
𝛾0𝑥𝑦

} + [

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

] {

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

}. 

In more compact form 

{
{𝑁}
{𝑀}

} = [
[𝐴] [𝐵]

[𝐵]𝑇 [𝐷]
] {
{𝜀0}

{𝜅}
}, 

where 

𝐴𝑖𝑗 =∑(�̅�𝑖𝑗)(𝑘)(𝑧𝑘+1 − 𝑧𝑘)

𝑁

𝑘=1

,     𝐵𝑖𝑗 =
1

2
∑(�̅�𝑖𝑗)(𝑘)

(𝑧𝑘+1
2 − 𝑧𝑘

2),

𝑁

𝑘=1

 

𝐷𝑖𝑗 =
1

3
∑(�̅�𝑖𝑗)(𝑘)

(𝑧𝑘+1
3 − 𝑧𝑘

3).

𝑁

𝑘=1

 

(1.117) 

(1.118) 

(1.122) 

(1.121) 

(1.120) 

(1.119) 

(1.124) 

(1.123) 

(1.125) 

(1.127) 

(1.126) 
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In expressions (1.23)-(1.27), 𝐴𝑖𝑗 are extensional stiffnesses, 𝐵𝑖𝑗 are bending-extensional 

stiffnesses and 𝐷𝑖𝑗 are bending stiffnesses. The presence of 𝐵𝑖𝑗 implies coupling between 

bending and extension of a laminate. It means that it is impossible to pull a laminate 

without bending and/or twisting it at the same time. Similarly, such a laminate cannot bent 

without suffering extension of the middle surface. This behavior is illustrated on Figure 18. 

Observe how the behavior changes if the fibers are in the plate of the bending moment 

or opposite. On the left figure no twisting occurs when bending the beam, but if the cross 

section is rotated with 90°, the behavior changes. 

The steps of determining the governing equations are identical to those discussed in 

point 1.1. 

1.5. Classical theory of laminated composite plates with small strains 

and moderate rotations 

In those cases when we count on moderate rotations (say 10°-15°), we have to modify 

the relations between strains and displacements. Now we can use for this purpose the 

nonlinear strains. 

The explicit form of the six Cartesian components of the Green7-Lagrange8 strain tensor 

are given by formulas (1.128)-(1.133). Between the second order terms I marked with red 

those, which can be neglected as a consequence of the small strain assumption. In case 

of moderate rotations some second order terms should be included in the strain-

displacement relations and these are market with green color in the expressions. The first 

order terms were already taken into account in the Kirchoff model, these are left 

unchanged in color. 

                                                           
7 George Green (14 July 1793 – 31 May 1841) was a British mathematical physicist. He was the first person to 
create a mathematical theory of electricity and magnetism, and he introduced several important concepts of 
today’s principles in use (Wikipedia).  
8 Joseph-Louis Lagrange (25 January 1736 – 10 April 1813) was an Italian Enlightenment Era mathematician and 
astronomer. He made significant contributions to all fields of analysis, number theory, and both classical and 
celestial mechanics (Wikipedia). 

Figure 18 – Bend-twist coupling phenomenon. (Jones, 1999) 
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𝐸𝑥𝑥 =
𝜕𝑢

𝜕𝑥
+
1

2
[(
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑥
)
2

+ (
𝜕𝑤

𝜕𝑥
)
2

], 

𝐸𝑦𝑦 =
𝜕𝑣

𝜕𝑦
+
1

2
[(
𝜕𝑢

𝜕𝑦
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

+ (
𝜕𝑤

𝜕𝑦
)
2

], 

𝐸𝑧𝑧 =
𝜕𝑤

𝜕𝑧
+
1

2
[(
𝜕𝑢

𝜕𝑧
)
2

+ (
𝜕𝑣

𝜕𝑧
)
2

+ (
𝜕𝑤

𝜕𝑧
)
2

], 

𝐸𝑥𝑦 =
1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
), 

𝐸𝑥𝑧 =
1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑧
+
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑧
), 

𝐸𝑦𝑧 =
1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
+
𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧
+
𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧
). 

Therefore for small strains and moderate rotations the strain-displacement relations take 

the form 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
+
1

2
(
𝜕𝑤

𝜕𝑥
)
2

;  𝜀𝑦𝑦 =
𝜕𝑣

𝜕𝑦
+
1

2
(
𝜕𝑤

𝜕𝑦
)
2

;  𝜀𝑧𝑧 =
𝜕𝑤

𝜕𝑧
; 

𝛾𝑦𝑧 =
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
;  𝛾𝑧𝑥 =

𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
;  𝛾𝑥𝑦 =

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
+
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
. 

Substituting here the displacements function we obtain 

𝜀𝑥𝑥 =
𝜕𝑢0

𝜕𝑥
+
1

2
(
𝜕𝑤0

𝜕𝑥
)
2

− 𝑧
𝜕2𝑤0

𝜕𝑥2
, 

𝜀𝑦𝑦 =
𝜕𝑣0

𝜕𝑦
+
1

2
(
𝜕𝑤0

𝜕𝑦
)
2

− 𝑧
𝜕2𝑤0

𝜕𝑦2
, 

𝜀𝑧𝑧 = 0 

𝛾𝑦𝑧 =
𝜕

𝜕𝑧
(𝑣0(𝑥0, 𝑦0) − 𝑧

𝜕𝑤0

𝜕𝑦
) +

𝜕𝑤0

𝜕𝑦
= −

𝜕𝑤0

𝜕𝑦
+
𝜕𝑤0

𝜕𝑦
= 0, 

𝛾𝑧𝑥 =
𝜕

𝜕𝑧
(𝑢0(𝑥0, 𝑦0) − 𝑧

𝜕𝑤0

𝜕𝑥
) +

𝜕𝑤0

𝜕𝑥
= −

𝜕𝑤0

𝜕𝑥
+
𝜕𝑤0

𝜕𝑥
= 0, 

𝛾𝑥𝑦 =
𝜕𝑢0

𝜕𝑦
+
𝜕𝑣0

𝜕𝑥
+
𝜕𝑤0

𝜕𝑥

𝜕𝑤0

𝜕𝑦
− 2𝑧

𝜕2𝑤0

𝜕𝑥𝜕𝑦
. 

To distinguish the obtained expressions well from the Kirchoff’s versions, I marked the 

additional terms in (1.134)-(1.141) again with green. These are present due to the not 

neglected (green) second order strain terms in expressions (1.128)-(1.133). In this way 

we can note, that the transverse strains are identically zero as there were in the classical 

plate theory. 

(1.131) 

(1.133) 

(1.132) 

(1.128) 

(1.130) 

(1.129) 

(1.134) 

(1.135) 

(1.141) 

(1.140) 

(1.139) 

(1.138) 

(1.137) 

(1.136) 
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The strains in (1.36)-(1.41) are the so called von Kármán9 strains, and the associated 

plate theory is termed von Kármán plate theory. 

The non-zero terms can be separated to membrane strains 𝜀0 and flexural (bending) 

strains 𝜀1, known as curvatures, ergo 

{

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
} = {

𝜀𝑥𝑥
(0)

𝜀𝑦𝑦
(0)

𝛾𝑥𝑦
(0)

}+ 𝑧{

𝜀𝑥𝑥
(1)

𝜀𝑦𝑦
(1)

𝛾𝑥𝑦
(1)

} = {𝜀0} + 𝑧{𝜀1}, 

{𝜀0} =

{
  
 

  
 

𝜕𝑢0
𝜕𝑥

+
1

2
(
𝜕𝑤0
𝜕𝑥
)
2

𝜕𝑣0
𝜕𝑦

+
1

2
(
𝜕𝑤0
𝜕𝑦
)
2

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥

+
𝜕𝑤0
𝜕𝑥

𝜕𝑤0
𝜕𝑦 }
  
 

  
 

,    {𝜀1} =

{
  
 

  
 −𝑧

𝜕2𝑤0
𝜕𝑥2

−𝑧
𝜕2𝑤0
𝜕𝑦2

−2𝑧
𝜕2𝑤0
𝜕𝑥𝜕𝑦}

  
 

  
 

.  

Notice that {𝜀0} and {𝜀1} are identical to the formerly used vectors {𝜀0} and {𝜅}. 

The point of this theory were in the different consideration of the displacement-strain 

relationships. The governing equations can be obtained in the same manner as before, it 

can be found in the book of Reddy, see (Reddy, 2004).  

1.6. The first-order laminated plate theory with small strains and small 

rotations 

The first order laminated plate 

theory can be expanded the same 

way from the Reissner-Mindlin, as 

the classical laminated plate theory 

was expanded from the Kirchoff-

Love version in point 1.4.  

For now it is assumed that the 

reader is familiar with the used 

coordinate systems and definitions 

which can be associated with a 

laminated composite plate. 

Furthermore this chapter uses the 

results and statements of earlier points 1.2 and 1.4, thus it is rather a summary of the 

already known results, than building a theory from the bottom up. I want to highlight, that 

this theory is from the family of single-layer theories. 

Assumptions 

                                                           
9 Theodore von Kármán (in Hungarian: Szőllőskislaki Kármán Tódor; May 11, 1881 – May 6, 1963). Hungarian-
American mathematician, aerospace engineer and physicist who was active primarily in the fields of aeronautics 
and astronautics. He is regarded as the outstanding aerodynamic theoretician of the twentieth century 
(Wikipedia). 

Figure 19 - Geometry of the middle plane based on the 

assumptions of the first-order plate theory. (Reddy, 2004) 

(1.142) 

(1.143) 
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The assumptions are of point 1.2 supplemented with the next assumptions (A) and 

restrictions (R), as follows 

 The layers are perfectly bonded together (A). 

 Each of the layers has a linearly elastic material behavior and has three planes 

of material symmetry (orthotropic) (R). 

 Every layer is of uniform thickness (R). 

 The strains and displacements are small compared to the total thickness of the 

laminate (R). 

 The transverse shear stresses on the bottom and top faces of the laminate are 

zero (R). 

These additional conditions are identical to those, which were used in point 1.4. 

Strains and displacements 

The displacement field is the same as in point 1.2, so  

𝑢(𝑥0, 𝑦0, 𝑧) = 𝑢0(𝑥0, 𝑦0) − 𝑧𝜗𝑥 , 

𝑣(𝑥0, 𝑦0, 𝑧) = 𝑣0(𝑥0, 𝑦0) − 𝑧𝜗𝑦, 

𝑤(𝑥0, 𝑦0, 𝑧) ≅ 𝑤0(𝑥0, 𝑦0). 

Thus non-zero components of the infinitesimal strain tensor are: 

𝜀𝑥𝑥 =
𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕𝜗𝑥

𝜕𝑥
= 𝜀0𝑥𝑥 − 𝑧

𝜕𝜗𝑥

𝜕𝑥
= 𝜀0𝑥𝑥 + 𝑧 𝜅𝑥 , 

𝜀𝑦𝑦 =
𝜕𝑣0

𝜕𝑦
− 𝑧

𝜕𝜗𝑦

𝜕𝑦
= 𝜀0𝑦𝑦 − 𝑧

𝜕𝜗𝑦

𝜕𝑦
= 𝜀0𝑦𝑦 + 𝑧 𝜅𝑦 , 

𝛾𝑥𝑦 =
𝜕𝑢0

𝜕𝑦
+
𝜕𝑣0

𝜕𝑥
−  𝑧

𝜕𝜗𝑥

𝜕𝑦
− 𝑧

𝜕𝜗𝑥

𝜕𝑥
= 𝛾0𝑥𝑦 −  𝑧

𝜕𝜗𝑥

𝜕𝑦
− 𝑧

𝜕𝜗𝑥

𝜕𝑥
= 𝛾0𝑥𝑦 + 𝑧 𝜅𝑥𝑦 , 

𝛾𝑧𝑥 =
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
=

𝜕𝑤0

𝜕𝑥
+

𝜕

𝜕𝑧
(𝑢0(𝑥0, 𝑦0) − 𝑧𝜗𝑥) =

𝜕𝑤0

𝜕𝑥
− 𝜗𝑥 = 𝛾𝑥 , 

𝛾𝑧𝑦 =
𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
=

𝜕𝑤0

𝜕𝑦
+

𝜕

𝜕𝑧
(𝑣0(𝑥0, 𝑦0) − 𝑧𝜗𝑦) =

𝜕𝑤0

𝜕𝑦
− 𝜗𝑦 = 𝛾𝑦 . 

Constitutive equations 

The plate constitutive equations were clarified in equations (1.25)-(1.27) and are also 

valid for the first-order theory, so 

{
{𝑁}
{𝑀}

} = [
[𝐴] [𝐵]

[𝐵]𝑇 [𝐷]
] {
{𝜀0}

{𝜅}
}, 

where 

𝐴𝑖𝑗 =∑(�̅�𝑖𝑗)(𝑘)(𝑧𝑘+1 − 𝑧𝑘)

𝑁

𝑘=1

,     𝐵𝑖𝑗 =
1

2
∑(�̅�𝑖𝑗)(𝑘)

(𝑧𝑘+1
2 − 𝑧𝑘

2),

𝑁

𝑘=1

 

(1.146) 

(1.145) 

(1.144) 

(1.151) 

(1.150) 

(1.149) 

(1.148) 

(1.147) 

(1.152) 

(1.153) 
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𝐷𝑖𝑗 =
1

3
∑(�̅�𝑖𝑗)(𝑘)

(𝑧𝑘+1
3 − 𝑧𝑘

3).

𝑁

𝑘=1

 

In addition, we have the following laminate constitutive equations: 

{
𝑄𝑦
𝑄𝑥
} = 𝐾𝑠 [

𝐴44 𝐴45
𝐴45 𝐴55

] {
𝛾𝑦
𝛾𝑥
}, 

where 

𝐴𝑖𝑗 =∑(�̅�𝑖𝑗)(𝑘)
(𝑧𝑘+1 − 𝑧𝑘)

𝑁

𝑘=1

. 

After this step we can consider the plate as an equivalent single layer homogeneous 

plate, so the next steps are completely identical to those in point 1.2. Thus the value of 

5 6⁄  for the shear correction factor holds for this theory also. 

Bending equations 

The equilibrium equations of a plate are 

𝜕𝑄𝑥
𝜕𝑥

+ 
𝜕𝑄𝑦

𝜕𝑦
+ 𝑞 = 0, 

𝜕𝑀𝑥𝑦

𝜕𝑥
− 
𝜕𝑀𝑥
𝜕𝑦

+ 𝑄𝑦 = 0, 

𝜕𝑀𝑦𝑥

𝜕𝑦
+ 
𝜕𝑀𝑦

𝜕𝑥
− 𝑄𝑥 = 0. 

By substituting the expressions for the curvatures and the out of plane shear stresses 

from (1.46)-(1.51) into the constitutive equations (1.52) and (1.55), and put this all into the 

equilibrium equations (1.57)-(1.59) we obtain five separate second order differential 

equations. The complete form of these equations can be found in the book of Reddy 

(2004). Because of the limits of the present thesis we have to restrict our investigation 

to simpler cases, when some of the rigidities of expression (1.52) and (1.55) are 

zero10.  

1.7. Other theories for laminated composite plates 

In the spirit of the single-layer theory, higher order displacement fields can be assumed 

to predict more accurately the behavior of multi layered moderately thick composite plates. 

It is to note, that in case of a third-order shear theory the displacement field accommodates 

cubic variations of transverse shear strain, so there is no more need to use a shear 

correction factor. Needless to say, these theories cannot be discussed in the framework 

of this thesis. 

Unlike the single-layer theories, the layerwise theories assume a unique displacement 

field for each layer. Again, the order of the displacement fields can vary. 

                                                           
10 We will continue this thought in chapter 2, where a solution will be presented for specific lamination 
schemes. 

(1.154) 

(1.155) 

(1.156) 

(1.159) 

(1.158) 

(1.157) 
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The most accurate results for stresses and strains can be obtained by three dimensional 

elastic models 

1.8. Theory of sandwich plates 

A sandwich type construction refers to 

laminates that consist of two high strength 

layers on the outer faces and a relatively 

weak core between them. This composition 

produces usually high bending stiffness with 

low weight. 

Several theories exists for the bending of flat 

sandwich plates. These theories differ in how 

the shear deformations of the core are 

accounted for. Also, certain stiffnesses of 

energy contributions may be neglected or taken into account and other idealizations can 

be made. Therefore the derived formulas can vary greatly in complexity. However it can 

be shown, that the results from different theories are essentially the same in magnitude. 

In this point I will introduce a theory developed by Libove and Batdorf in the book of 

Plantema (1996). This theory assumes, that the transverse normal stiffness of the plate is 

infinite and the faces can be considered as membranes. Furthermore the normal stiffness 

of the core in x-direction, parallel to the faces, is usually small compared with the nornal 

stiffness of the faces. For this reason it is assumed, that the core carries no longitudinal 

normal stresses. For practical purposes these assumptions are justified, except in extreme 

cases, when the wrinkling phenomena occurs. These extreme situations are not the object 

of the thesis.  

Similarly to what was seen in point 1.6, the theory is based on the Mindlin-Reissner plate 

theory and again we use a statically equivalent layer to substitute the sandwich layers. 

Therefore the equivalent plate rigidities are needed to use the stress-strain relations of 

expressions 

{
{𝑁}
{𝑀}

} = [
[𝐴] [𝐵]

[𝐵]𝑇 [𝐷]
] {
{𝜀0}

{𝜅}
}, 

{
𝑄𝑥
𝑄𝑦
} = 𝐾𝑠 [

𝐺𝑡 0
0 𝐺𝑡

] {
𝛾𝑥
𝛾𝑦
}. 

Note that from the above equations, the first one is not needed to formulate the governing 

equations. The rigidities for the remaining expressions are formulated in (Plantema, 1996) 

for sandwich plates with faces of equal thickness and material properties, consequently 

without flexural-extensional coupling. Thus 

𝐷𝑖𝑗 = ∫ 𝑄𝑖𝑗𝑧
2𝑑𝑧

𝑡/2

−𝑡/2

       (𝑖, 𝑗 = 1,2,6), 

𝑆𝑖𝑗 = ∫ 𝑄𝑖𝑗𝑑𝑧         (𝑖, 𝑗 = 4,5).
𝑡/2

−𝑡/2

 

Furthermore, every rigidity has a contribution from the core and the faces also. As a 

consequence of the introduced idealizations, it is usual to ignore the contribution of the 

Figure 20 – Geometry of a sandwich plate. 

(1.161) 

(1.160) 

(1.163) 

(1.162) 
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core to the flexural rigidities and the contribution of the faces to the shear rigidity. In the 

following formulas the ignored terms are written in red. Thus 

𝐷11 = ∫
𝐸𝑐𝑧

2

2(1 − 𝜈𝑐
2)

𝑡𝑐/2

−𝑡𝑐/2

𝑑𝑧 + ∫
𝐸𝑓𝑧

2

2(1 − 𝜈𝑓
2)

𝑡𝑐
2
+𝑡𝑓

𝑡𝑐/2

𝑑𝑧 + ∫
𝐸𝑓𝑧

2

2(1 − 𝜈𝑓
2)

−𝑡𝑐/2

−
𝑡𝑐
2
−𝑡𝑓

𝑑𝑧, 

𝐷11 =
𝐸𝑓𝑡𝑓(𝑡𝑐

2 + 2𝑡𝑐𝑡𝑓 + 4𝑡𝑓
2/3)

4(1 − 𝜈𝑓
2)

+
𝐸𝑐𝑡𝑐

3

24(1 − 𝜈𝑓
2)
= 𝐷11

𝑓 + 𝐷11
𝑐, 

𝑆44 = 𝑆55 = ∫ 𝐺𝑐

𝑡𝑐/2

−𝑡𝑐/2

𝑑𝑧 + ∫ 𝐺𝑓

𝑡𝑐
2
+𝑡𝑓

𝑡𝑐/2

𝑑𝑧 +∫ 𝐺𝑓

−𝑡𝑐/2

−
𝑡𝑐
2
−𝑡𝑓

𝑑𝑧, 

𝑆44 = 𝑆55 = 𝐺𝑐𝑡𝑐 + 2𝐺𝑓𝑡𝑓 = 𝑆44
𝑐 + 𝑆44

𝑓, 

𝐷12 = 𝜈𝑐𝐷11
𝑐 + 𝜈𝑓𝐷11

𝑓 , 

𝐷66 = (1 − 𝜈𝑐)𝐷11
𝑐/2 + (1 − 𝜈𝑓)𝐷11

𝑓/2. 

In the expressions 𝑡𝑐 and 𝑡𝑓 are thicknesses of the core and the faces (Figure 20), 𝐸𝑐 

and 𝐸𝑓 are the elastic moduli and 𝜈𝑐 and 𝜈𝑓 are the Poisson’s ratios of the core and the 

flange respectively. 

From now on we can consider the plate as any homogeneous isotropic layer, so the 

steps of determining the governing equations are identical to those discussed in point 1.1. 

1.9. Theory of voided plates 

A similar single layer consideration can be applied to voided plates as seen at laminated 

and sandwich constructions in the previous chapters. Again the point is in the plate 

constitutive relations, so equivalent plate rigidities has to be determined to be able to treat 

the plate as a homogeneous isotropic one. 

The expressions for the evaluation of plate rigidities suggested by Basu and Dawson in 

(Basu et al, 1970) are now summarized. 

To calculate the transverse flexural rigidity 𝐷11, only the contribution of the flanges are 

considered, thus 

𝐷11 =
𝐸𝑡𝑓ℎ

2

2(1 − 𝜈2)
. 

In the longitudinal flexural rigidity 𝐷12, the core and the flanges are considered either, so 

Figure 21 - Section of a voided plate. 

(1.171) 

(1.172) 

(1.170) 

(1.169) 

(1.168) 

(1.167) 

(1.166) 
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𝐷22 = 𝐷11 (1 + (
𝑡𝑤ℎ

𝑡𝑓𝑤
)). 

The coupling rigidity 𝐷12 and the torsional rigidity 𝐷66 

𝐷12 = 𝐷21 = 𝜈𝐷11,               𝐷66 =
𝐺𝑡𝑓ℎ

2

2
. 

The transverse shear rigidity 𝑆44 is provided by the flexure of the flange and the webs in 

the transverse cross section as if it were a Vierendeel-type girder, and is obtained by the 

assumption that there is an inflexion point between the webs: 

𝑆44 =
2𝐸𝑡𝑓

3

𝑤2(1 + 2(ℎ/𝑤)(𝑡𝑓/𝑡𝑤)
3)
. 

The longitudinal shearing rigidity is obtained on the assumption, that the vertical shear 

force is resisted only by the webs and the distribution of the shear stresses in the webs is 

uniform. Therefore 

𝑆55 = 𝐺𝑡𝑓ℎ(1 + 𝑡𝑓/ℎ)/(𝑡𝑓𝑤/𝑡𝑤). 

The meaning of the geometrical parameters can be seen on Figure 21. 

1.10. Plates on elastic foundation 

Many engineering problems can be related to the solution of plates resting on elastic 

foundation. To simplify this complex problem, let us assume that the supporting medium 

is isotropic, homogeneous and linearly elastic. Such a type of sub base is called a Winkler-

type foundation. The foundation’s reaction 𝑞∗(𝑥, 𝑦) can be calculated by the relationship 

𝑞∗(𝑥, 𝑦) = 𝑘𝑤, 

where 𝑘 represents the bedding constant (in kilonewtons per cubic centimeter) of the 

foundation material. When a plate is supported by such a foundation, the external load 

𝑞(𝑥, 𝑦) is extended to be 𝑞(𝑥, 𝑦) − 𝑞∗(𝑥, 𝑦) = 𝑘𝑤. Thus the equilibrium equation of vertical 

forces from expression (Owen et al, 1986) changes to 

𝜕𝑄𝑥
𝜕𝑥

+ 
𝜕𝑄𝑦

𝜕𝑦
+ 𝑞 − 𝑞∗ = 0. 

By substituting expression (70) we obtain 

𝜕𝑄𝑥
𝜕𝑥

+ 
𝜕𝑄𝑦

𝜕𝑦
− 𝑘𝑤 = −𝑞. 

This modification means no more than an additional term in the differential equations, 

actually in the first. As an example, if we consider the differential equations (1.55)-(1.57) 

of point 1.2, with this modification the final form of the three differential equation of a 

Mindlin plate becomes 

𝐾𝑠𝐺𝑡 (
𝜕2𝑤

𝜕𝑥2
−
𝜕𝜗𝑥
𝜕𝑥
) + 𝐾𝑠𝐺𝑡 (

𝜕2𝑤

𝜕𝑦2
−
𝜕𝜗𝑦

𝜕𝑦
) − 𝑘𝑤 = −𝑝(𝑥, 𝑦), 

(1.173) 

(1.174) 

(1.175) 

(1.176) 

(1.177) 

(1.178) 

(1.179) 

(1.180) 
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𝐾𝑠𝐺𝑡 (
𝜕𝑤

𝜕𝑥
− 𝜗𝑥) = −�̅�

𝜕2𝜗𝑥
𝜕𝑥2

− 𝜈�̅�
𝜕2𝜗𝑦

𝜕𝑥𝜕𝑦
−
1 − 𝜈

2
�̅� (

𝜕𝜗𝑦

𝜕𝑦𝜕𝑥
+
𝜕2𝜗𝑥
𝜕𝑦2

), 

𝐾𝑠𝐺𝑡 (
𝜕𝑤

𝜕𝑦
− 𝜗𝑦) = −�̅�

𝜕2𝜗𝑦

𝜕𝑥2
− 𝜈�̅�

𝜕2𝜗𝑥
𝜕𝑥𝜕𝑦

−
1 − 𝜈

2
�̅� (

𝜕𝜗𝑥
𝜕𝑦𝜕𝑥

+
𝜕2𝜗𝑦

𝜕𝑦2
). 

The additional term is marked with green. 

  

(1.182) 

(1.181) 
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2. NUMERICAL SOLUTION 

In chapter 1 we introduced the governing equations of plate problems. Now we will 

continue with the solution of Mindlin plates with various cross sections such as 

homogeneous, sandwich, laminated and voided. The latter three is considered as 

structures with complex behavior, but substituted with a statically equivalent single 

layer by equivalent plate rigidities, discussed in the previous chapters. Thus we only have 

to find a solution for homogeneous isotropic plates. Ernest Hinton provided a solution for 

such a case in (Owen et al, 1986). He also formulated a software in FORTRAN77 

computer language capable of calculating rectangular Mindlin plates with simply 

supported edges resting on elastic Winkler foundation. 

2.1. Theoretical background 

Although the governing equations are ready, small modifications are needed according 

to the book of Hinton, these will be summarized now. 

Assumptions 

The assumptions are identical to those introduced at the Mindlin-Reissner theory in point 

1.2. 

Strains and displacements 

Let consider the case when the mid plane is in the x-y plane and the z axis is pointing 

downwards. If displacements of the mid-plane due to membranal deformations are not 

taken into account, the displacement field modifies to 

𝑢(𝑥0, 𝑦0, 𝑧) = 𝑧𝜗𝑥, 

𝑣(𝑥0, 𝑦0, 𝑧) = 𝑧𝜗𝑦, 

𝑤(𝑥0, 𝑦0, 𝑧) ≅ w(𝑥0, 𝑦0). 

As a consequence, the elements of the small strain tensor for this case are 

𝜀𝑥𝑥 = 𝑧
𝜕𝜗𝑥
𝜕𝑥

= 𝑧 𝜅𝑥 , 

𝜀𝑦𝑦 = 𝑧
𝜕𝜗𝑦

𝜕𝑦
= 𝑧 𝜅𝑦, 

𝛾𝑥𝑦 =  𝑧
𝜕𝜗𝑥
𝜕𝑦

+ 𝑧
𝜕𝜗𝑥
𝜕𝑥

=  𝑧 𝜅𝑥𝑦, 

𝛾𝑥𝑧 =
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
=
𝜕𝑤

𝜕𝑥
+
𝜕

𝜕𝑧
(𝑧𝜗𝑥) =

𝜕𝑤

𝜕𝑥
+ 𝜗𝑥 = 𝛾𝑥 , 

𝛾𝑦𝑧 =
𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
=
𝜕𝑤

𝜕𝑦
+
𝜕

𝜕𝑧
(𝑧𝜗𝑦) =

𝜕𝑤

𝜕𝑦
+ 𝜗𝑦 = 𝛾𝑦, 

or in matrix form 

{𝜀} = 𝑧{𝜅}      𝑎𝑛𝑑         {𝛾} = {
𝛾𝑦
𝛾𝑥
}. 

(2.3) 

(2.2) 

(2.1) 

(2.8) 

(2.7) 

(2.6) 

(2.5) 

(2.4) 

(2.9) 
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Constitutive equations 

The stress-strain relations are 

{𝜎} = {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

} = [

�̅�11 �̅�12 �̅�16
�̅�12 �̅�22 �̅�26
�̅�16 �̅�26 �̅�66

] {𝜀}, 

{𝜏} = {
𝜏𝑦𝑧
𝜏𝑥𝑧
} = [

�̅�44 �̅�45
�̅�45 �̅�55

] {𝛾}, 

and the plate constitutive equations can be written as 

{𝑁} = {

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = ∫ {𝜎}𝑑𝑧 = ∫ [𝑄]𝑧{𝜅}𝑑𝑧 =
𝑡/2

−𝑡/2

𝑡/2

−𝑡/2

[[𝑄]
𝑧2

2
{𝜅}]

−𝑡/2

𝑡/2

= 0, 

{𝑀} = {

𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦

} = ∫ {𝜎}𝑧𝑑𝑧 = ∫ [𝑄]𝑧2{𝜅}𝑑𝑧 = [[𝑄]
𝑧3

3
{𝜅}]

−𝑡/2

𝑡/2

=
𝑡/2

−𝑡/2

𝑡/2

−𝑡/2

[𝑄]
𝑡2

12
{𝜅}, 

{

𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦

} = [𝑄]
𝑡2

12
{

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

} = [

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

] {

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

}, 

{𝑄𝑠} = {
𝑄𝑦
𝑄𝑥
} = ∫ 𝐾𝑠{𝜏}𝑑𝑧 = ∫ 𝐾𝑠 [

�̅�44 �̅�45
�̅�45 �̅�55

] {𝛾}𝑑𝑧 = [𝑆]{𝛾},
𝑡/2

−𝑡/2

𝑡/2

−𝑡/2

 

{
𝑄𝑦
𝑄𝑥
} = [

𝑆44 𝑆45
𝑆45 𝑆55

] {
𝛾𝑦
𝛾𝑥
}. 

Here we can substitute the expressions for the terms of {

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

} and {
𝛾𝑦
𝛾𝑥
} from the strain-

displacement relations. Thus we have 

{

𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦

} = [

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

]

{
  
 

  
 

𝜕𝜗𝑥
𝜕𝑥
𝜕𝜗𝑦

𝜕𝑦
𝜕𝜗𝑥
𝜕𝑦

+
𝜕𝜗𝑥
𝜕𝑥 }
  
 

  
 

, 

and 

{
𝑄𝑦
𝑄𝑥
} = [

𝑆44 𝑆45
𝑆45 𝑆55

]

{
 

 
𝜕𝑤

𝜕𝑦
+ 𝜗𝑦

𝜕𝑤

𝜕𝑥
+ 𝜗𝑥}

 

 
. 

It is important, that in the equations (2.16) and (2.18), the shear correction factor is 

included in terms 𝑆𝑖𝑗. 

(2.11) 

(2.10) 

(2.16) 

(2.15) 

(2.14) 

(2.13) 

(2.12) 

(2.17) 

(2.18) 
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Equilibrium and governing equations 

The equilibrium equations for a Mindlin plate resting on elastic Winkler foundation of 

modulus 𝑘 are 

𝜕𝑄𝑥
𝜕𝑥

+ 
𝜕𝑄𝑦

𝜕𝑦
+ 𝑞 + 𝑘𝑤 = 0, 

𝜕𝑀𝑥𝑦

𝜕𝑥
− 
𝜕𝑀𝑥
𝜕𝑦

+ 𝑄𝑦 = 0, 

𝜕𝑀𝑦𝑥

𝜕𝑦
+ 
𝜕𝑀𝑦

𝜕𝑥
− 𝑄𝑥 = 0. 

If we substitute here the previous expressions for {𝑀} and {𝑄𝑠} we obtain the three 

separate differential equations for a Mindlin plate. Before doing so I must declare, that we 

restrict our object to those especially orthotropic plates, where rigidities 

𝐷16, 𝐷61, 𝐷26, 𝐷62 and 𝑆45, 𝑆54 are zero. Considering these, the governing equations takes 

the following shape 

𝑆55
𝜕𝜗𝑥
𝜕𝑥

+ 𝑆55
𝜕2𝑤

𝜕𝑥2
+ 𝑆44

𝜕𝜗𝑦

𝜕𝑦
+ 𝑆44

𝜕2𝑤

𝜕𝑦2
+ 𝑞 + 𝑘𝑤 = 0, 

𝐷11
𝜕2𝜗𝑥
𝜕𝑥2

+ 𝐷66
𝜕2𝜗𝑥
𝜕𝑦2

+ (𝐷12 +𝐷66)
𝜕2𝜗𝑦

𝜕𝑥𝜕𝑦
− 𝑆55𝜗𝑥 − 𝑆55

𝜕𝑤

𝜕𝑥
= 0, 

(𝐷12 + 𝐷66)
𝜕2𝜗𝑥
𝜕𝑥𝜕𝑦

+ 𝐷66
𝜕2𝜗𝑦

𝜕𝑥2
+ 𝐷22

𝜕2𝜗𝑦

𝜕𝑦2
− 𝑆44𝜗𝑦 − 𝑆44

𝜕𝑤

𝜕𝑦
= 0. 

Solution 

Now a closed form solution will be presented given by Dobyns, who employed the Navier 

approach to solve equations (2.22)-(2.24) for a composite plate simply supported on all 

four edges subjected to any lateral load. The solution is concerned with plates of uniform 

thickness and dimensions 𝑎 and 𝑏. For such a plate the boundary conditions are 

𝑤 =
𝜕𝜗𝑥
𝜕𝑥

= 0      𝑎𝑡     𝑥 = 0, 𝑎; 

𝑤 =
𝜕𝜗𝑦

𝜕𝑦
= 0      𝑎𝑡     𝑦 = 0, 𝑏. 

In the closed form solution, 𝑤, 𝜗𝑥 and 𝜗𝑦 are thought to satisfy equations (2.22)-(2.24)  

and (2.25)-(2.26). Thus 

𝜗𝑥 = 𝐴𝑚𝑛 cos (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
), 

𝜗𝑦 = 𝐵𝑚𝑛 sin (
𝑚𝜋𝑥

𝑎
) cos (

𝑛𝜋𝑦

𝑏
), 

𝑤 = 𝐶𝑚𝑛 sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
), 

and the loading function is given as 

(2.21) 

(2.20) 

(2.19) 

(2.24) 

(2.23) 

(2.22) 

(2.26) 

(2.25) 

(2.29) 

(2.28) 

(2.27) 
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𝑞 = 𝑞𝑚𝑛 sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
), 

in which 𝑞𝑚𝑛 are the Fourier coefficients of the applied load. 

By substituting (2.27)-(2.30) into the governing equations (2.22)-(2.24), we obtain the 

matrix equation 

[

𝑃11 𝑃12 𝑃13
𝑃12 𝑃22 𝑃23
𝑃13 𝑃23 𝑃33

] {

𝐴𝑚𝑛
𝐵𝑚𝑛
𝐶𝑚𝑛

} = {
0
0
𝑞𝑚𝑛

}, 

where 

 𝑃11 = 𝐷11 (
𝑚𝜋

𝑎
)
2

+ 𝐷66 (
𝑛𝜋

𝑏
)
2

+ 𝑆55, 

 𝑃12 = (𝐷12 + 𝐷66) (
𝑚𝜋

𝑎
) (

𝑛𝜋

𝑏
), 

 𝑃13 = 𝑆55 (
𝑚𝜋

𝑎
), 

 𝑃22 = 𝐷66 (
𝑚𝜋

𝑎
)
2

+ 𝐷22 (
𝑛𝜋

𝑏
)
2

+ 𝑆44, 

 𝑃23 = 𝑆44 (
𝑛𝜋

𝑏
), 

 𝑃33 = 𝑆55 (
𝑚𝜋

𝑎
)
2

+ 𝑆44 (
𝑛𝜋

𝑏
)
2

+ 𝑘, 

After solving this equation for the coefficients 𝐴𝑚𝑛, 𝐵𝑚𝑛 and 𝐶𝑚𝑛 we obtain the following 

expressions 

𝐴𝑚𝑛 =
(𝑃12𝑃23 − 𝑃22𝑃13)𝑞𝑚𝑛

|𝑃|
, 

𝐵𝑚𝑛 =
(𝑃12𝑃13 − 𝑃11𝑃23)𝑞𝑚𝑛

|𝑃|
, 

𝐶𝑚𝑛 =
(𝑃11𝑃22 − 𝑃12

2)𝑞𝑚𝑛
|𝑃|

, 

where |𝑃| is the determinant of matrix 𝑃 in expression (2.31). 

With these coefficients it is possible to calculate the displacements, curvatures (hence 

bending moments) and shear forces at any point of the plate by the expressions 

 𝑤 = ∑ ∑ 𝐶𝑚𝑛 sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
)𝑛𝑚 , 

 𝜅𝑥 = −∑ ∑ 𝐴𝑚𝑛 (
mπ

a
) cos (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
) ,𝑛𝑚  

 𝜅𝑦 = −∑ ∑ 𝐵𝑚𝑛 (
nπ

b
) sin (

𝑚𝜋𝑥

𝑎
) cos (

𝑛𝜋𝑦

𝑏
) ,𝑛𝑚  

 𝜅𝑥𝑦 = −∑ ∑ ((𝐴𝑚𝑛 (
nπ

b
) + 𝐵𝑚𝑛 (

mπ

a
)) cos (

𝑚𝜋𝑥

𝑎
) cos (

𝑛𝜋𝑦

𝑏
) ,𝑛𝑚  

(2.30) 

(2.31) 

(2.37) 

(2.36) 

(2.35) 

(2.34) 

(2.33) 

(2.32) 

(2.40) 

(2.39) 

(2.38) 

(2.44) 

(2.43) 

(2.42) 

(2.41) 
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 𝑄𝑥 = ∑ ∑ 𝑆55 (𝐶𝑚𝑛 (
mπ

a
) + 𝐴𝑚𝑛)𝑛𝑚 cos (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
), 

 𝑄𝑦 = ∑ ∑ 𝑆44 (𝐶𝑚𝑛 (
nπ

b
) + 𝐵𝑚𝑛)𝑛𝑚 sin (

𝑚𝜋𝑥

𝑎
) cos (

𝑛𝜋𝑦

𝑏
), 

where the summation implies from 𝑚 = 1 to ∞. 

Fourier series representation of the loads 

Equation (2.31) requires the loading function to be transformed into purely sinusoidal 

Fourier series. If the lateral load 𝑞(𝑥, 𝑦) in equations (2.22)-(2.24) is distributed over the 

entire lateral surface, then the Euler coefficient, 𝑞𝑚𝑛 is found to be 

𝑞𝑚𝑛 = (
4

𝑎𝑏
)∫∫𝑞(𝑥, 𝑦) sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
)𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0

. 

The following expressions are checked with MATLAB and the Fourier representations 

can be seen on the corresponding figures, each represented with different number of 

Fourier terms. The first three kind were given in (Owen et al, 1986), while the pyramid load 

is my own development. 

 For a uniform load 𝑞(𝑥, 𝑦) = 𝑞: 

𝑞𝑚𝑛 = (
4𝑞

𝑚𝑛𝜋2
) (1 − 𝑐𝑜𝑠𝑚𝜋)(1 − 𝑐𝑜𝑠𝑛𝜋). 

 For a concentrated load 𝑃 located at 𝑥 = 𝜉 and 𝑦 = 𝜂: 

𝑞𝑚𝑛 = (
4𝑃

𝑎𝑏
) sin (

𝑚𝜋𝜉

𝑎
) sin (

nπη

b
). 

  For loads of total intensity 𝑃 over a rectangular area of side lengths 𝑢 and 𝑣 whose 

center is at 𝑥 = 𝜉 and 𝑦 = 𝜂, 𝑞𝑚𝑛 is given as follows 

𝑞𝑚𝑛 = (
16𝑃

𝜋2𝑚𝑛
)sin (

𝑚𝜋𝜉

𝑎
) sin (

𝑛𝜋𝜂

𝑏
) sin (

𝑚𝜋𝑢

2𝑎
) sin (

𝑛𝜋𝑣

2𝑏
). 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

Figure 22 – Fourier representation of a uniformly distributed load with 20, 50 and 100 terms 

included. 

23. Figure – Fourier representation of a concentrated load with 20, 50 and 100 terms included. 
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  In case of a pyramid load of total intensity 𝑃 acting over a rectangular patch 𝑢, 𝑣 

with center located at 𝑥 = 𝜉 and 𝑦 = 𝜂: 

𝑞𝑚𝑛 =
128 ∙ 𝑃 ∙ 𝑎𝑏

𝜋4 ∙ 𝑚2 ∙ 𝑛2 ∙ 𝑢 ∙ 𝑣
sin (

𝜋𝜉𝑚

𝑎
) sin (

𝜋𝜂𝑛

𝑏
) sin (

𝜋𝑚𝑢

4𝑎
)
2

[1 − 𝑐𝑜𝑠 (
𝜋𝑛𝑣

2𝑏
)]. 

Of course, any lateral load can be characterized by the use of equation (2.47). 

(2.23) 

(2.51) 

Figure 25 – Fourier representation of a rectangular patch load with 20, 50 and 100 terms included. 

Figure 24 – Notations of a pyramid and a rectangular patch load. 

26. Figure – Fourier representation of a pyramid patch load with 20, 50 and 100 terms included. 

PYRAMID LOAD 

𝑝(𝑥, 𝑦) = 𝑝0 ∙ (1 −
2

𝑢
∙ |𝜉 − 𝑥|) ∙ (1 −

2

𝑣
∙ |𝜂 − 𝑦|) 

UNIFORM LOAD 

𝑝 = 𝑝0 
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Plate rigidities 

The evaluation of plate rigidities was carried out in the previous chapters for 

homogeneous isotropic, sandwich, laminated and voided plates. In all cases, special 

orthotropy with respect to the x and y axes is assumed. A short summary is presented 

now about these stiffness parameters. 

a) Homogeneous isotropic plates 

 𝐷11 = 𝐷22 =
𝐸𝑡3

12(1−𝜈2)
, 

 𝐷12 = 𝐷21 = 𝜈𝐷11, 

 𝐷66 =
(1−𝜈)𝐷11

2
, 

 𝑆44 = 𝑆55 =
𝐾𝑠𝐸𝑡

(2+2𝜈)
. 

b) Sandwich Plates 

 𝐷11 = 𝐷22 =
𝐸𝑓𝑡𝑓(𝑡𝑐

2+2𝑡𝑐𝑡𝑓+
4𝑡𝑓

2

3
)

4(1−𝜈𝑓
2)

, 

 𝐷12 = 𝐷21 = 𝜈𝑓𝐷11, 

 𝐷66 = (1 − 𝜈𝑓)𝐷11/2, 

 𝑆44 = 𝑆55 = 𝐺𝑐𝑡𝑐. 

In the expressions 𝑡𝑐 and 𝑡𝑓 are thicknesses of the core and the faces (Figure 

20), 𝐸𝑐 and 𝐸𝑓 are the elastic moduli and 𝜈𝑐 and 𝜈𝑓 are the Poisson’s ratios of the 

core and the flange respectively. I must emphasize that the not mentioned rigidity 

components are zero as a consequence of faces with equal thickness and 

material properties. The governing equations and therefore the solution is 

concerned only for such a case, so we have to restrict our objectives with these 

special type of sandwich structures. 

c) Laminated plates 

 𝐷𝑖𝑗 =
1

3
∑ (�̅�𝑖𝑗)(𝑘)

(𝑧𝑘+1
3 − 𝑧𝑘

3),        (𝑖, 𝑗 = 1, 2, 6)𝑁
𝑘=1  

 𝑆𝑖𝑗 = ∑ (�̅�𝑖𝑗)(𝑘)
(𝑧𝑘+1 − 𝑧𝑘).

𝑁
𝑘=1                (𝑖, 𝑗 = 4, 5) 

Let’s take a look on the plate constitutive equations (1.123) and (1.124). The 

most important phenomenon is the coupling phenomenon which exists between 

stretching and bending and was discussed in more details at the end of chapter 

1.4. By ignoring the membranal deformations in equations (2.1)-(2.2) we rule out 

the possibility to take into account this phenomenon, therefore we have to 

restrict our studies to special lamination schemes, to guarantee the zero 

value for all the stiffness coefficients 𝐵𝑖𝑗, so to rule out bending-extension 

coupling. This condition is fulfilled in case of symmetric laminates. On the other 

hand, the governing equations were formulated on the assumption that 

(2.55) 

(2.54) 

(2.53) 

(2.52) 

(2.59) 

(2.58) 

(2.57) 

(2.56) 

(2.61) 

(2.60) 
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𝐷16, 𝐷61, 𝐷26, 𝐷62 – which represents bend-twist coupling - and 𝑆45, 𝑆54 are zero. 

To fulfill this criteria also, the laminates must have specially orthotropic material, 

which means that the laminate is loaded in its principal directions. 

d) Voided plates 

 𝐷11 =
𝐸𝑡𝑓ℎ

2

2(1−𝜈2)
, 

 𝐷22 = 𝐷11 (1 + (
𝑡𝑤ℎ

𝑡𝑓𝑤
)), 

 𝐷12 = 𝐷21 = 𝜈𝐷11, 

 𝐷66 = 𝐺𝑡𝑓ℎ
2/2, 

 𝑆44 =
2𝐸𝑡𝑓

3

𝑤2(1+2(
ℎ

𝑤
)(
𝑡𝑓

𝑡𝑤
)
3

)

, 

 𝑆55 =
𝑡𝑓ℎ(1+

𝑡𝑓

ℎ
)

𝑡𝑓𝑤

𝑡𝑤

. 

2.2. Computational solution 

2.2.1. Introduction  

The numerical formulation was carried out with FORTRAN (the name is a blend derived 

from The IBM Mathematical Formula Translating System), which is a general-purpose, 

imperative computational language, especially optimized for numerical calculations and 

scientific computing. It was developed by IBM in the 1950s in California, USA. FORTRAN 

has many versions. In this thesis we deal with FORTRAN77 and Fortran90. The former is 

a very early version, containing only 32 commands. Up to this version the languages were 

conventionally spelled in all-caps. The capitalization has been dropped in referring to 

newer versions starting with Fortran90. This article adopts the convention of using the all-

caps FORTRAN in referring to all of the versions independently of the version number. It 

is clear that this language was developed for simple purposes, but it is to mention that now 

it has object-oriented versions either, the last stable release is from 2008. 

E. Hinton already published the program code written in FORTRAN77. Unfortunately this 

version of the code contained a lot of theoretical, syntactical and other problems 

either, so it was unable to run. These problems, and the capabilities of the newer version 

of FORTRAN, informally known as Fortran90, pushed me to rewrite the code in this new 

environment to produce a more efficient and maintainable program structure. The 

updated code is presented in Appendix A as one and it is explained in the next pages in 

smaller sections. According to the mentioned programming errors in the code it would be 

pointless to attach to the present thesis the original code, but for those, who are interested 

it can be seen in (Owen et al, 1986). 

The main program 

Later in this section I will name the main goals and capabilities which I find to be important 

to have to a numerical solver, but it must be mentioned, that the very first step was to 

(2.67) 

(2.66) 

(2.65) 

(2.64) 

(2.63) 

(2.62) 

http://en.wikipedia.org/wiki/Blend
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learn FORTRAN itself. If there is any level below the rookie, then I was there before the 

thesis, so to learn programming was a very challenging and substantial part of the 

work. 

From now on each FORTRAN command will be distinguished from the current text by 

applying Courier New font and capital letters. It is to note, that FORTRAN does not 

distinguish between small and capital letters or spaces between the characters of the 

commands. 

Originally the program consisted of two parts, one calculating the rigidities and another 

calculating the mechaical results in the desired points of the structure. In each sub-

program the user had to type in the necessary parameters one by one. Then the program 

calculates the results in those points, whose x and y coordinates were defined by typing 

into the command line one after another. In addition, the maximum number of these points 

was hard coded into the program as a consequence of the lack of dynamic memory 

handling. Furthermore, if the user mistyped a data, the opportunity to correct the mistake 

was to start from the bottom. After reading through, we can point out that these are not 

desirable properties of a modern program. Considering all of the available and the desired 

capabilities of a numerical solver I decided to: 

 combine the two programs into one, 

 redefine the I/O capabilities, 

 raise the dimension of the arrays in the program, 

 and supplement the code with dynamic memory handling by the way of memory 

allocation. 

Redefining the arrays is not inevitable, but in my opinion it is more logical to work with 

matrices, since we assign a value (a result) to a pair of data, let say a point, and this way 

of discussion could have benefits later. 

Each FORTRAN program begins with a PROGRAM statement, which consists of the 

PROGRAM command followed by the program name. As a pair the same program should 

end with an END statement, which begins with the END command and may be, but not 

necessarily, followed by the program name. In our case the program should look like: 

PROGRAM BENSYS 

… 

CALL SUB1(ARG1, ARG2, …) 

CALL SUB2(ARG1, ARG2, …) 

… 

CONTAINS 

SUB1(ARG1, ARG2, …) 

SUB2(ARG1, ARG2, …) 

… 

END PROGRAM BENSYS 

Between the two mentioned statements there are other commands that should be 

clarified now.  

At a very small program there is no need to further articulate the code, let consider the 

next example: 
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PROGRAM ADD 

INTEGER::x,y 

READ*,x 

READ*,y 

PRINT*,”x+y=”,x+y 

END PROGRAM ADD 

In this case the operation of the program is see through, it easy to follow what is the path 

of the operations. First the two variables x and y are declared, then values are read from 

the user through command line input and finally the result is printed out to the screen. 

Although it is a small one, this could be subdivided to different parts as a declaration 

section, and a section containing the operations. In the situation of the BENSYS the case 

is much more complicated. Simply piling up the commands on each other would produce 

a very hard to see through bunch of commands. To follow the operations of such a 

structure is hard and in case of a probable mistake, the identification and the correction 

also takes much more efforts. For these reasons it is good programming practice to group 

related sets of code with the help of the so called procedures. 

Procedures have to kinds, namely subroutines and functions. The difference is that a 

function always returns a value, while a subroutine is only a set of commands to execute 

on calling. Both kind of procedures are classified as internal procedures or module 

procedures. A subroutine or a function have to be defined similarly to a program with the 

difference that in the place of the keyword ‘PROGRAM’ we should place the ‘SUBROUTINE’ or 

the ‘FUNCTION’ words. The main advantage of procedures is that with their help the same 

operations can be done to different variables. This can be maintained by declaring 

arguments to the procedure, in this case these should be enclosed in parenthesis after 

the defining statements. The procedures can be invoked by the CALL command in the 

executable part, but they are defined only at the end of the program code, between the 

CONTAINS command and the END PROGRAM statement. 

 The lines between the program statement and the executable part of the program is 

called the declaration section. Here we use type statements to specify a FORTRAN 

intrinsic type followed by two colons and a list of variable names separated by commas. 

FORTRAN supports integer, real, complex, logical and character variable types. Each of 

them may be declared to have a particular kind parameter by putting ‘kind=’ followed by 

the kind parameter value in parentheses. These kind parameters can be used to switch 

between single and double precision in case of a variable of type real. 

2.2.2. Program details 

In the next lines I present the main program code, but before doing so let me have some 

comments. To help the eye I marked the PROGRAM statement, the CONTAINS command 

and the END PROGRAM statement with bold font. Just to remember, between the first two 

there are the declaration section and the executable part, while between the last two the 

definition of the different subroutines take place. The ‘&’ symbol at the end of the lines 

mean continuation of the command in the next line, while the ‘!’ symbol is used to add 

comments to the code. The essential part of the subroutines are substituted with ‘…’ and 

will be introduced later in detail. 
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PROGRAM BENSYS 

 

!***************** 

!DECLARATION 

!***************** 

 

IMPLICIT REAL*8(A-H,O-Z) 

DIMENSION :: A(10),D(6,6),H1(11) 

 

REAL,DIMENSION(:),ALLOCATABLE :: XCORD,YCORD 

REAL,DIMENSION(:,:),ALLOCATABLE :: BMX,BMY,BMXY,CX,CY,CXY& 

      ,QX,QY,W,WUX,WUY 

 

!***************** 

!EXECUTABLE PART   

!***************** 

      

CALL DATA (A,C,E,E11,E22,EF,GC,G12,G23,HD,H1,IQQ,M,T,TF,TW,& 

   VNU,V12,VF,WD,AA,BB,ETA,ETB,G1,GFS,IQ,IT,NPON,& 

            NUM,PI,PZ,U,V) 

 

!ALLOCATION 

ALLOCATE(XCORD(NPON),YCORD(NPON),BMX(NPON,NPON),BMY(NPON,NPON)& 

  ,BMXY(NPON,NPON),CX(NPON,NPON),CY(NPON,NPON),& 

        CXY(NPON,NPON),QX(NPON,NPON),QY(NPON,NPON),W(NPON,NPON)& 

        ,WUX(NPON,NPON),WUY(NPON,NPON)) 

 

!CREATE COORDINATES OF OUTPUT POINTS 

DO IPON=1,NPON 

   XCORD(IPON)=(AA/(NPON-1))*(IPON-1) 

   YCORD(IPON)=(BB/(NPON-1))*(IPON-1) 

END DO  

                    

IF (IQQ==1) THEN 

    CALL HOMG (D11,D22,D12,D21,D66,E,S44,S55,T,VNU) 

 ELSE IF (IQQ==2) THEN 

    CALL SAND (C,D11,D22,D12,D21,D66,EF,GC,S44,S55,T,VF) 

 ELSE IF (IQQ==3) THEN 

    CALL VOID (D11,D22,D12,D66,E,HD,S44,S55,TF,TW,VNU,WD) 

 ELSE IF (IQQ==4) THEN 

    CALL LAMI (A,D,E11,E22,G12,G23,H1,M,V12) 

END IF 

                     

CALL INIT (BMX,BMY,BMXY,CX,CY,CXY,NPON,QX,QY,W,WUX,WUY) 

 

DO M=1,NUM,IT 

 DO N=1,NUM,IT 

     CALL COEF (AA,BB,D11,D22,D12,D66,DET,G1,GFS,M,N,& 

        P11,P12,P13,P22,P23,PI,S44,S55) 

     CALL CONS (AA,AMN,BB,BMN,CMN,DET,ETA,ETB,IQ,M,N,PI,PZ,P11,P12,& 

        P13,P22,P23,U,V) 

     CALL SUMS (AA,AMN,BB,BMN,BMX,BMY,BMXY,CMN,CX,CY,CXY,D11,D22,& 

        D12,D66,G1,M,N,NPON,QX,QY,PI,S44,S55,W,WUX,& 

                 WUY,XCORD,YCORD) 

 END DO 

END DO 

 

CALL OUTP (NPON,XCORD,YCORD,W,BMX,BMY,BMXY,QX,QY) 

 

STOP 

 

CONTAINS 

 

!*********************** 

!DATA /!READS ALL DATA/ 

!*********************** 
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SUBROUTINE DATA (A,C,E,E11,E22,EF,GC,G12,G23,HD,H1,IQQ,M,T,TF& 

    ,TW,VNU,V12,VF,WD,AA,BB,ETA,ETB,G1,GFS,IQ,IT& 

                ,NPON,NUM,PI,PZ,U,V) 

 

 ... 

 

END SUBROUTINE DATA 

 

!*********************************************************************** 

!HOMOGENEOUS RIGIDITIES /!CALCULATES RIGIDITIES FOR HOMOGENEOUS PLATES/ 

!*********************************************************************** 

 

SUBROUTINE HOMG (D11,D22,D12,D21,D66,E,S44,S55,T,VNU) 

 

    ... 

 

END SUBROUTINE HOMG 

 

!****************************************************************** 

!SANDWICH RIGIDITIES /!CALCULATES RIGIDITIES FOR SANDWICH PLATES/ 

!****************************************************************** 

 

SUBROUTINE SAND (C,D11,D22,D12,D21,D66,EF,GC,S44,S55,T,VF) 

 

 ... 

     

END SUBROUTINE SAND 

 

!************************************************************* 

!VOIDED RIGIDITIES /!CALCULATES RIGIDITIES FOR VOIDED PLATES/ 

!************************************************************* 

 

SUBROUTINE VOID (D11,D22,D12,D66,E,HD,S44,S55,TF,TW,VNU,WD) 

 

 ... 

 

END SUBROUTINE VOID 

 

!******************************************************************* 

!LAMINATED RIGIDITIES /!CALCULATES RIGIDITIES FOR LAMINATED PLATES/ 

!******************************************************************* 

 

SUBROUTINE LAMI (A,D,E11,E22,G12,G23,H1,M,V12) 

 

 ... 

 

!********************************************** 

!SUBROUTINE INIT  /INITIALISES VARIOUS ARRAYS/ 

!********************************************** 

 

SUBROUTINE INIT (BMX,BMY,BMXY,CX,CY,CXY,& 

    NPON,QX,QY,W,WUX,WUY) 

 

 ... 

 

END SUBROUTINE INIT 

 

!********************************************** 

!SUBROUTINE CONS  /ALCULATES THE VALUES 

!AMN,BMN AND CMN FOR A GIVEN LOADING FUNCTION/ 

!********************************************** 

 

SUBROUTINE CONS(AA,AMN,BB,BMN,CMN,DET,ETA,ETB,IQ,M,N,PI,PZ,P11,& 

    P12,P13,P22,P23,U,V) 
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 ... 

  

END SUBROUTINE CONS 

     

!**************************************************** 

!COEF /!THIS SUBROUTINE CALCULATES THE COEFFICIENTS 

!     (P11,P12,P13,P22,P23,P33) AND THE DETERMINANT/ 

!**************************************************** 

 

SUBROUTINE COEF (AA,BB,D11,D22,D12,D66,DET,G1,GFS,M,& 

    N,P11,P12,P13,P22,P23,PI,S44,S55) 

 

 ... 

 

END SUBROUTINE COEF 

 

!************************************************* 

!SUBROUTINE SUMS /SUMS THE VARIOUS FURIER SERIES/ 

!************************************************* 

 

SUBROUTINE SUMS (AA,AMN,BB,BMN,BMX,BMY,BMXY,CMN,CX,CY,CXY,D11,& 

    D22,D12,D66,G1,M,N,NPON,QX,QY,PI,S44,S55,W,& 

                WUX,WUY,XCORD,YCORD) 

 

 ... 

 

END SUBROUTINE SUMS 

 

!****************************** 

!OUTP /PRINTS OUT THE RESULTS/ 

!****************************** 

 

SUBROUTINE OUTP (NPON,XCORD,YCORD,W,BMX,BMY,BMXY,QX,QY) 

 

  ... 

 

END SUBROUTINE OUTP 

 

END PROGRAM BENSYS 

After having a clear view of the program structure, let discuss now the individual parts of 

the program in details  

Variable declaration 

IMPLICIT REAL*8(A-H,O-Z) 

DIMENSION :: A(10),D(6,6),H1(11) 

 

REAL,DIMENSION(:),ALLOCATABLE :: XCORD,YCORD 

REAL,DIMENSION(:,:),ALLOCATABLE :: BMX,BMY,BMXY,CX,CY,CXY& 

      ,QX,QY,W,WUX,WUY 

In the earliest days, FORTRAN did not have type declarations. Instead, variables were 

assigned a type by implicit typing based on the first letter of their names, and only real or 

integer variable types were allowed. Although nowadays the programming practice is to 

declare all variables, those that accidentally or intentionally remain undeclared are still 

assigned the default types based on their first letter. Implicit typing involves the danger 

that the misspelled or mistyped variable names will not be detected as errors, they are 

accepted as new variables. For this reason every program should contain the IMPLICIT 

NONE statement which blocks this default behavior. However breaking this rule is 

acceptable in very short programs. Accordingly the first line states that the variables with 

first letters being in the range A-H or O-Z will be defined as real numbers, while the others 
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will be integers. The ‘*8’ means that the real variables will have double precision, in other 

words they are defined as floating point numbers. 

In the second line three arrays are defined. Array ‘A’ and ‘H1’ are one dimensional arrays 

(vectors) correspond to laminated plates, while matrix ‘D’ is the two dimensional array 

(matrix) of plate rigidities from expression (2.17). Since we already know the dimensions 

of these arrays, we can predefine them with the DIMENSION command. 

In the remaining lines the definition of the other arrays –which are arrays of the results - 

are maintained. Later I will discuss in details how the results are calculated and threated, 

let just now accept that size of this arrays is up to the user and will be only defined at run 

time. However these arrays should be dimensioned somehow and there are two possible 

approach of this problem. The first is to set the dimensions of these arrays to be a very 

large number at compile time, so the real dimension could only be smaller than this value 

and is formally known as static storage allocation. A way more creative one is to apply 

dynamic storage allocation, which means that storage may be allocated or deallocated 

during the execution of a program. With this, the program can wait until it knows exactly 

what size array is needed and then allocate only that much space 

Executable part 

The first operation is to read the necessary data to the calculation. This is done by calling 

a subroutine with the next command: 

CALL DATA (A,C,E,E11,E22,EF,GC,G12,G23,HD,H1,IQQ,M,T,TF,TW,& 

  VNU,V12,VF,WD,AA,BB,ETA,ETB,G1,GFS,IQ,IT,NPON,& 

            NUM,PI,PZ,U,V) 

The arguments of this subroutine are enclosed in the parenthesis and are geometrical, 

material, load and other parameters, corresponding to the section and load cases of the 

previous chapters. The exact meanings of the variables are explained later in this chapter 

at the place of the first occurrence at the complete definition of the subroutines, and they 

can be found in the Terminology at the beginning if the thesis either.   

Figure 27 – Meaning of the NPON parameter and the coordinates of 

the output points. 
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Thereafter we are in possession of all the data, so we should be able to set the correct 

dimensions of the previously allocated arrays. This can be done with the ALLOCATE 

command: 

ALLOCATE(XCORD(NPON),YCORD(NPON),BMX(NPON,NPON),BMY(NPON,NPON)& 

  ,BMXY(NPON,NPON),CX(NPON,NPON),CY(NPON,NPON),& 

        CXY(NPON,NPON),QX(NPON,NPON),QY(NPON,NPON),W(NPON,NPON)& 

        ,WUX(NPON,NPON),WUY(NPON,NPON)) 

Here ‘NPON’ means the number of result points in both directions defined by the user, 

so the matrices of the results can be dimensioned with this parameter. 

On the same basis we are now able to calculate the x and y coordinates of the output 

points. Accordingly to the previous statements we have 𝑁𝑃𝑂𝑁2 number of points where 

we have to calculate the results, therefore: 

!CREATE COORDINATES OF OUTPUT POINTS 

DO IPON=1,NPON 

   XCORD(IPON)=(AA/(NPON-1))*(IPON-1) 

   YCORD(IPON)=(BB/(NPON-1))*(IPON-1) 

END DO  

The meaning of the NPON parameter and the x and y coordinates is visualized on the 

next figure (Figure 27). The variables AA and BB are the two in plane dimensions of the 

plate in x and y directions respectively. 

The next step is to calculate the plate rigidities depending on the choice of the section 

type: 

IF (IQQ==1) THEN 

    CALL HOMG (D11,D22,D12,D21,D66,E,S44,S55,T,VNU) 

 ELSE IF (IQQ==2) THEN 

    CALL SAND (C,D11,D22,D12,D21,D66,EF,GC,S44,S55,T,VF) 

 ELSE IF (IQQ==3) THEN 

    CALL VOID (D11,D22,D12,D66,E,HD,S44,S55,TF,TW,VNU,WD) 

 ELSE IF (IQQ==4) THEN 

    CALL LAMI (A,D,E11,E22,G12,G23,H1,M,V12) 

END IF 

Here IQQ refers to the type of the cross section and can take values from 1 to 4. 

For the calculation of the results it is necessary to set some initial value to the matrices 

which will store the results. This operation is done by invoking the next subroutine: 

CALL INIT (BMX,BMY,BMXY,CX,CY,CXY,NPON,QX,QY,W,WUX,WUY) 

Once done, we can continue with calculating and summing the Fourier terms of 

expressions (2.41)-(2.46). 

DO M=1,NUM,IT 

 DO N=1,NUM,IT 

     CALL COEF (AA,BB,D11,D22,D12,D66,DET,G1,GFS,M,N,& 

        P11,P12,P13,P22,P23,PI,S44,S55) 

     CALL CONS (AA,AMN,BB,BMN,CMN,DET,ETA,ETB,IQ,M,N,PI,PZ,P11,P12,& 

        P13,P22,P23,U,V) 

     CALL SUMS (AA,AMN,BB,BMN,BMX,BMY,BMXY,CMN,CX,CY,CXY,D11,D22,& 

        D12,D66,G1,M,N,NPON,QX,QY,PI,S44,S55,W,WUX,& 

                 WUY,XCORD,YCORD) 

 END DO 

END DO 



 Bence Balogh  

 COMPUTER PROGRAM FOR THE CALCULATION OF MINDLIN PLATES 

 

 

58  

What we see is a well-known ‘do cycle’ with ‘M’ as the running parameter. The 

summation goes from 1 to NUM with a step defined by the IT parameter. NUM means 

the number of Fourier terms, while IT equals 2 if the loading is symmetric and 1 if it is 

not. 

Finally there is nothing left than to write a results to a file. This process is executed by 

calling the last subroutine: 

CALL OUTP (NPON,XCORD,YCORD,W,BMX,BMY,BMXY,QX,QY) 

The next one is the CONTAINS command, which separates the executable part of the 

program and the definition of the subroutines. So after understanding the sequence and 

basic purpose of the different subroutines, let have a closer look on each one. 

Subroutines 

└ SUBROUTINE DATA 

This procedure reads in all of the data that is necessary for the forthcoming 

operations. 

SUBROUTINE DATA (A,C,E,E11,E22,EF,GC,G12,G23,HD,& 

H1,IQQ,M,T,TF,TW,VNU,V12,VF,WD,AA,BB,ETA,ETB,G1,& 

GFS,IQ,IT,NPON,NUM,PI,PZ,U,V) 

 

 DIMENSION :: A(10),H1(11) 

 

 !identification of parameters 

 OPEN (UNIT=10,FILE="ID.TXT",FORM="FORMATTED",& 

 STATUS="OLD",ACTION="READ") 

    READ (10,"(I5)") IQQ,IQ,IT,NUM,NPON 

    CLOSE (UNIT=10) 

      

 !read geometrical parametrs 

    OPEN (UNIT=20,FILE="GEOM.TXT",FORM="FORMATTED",& 

 STATUS="OLD",ACTION="READ") 

    IF (IQQ==1) THEN 

      READ (20,"(F10.5)") AA,BB,T           

        ELSE IF (IQQ==2) THEN 

     READ (20,"(F10.5)") AA,BB,C,T 

       ELSE IF (IQQ==3) THEN 

     READ (20,"(F10.5)") AA,BB,TF,TW,HD,WD    

        ELSE IF (IQQ==4) THEN  

          READ (20,"(F10.5)") AA,BB  

   READ (20,"(i2)") M 

   J=M+1        

   DO I=1,J 

           READ (20,"(F10.5)") H1(I) 

          END DO           

          DO K=1,M 

            READ (20,"(F10.5)") A(K) 

          END DO 

    END IF 

    CLOSE (20) 

 

    !read material parametrs 

    OPEN (UNIT=30,FILE="MAT.TXT",FORM="FORMATTED",& 

  STATUS="OLD",ACTION="READ") 

    IF (IQQ==1) THEN 

      READ (30,"(F10.5)") VNU,E           

        ELSE IF (IQQ==2) THEN 

     READ (30,"(F10.5)") VF,GC,EF 

      ELSE IF (IQQ==3) THEN 
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     READ (30,"(F10.5)") VNU,E    

        ELSE IF (IQQ==4) THEN  

      READ (30,"(F10.5)") E11,E22,V12,G12,G23       

    END IF 

    CLOSE (30) 

 

    !read load parametrs 

    OPEN (UNIT=40,FILE="LOAD.TXT",FORM="FORMATTED",& 

  STATUS="OLD",ACTION="READ") 

    IF (IQ==1) THEN 

      READ (40,"(F10.5)") PZ,GFS,G1           

        ELSE IF (IQ==2) THEN 

     READ (40,"(F10.5)") PZ,GFS,G1,ETA,ETB 

      ELSE IF (IQ==3) THEN 

     READ (40,"(F10.5)") PZ,GFS,G1,ETA,ETB,U,V    

        ELSE IF (IQ==4) THEN   

      READ (40,"(F10.5)") PZ,GFS,G1,ETA,ETB,U,V      

    END IF 

    CLOSE (40) 

 

   PI=3.141592654   

    RETURN 

 

END SUBROUTINE DATA  

The type of the variables can be easily determined from their first letter and the 

meanings are: 

A() – angle of principal laminate direction 

C – core thickness (see Figure 20) 

E – Elastic modulus 

E11, E22 – elastic modulus in the first and in the second principal directions 

(see Figure 12) 

EF – elastic modulus of the facing (see Figure 20) 

GC – shear modulus of the core (see Figure 20) 

G12 – in plane shear modulus 

HD – center to center distance between flanges (see Figure 21) 

WD – center to center distance between webs (see Figure 21) 

H1() – z coordinate of boundary of laminate (see Figure 15) 

IQQ -  = 1 for homogeneous plates 

= 2 for sandwich plates 

= 3 for voided plates 

= 4 for laminated plates 

M – number of laminates in a laminated plate 

T – plate thickness 

TF – thickness of the flanges (see Figure 21) 

TW – thickness of the web (see Figure 21) 

VNU – Poisson’s ratio 

V12 – in plane Poisson’s ratio 

VF – Poisson’s ratio of the facing material (see Figure 20) 

AA, BB - in plane dimensions of the plate in x and y directions respectively 

ETA, ETB – x and y coordinate of the center of the load 

G1 – shear modification factor 

GFS – foundation modulus 
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IQ -     = 1 for uniform load 

= 2 for concentrated load 

= 3 for rectangular patch load 

= 4 for pyramid patch load 

IT -      = 1 for non-symmetric loads 

= 2 for symmetric loads 

NPON – number of output points 

NUM – number of fourier terms 

PZ – load intensity 

U, V – side length of pathch loads parallel to axis x and y respectively 

PI - π 

One thing should be clarified in connection with the variables in FORTRAN. Every 

variable has a scope, which is the set of lines in the program where the variable’s 

name can be used and refer to the same variable. In general the scope of a variable 

declared in the main program extends throughout the entire program from the 

PROGRAM statement to the END PROGRAM statement. A variable declared in an 

internal procedure has scope extending only in the procedure, not the main program, 

nor any other internal procedure. A similar rule applies to the IMPLICIT statements. 

Once declared in the main program it takes effect in the internal procedures as well, 

so in contradiction with the original code of E. Hinton there is no point in repeating 

the same IMPLICIT statement in every single internal subroutine. Furthermore the 

name of an internal procedure its type of arguments and their names are considered 

as declared in the containing program or procedure, hence their scope extends to 

the entire program. Let consider the next simple example: 

SUBROUTINE ADD(A, B) 

REAL::A, B, C 

C=A+B 

END SUBROUTINE ADD 

In this example A and B are called dummy arguments, while C is a local argument 

of the subroutine. This example were shown to illustrate that dummy arguments 

must be declared in the subroutine even if they have the same name as a variable 

declared in the containing program. Now it is clear why are arrays A and H1 

dimensioned again in SUBROUTINE DATA(), if they were already dimensioned in 

the main program, because they are dummy arguments now.  

After this statement the identification, geometrical, material and load parameters 

are read in from input files. The creation of these input files will be discussed later, 

let us assume that we are in possession of some input files with *.txt extension. 

These files have one record in each line. To read data from txt files, first we have to 

open them and make a reference by assigning a unit number by the OPEN command. 

The arguments of the OPEN command specify how the file should be opened. These 

arguments are: 

 UNIT – This number identifies the file and must be unique. We have to 

avoid number 0, 5 and 6 beacause they are picked to be used by 

FORTRAN. 
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 FILE – A string that holds the name of the file that we would like to open. 

If the file to read is in the same directory as the executable, only the 

filename has to be given. 

 FORM – A string that holds the type of the file that we would like to open. 

Text files belong to the group of FORMATTED files. 

 STATUS - A string that holds the status of the file that we would like to 

open. Note that the default behavior is compiler dependent, so the best is 

if we always specify one of the types ‘NEW’, ‘OLD’ and ‘REPLACE’. Now 

we assume the files to be existing, so the corresponding option is ‘OLD’. 

 ACTION – Specifies the input/output actions that are permitted to do with 

the file. One can choose from ‘READ’, ‘WRITE’ or ‘READWRITE’. Now we 

want only read from the files, so the option is ‘READ’. 

After assigning a unit number to the actual input file, we can 

read from it with the READ command. Let consider the first 

occurrence: 

!identification of parameters 

 OPEN (UNIT=10,FILE="ID.TXT",FORM="FORMATTED",& 

 STATUS="OLD",ACTION="READ") 

   READ (10,"(I5)") IQQ,IQ,IT,NUM,NPON 

   CLOSE (UNIT=10) 

Here the read command has two arguments. The first refers 

to the unit number attached to the input file to read from, and 

the second is a so called edit descriptor. In the present case 

it means that the record in the input file should be of type 

integer and occupy a total of 5 positions. An example for ID.txt can be seen on 

Figure 28. It should be understood now how the IQQ, IQ, IT, NUM and NPON 

variables get their values as 1, 1, 2, 51 and 100 from the ID.txt file. When a program 

is finished with inputting or outputting from or to a file it is prudent to close the file 

and free the resources of the I/O operation by the close command. The input of the 

geometrical, material and load parameters happens in the same manner, only the 

unit number, the filename and the edit descriptors change. 

The subroutine ends with the RETURN statement. It causes execution of the 

subroutine to terminate with control given back to the calling program. With the help 

of modern control constructs, a procedure should terminate by arriving to the end of 

a procedure. However it is good programming practice to rather using a RETURN 

statement instead of a complicated set of nested IF constructs. 

└ SUBROUTINE HOMG 

      SUBROUTINE HOMG (D11,D22,D12,D21,D66,E,S44,S55,T,VNU) 

 

       D11=(E*(T**3))/(12.0*(1.0-VNU*VNU)) 

 D22=D11 

     D12=VNU*D11 

 D21=D12 

 D66=((1.0-VNU)*D11)/2.0 

 S44=(E*T)/(2.0*(1.0+VNU)*(1.2)) 

 S55=S44 

Figure 28 – ID.txt 
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 RETURN 

 

      END SUBROUTINE HOMG 

These lines are the same of equations (2.52)-(2.55). 

└ SUBROUTINE SAND 

    SUBROUTINE SAND (C,D11,D22,D12,D21,D66,EF,GC,S44,S55,T,VF) 

 

    D11=(EF*T*((C+T)**2.0))/(2.0*(1.0-VF*VF)) 

    D22=D11 

 D12=VF*D11 

 D21=D12 

 D66=((1.0-VF)*D11)/2.0 

 S44=C*GC/1.2 

 S55=S44 

 RETURN 

 

     END SUBROUTINE SAND 

These lines are the same of equations (2.56)-(2.59). 

└ SUBROUTINE VOID 

    SUBROUTINE VOID (D11,D22,D12,D66,E,HD,S44,S55,TF,TW,VNU,WD) 

 

    G=E/(2.0*(1.0+VNU)) 

    D11=(E*TF*HD*HD)/(2.0*(1.0-VNU*VNU)) 

    D22=D11*(1.0+(TW*HD)/(6.0*TF*WD)) 

    D12=VNU*D11 

    D21=D12 

    D66=(G*TF*HD*HD)/2.0 

    S44=(2.0*E*(TF**3))/(WD*WD*(1.0+(2.0*(HD/WD))& 

    *((TF/TW)**3))*(1.0-VNU*VNU)) 

    S55=(G*TF*HD*(1.0+(TF/HD)))/((TF/TW)*WD) 

    RETURN 

 

    END SUBROUTINE VOID 

These lines are the same of equations (2.62)-(2.67). 

└ SUBROUTINE LAMI 

    SUBROUTINE LAMI (A,D,E11,E22,G12,G23,H1,M,V12) 

 

    DIMENSION A(10),AA(6,6),A2(6,6),C1(6,6),& 

       D(6,6),H1(11),Q(6,6) 

     

    V21=V12*E22/E11 

    G31=G23 

    Q(1,1)=E11/(1.0-V12*V21) 

    Q(1,2)=E11*V12/(1.0-V12*V21) 

    Q(1,3)=0.0 

    Q(1,4)=0.0 

    Q(1,5)=0.0 

    Q(1,6)=0.0 

    Q(2,2)=E22/(1.0-V12*V21) 

    Q(2,3)=0.0 

    Q(2,4)=0.0 

    Q(2,5)=0.0 

    Q(2,6)=0.0  

    Q(3,3)=0.0 

    Q(3,4)=0.0 

    Q(3,5)=0.0 
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    Q(3,6)=0.0    

    Q(4,4)=G23 

    Q(4,5)=0.0 

    Q(4,6)=0.0     

    Q(5,5)=G31 

    Q(5,6)=0.0 

    Q(6,6)=G12 

     

    Q(2,1)=Q(1,2) 

    Q(3,1)=Q(1,3) 

    Q(3,2)=Q(2,3) 

    Q(4,1)=Q(1,4) 

    Q(4,2)=Q(2,4) 

    Q(4,3)=Q(3,4) 

    Q(5,1)=Q(1,5) 

    Q(5,2)=Q(2,5) 

    Q(5,3)=Q(3,5) 

    Q(5,4)=Q(4,5) 

    Q(6,1)=Q(1,6) 

    Q(6,2)=Q(2,6) 

    Q(6,3)=Q(3,6) 

    Q(6,4)=Q(4,6) 

    Q(6,5)=Q(5,6) 

     

    DO I=1,6 

     DO J=1,6 

      D(I,J)=0.0 

      DO K=1,M 

       ANGLE=3.1415927*A(K)/180.0 

       CC=COS(ANGLE) 

       SS=SIN(ANGLE) 

   C1(1,1)=0.0 

       C1(1,2)=0.0 

       C1(1,3)=0.0 

       C1(1,4)=0.0 

       C1(1,5)=0.0 

       C1(1,6)=0.0 

       C1(2,2)=0.0 

       C1(2,3)=0.0 

       C1(2,4)=0.0 

       C1(2,5)=0.0 

       C1(2,6)=0.0  

       C1(3,3)=0.0 

       C1(3,4)=0.0 

       C1(3,5)=0.0 

       C1(3,6)=0.0    

       C1(4,4)=0.0 

       C1(4,5)=0.0 

       C1(4,6)=0.0     

       C1(5,5)=0.0 

       C1(5,6)=0.0 

       C1(6,6)=0.0 

                  C1(2,1)=C1(1,2) 

                  C1(3,1)=C1(1,3) 

                  C1(3,2)=C1(2,3) 

                  C1(4,1)=C1(1,4) 

                  C1(4,2)=C1(2,4) 

                  C1(4,3)=C1(3,4) 

                  C1(5,1)=C1(1,5) 

                  C1(5,2)=C1(2,5) 

                  C1(5,3)=C1(3,5) 

                  C1(5,4)=C1(4,5) 

                  C1(6,1)=C1(1,6) 

                  C1(6,2)=C1(2,6) 

                  C1(6,3)=C1(3,6) 

                  C1(6,4)=C1(4,6) 



 Bence Balogh  

 COMPUTER PROGRAM FOR THE CALCULATION OF MINDLIN PLATES 

 

 

64  

                  C1(6,5)=C1(5,6) 

                 

       C1(1,1)=(Q(1,1)*(CC**4))+(2.0*(Q(1,2)+2*Q(6,6))& 

                  *CC*CC*SS*SS)+(Q(2,2)*(SS**4)) 

       C1(1,2)=((Q(1,1)+Q(2,2)-4.0*Q(6,6))*SS*SS*CC*CC)& 

                  +(Q(1,2)*(CC**4+SS**4)) 

       C1(1,6)=((Q(1,1)-Q(1,2)-2*Q(6,6))*SS*CC**3)& 

                  +((Q(1,2)-Q(2,2)+2*Q(6,6))*(SS**3)*CC) 

       C1(2,2)=(Q(1,1)*SS**4)+(2.0*(Q(1,2)+2*Q(6,6))& 

                  *CC*CC*SS*SS)+(Q(2,2)*CC**4) 

       C1(2,6)=((Q(1,1)-Q(1,2)-2*Q(6,6))*(SS**3)*CC)& 

                  +((Q(1,2)-Q(2,2)+2*Q(6,6))*SS*(CC**3)) 

       C1(6,6)=((Q(1,1)+Q(2,2)-2.0*Q(1,2)-2*Q(6,6))& 

                  *CC*CC*SS*SS)+(Q(6,6)*(CC**4+SS**4)) 

       C1(2,1)=C1(1,2) 

       C1(6,1)=C1(1,6) 

       C1(6,2)=C1(2,6) 

                 

       D(I,J)=D(I,J)+(C1(I,J)*(((H1(K+1))**3)-& 

                  ((H1(K))**3)))/3.0 

            END DO 

        END DO 

    END DO  

  

    DO I=4,5 

     DO J=4,5 

      AA(I,J)=0.0 

      DO K=1,M 

       ANGLE=3.1415927*A(K)/180.0 

       CC=COS(ANGLE) 

       SS=SIN(ANGLE) 

       A2(4,4)=0.0 

       A2(5,5)=0.0 

       A2(4,5)=0.0 

       A2(5,4)=0.0 

       A2(4,4)=(Q(4,4)*CC*CC)+(Q(5,5)*SS*SS) 

       A2(5,5)=(Q(4,4)*SS*SS)+(Q(5,5)*CC*CC) 

       AA(I,J)=AA(I,J)+(A2(I,J)*& 

                  ((H1(K+1))-(H1(K)))) 

      END DO 

        END DO 

    END DO 

    D(4,4)=AA(4,4) 

    D(5,5)=AA(5,5) 

 

    D11=D(1,1) 

    D22=D(2,2) 

    D12=D(1,2) 

    D21=D(2,1) 

    D66=D(6,6) 

    S44=D(4,4) 

    S55=D(5,5) 

 

    RETURN 

 

    END SUBROUTINE LAMI 

In these lines first we calculate the plane-reduced stiffnesses of equations (1.73)-

(1.78). These rigidities refer to the material coordinate system of the individual 

laminates, so we must apply the transformation introduced in equations (1.101). 

After carrying out the operations of equations (1.104)-(1.112) we get the elements  

�̅�𝑖𝑗 of expression (1.102) and (1.103). On the go, the summation through the 

laminates in expressions (1.126) and (1.127) are carried out by applying ‘DO’ cycles. 
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Finally we assign the simple scalar (zero dimensional) variables the corresponding 

matrix entries for the forthcoming calculations. 

└ SUBROUTINE INIT 

    SUBROUTINE INIT (BMX,BMY,BMXY,CX,CY,CXY,& 

    NPON,QX,QY,W,WUX,WUY) 

 

    REAL,DIMENSION (:,:) :: BMX,BMY,BMXY,CX,CY,& 

        CXY,QX,QY,WUX,WUY,W 

 

    DO IPON=1,NPON 

      DO IIPON=1,NPON 

      W(IPON,IIPON)=0.0 

      WUX(IPON,IIPON)=0.0 

    WUY(IPON,IIPON)=0.0 

      CX(IPON,IIPON)=0.0 

      CY(IPON,IIPON)=0.0 

     CXY(IPON,IIPON)=0.0 

      BMX(IPON,IIPON)=0.0 

      BMY(IPON,IIPON)=0.0 

      BMXY(IPON,IIPON)=0.0 

      QX(IPON,IIPON)=0.0 

      QY(IPON,IIPON)=0.0 

      END DO 

    END DO 

    RETURN 

 

    END SUBROUTINE INIT 

The arguments of this subroutine are of type real with double precision and they 

have the next meanings: 

W() – deflection 

WUX(),WUY() – rotations of the cross sections in case of the kinematic 

assumptions of the Mindlin – Reissner theory, see 𝜗𝑥  and 𝜗𝑦 in equations 

(2.1) and (2.2) 

CX(),CY(),CXY() – curvatures with respect to axis x and y and the mixed 

curvature parameter, called warping (equation (2.17)) 

BMX(),BMY(),BMXY()  – bending moments 𝑀𝑥, 𝑀𝑦 and twisting moment 𝑀𝑥𝑦 

in equation (2.17)  

QX(),QY() – shear forces 𝑄𝑥 and 𝑄𝑦 in equation (2.15) 

What happens here is no more than setting to all of the values of the arrays in the 

argument a zero value. It is necessary, because otherwise in the next subroutines 

we would try to refer to an entry of these matrices before it has been assigned a 

value. 

└ SUBROUTINE CONS 

    SUBROUTINE CONS(AA,AMN,BB,BMN,CMN,DET,ETA,ETB,IQ,M,N,PI,PZ,P11,& 

    P12,P13,P22,P23,U,V) 

     

    IF (IQ==1) THEN 

        QMN=(16.0*PZ)/(PI*PI*FLOAT(M)*FLOAT(N)) 

    ELSEIF (IQ==2) THEN 

        QMN=((4.0*PZ)/(AA*BB))*SIN((FLOAT(M)*PI*ETA)/AA)& 

        *SIN((FLOAT(N)*PI*ETB)/BB) 

    ELSEIF (IQ==3) THEN 
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        QMN=((16.0*PZ*U*V)/(PI*PI*FLOAT(M)*FLOAT(N)*U*V))& 

        *SIN((FLOAT(M)*PI*ETA)/AA)*& 

  SIN((FLOAT(N)*PI*ETB)/BB)*SIN((FLOAT(M)*PI*U)/(2.0*AA))*& 

        SIN((FLOAT(N)*PI*V)/(2.0*BB)) 

    ELSEIF (IQ==4) THEN 

         QMN=(128.0*PZ*aa*bb*sin((pi*eta*FLOAT(M))/aa)& 

        *sin((pi*etb*FLOAT(N))/bb)& 

        *sin((pi*FLOAT(M)*u)/(4.0*aa))**2.0 - & 

        128.0*PZ*aa*bb*sin((pi*eta*FLOAT(M))/aa)& 

        *sin((pi*etb*FLOAT(N))/bb)*cos((pi*FLOAT(N)*v)/& 

        (2.0*bb))*sin((pi*FLOAT(M)*u)/(4.0*aa))**2.0)& 

        /(pi**4.0*FLOAT(M)**2.0*FLOAT(N)**2.0*u*v) 

    END IF 

    AMN=(P12*P23-P22*P13)*QMN/DET 

    BMN=(P12*P13-P11*P23)*QMN/DET 

    CMN=(P11*P22-P12*P12)*QMN/DET 

    RETURN 

  

 END SUBROUTINE CONS 

The first part of these operations are equivalent of expressions (2.47)-(2.51), where 

we calculate the Fourier coefficients of the applied load. After this we determine the 

Fourier coefficients 𝐴𝑚𝑛, 𝐵𝑚𝑛 and 𝐶𝑚𝑛 of expressions (2.27)-(2.29) by the means of 

expressions (2.38)-(2.40). 

Because of the implicit typing, the variables M and N, which are the running 

parameters in the main program, happen to be of type integer, but in the expressions 

we need a real value to preserve the accuracy. The change between variable types 

is called casting and in this case it is done by the intrinsic FORTRAN function 

FLOAT(), which converts a variable to the default real type. 

└ SUBROUTINE COEF 

SUBROUTINE COEF (AA,BB,D11,D22,D12,D66,DET,G1,GFS,M,& 

    N,P11,P12,P13,P22,P23,PI,S44,S55) 

  

 P11=D11*(FLOAT(M)*PI/AA)*(FLOAT(M)*PI/AA)& 

     +D66*(FLOAT(N)*PI/BB)*(FLOAT(N)*PI/BB)+G1*S55 

     P12=(D12+D66)*(FLOAT(M)*PI/AA)*(FLOAT(N)*PI/BB) 

     P13=G1*S55*(FLOAT(M)*PI/AA) 

     P22=D66*(FLOAT(M)*PI/AA)*(FLOAT(M)*PI/AA)& 

     +D22*(FLOAT(N)*PI/BB)*(FLOAT(N)*PI/BB)+G1*S44 

     P23=G1*S44*(FLOAT(N)*PI/BB) 

     P33=(G1*S55)*(FLOAT(M)*PI/AA)*(FLOAT(M)*PI/AA)& 

      +(G1*S44)*(FLOAT(N)*PI/BB)*(FLOAT(N)*PI/BB)+GFS 

     DET=P11*(P22*P33-P23*P23)-P12*(P12*P33-P23*P13)& 

     +P13*(P12*P23-P22*P13) 

     RETURN 

 

END SUBROUTINE COEF 

These lines are equivalent of equations (2.32)-(2.37). 

└ SUBROUTINE SUMS 

    SUBROUTINE SUMS (AA,AMN,BB,BMN,BMX,BMY,BMXY,CMN,CX,CY,CXY,D11,& 

    D22,D12,D66,G1,M,N,NPON,QX,QY,PI,S44,S55,W,& 

                WUX,WUY,XCORD,YCORD) 

 

    REAL,DIMENSION(:) :: XCORD,YCORD 

    REAL,DIMENSION(:,:) :: BMX,BMY,BMXY,CX,CY,& 

          CXY,QX,QY,WUX,WUY,W 
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 DO IPON=1,NPON 

     DO IIPON=1,NPON 

      X=XCORD(IPON) 

      Y=YCORD(IIPON) 

   !DEFLECTION W(IPON) 

      W(IPON,IIPON)=W(IPON,IIPON)+CMN*SIN((FLOAT(M)*PI*X)/AA)*& 

       SIN((FLOAT(N)*PI*Y)/BB) 

      !SLOPE WUX(IPON) 

      WUX(IPON,IIPON)=WUX(IPON,IIPON)+AMN*COS((FLOAT(M)*PI*X)/AA)*& 

        SIN((FLOAT(N)*PI*Y)/BB) 

      !SLOPE WUY(IPON) 

      WUY(IPON,IIPON)=WUY(IPON,IIPON)+BMN*SIN((FLOAT(M)*PI*X)/AA)*& 

        COS((FLOAT(N)*PI*Y)/BB) 

      !CURVATURE CX(IPON) 

      CX(IPON,IIPON)=CX(IPON,IIPON)+AMN*(FLOAT(M)*PI/AA)*& 

      SIN((FLOAT(M)*PI*X)/AA)*SIN((FLOAT(N)*PI*Y)/BB) 

      !CURVATURE CY(IPON) 

      CY(IPON,IIPON)=CY(IPON,IIPON)+BMN*(FLOAT(N)*PI/BB)*& 

SIN((FLOAT(M)*PI*X)/AA)*SIN((FLOAT(N)*PI*Y)/BB) 

      !CURVATURE CXY(IPON) 

      CXY(IPON,IIPON)=CXY(IPON,IIPON)+((AMN*(FLOAT(N)*PI/BB))+& 

        (BMN*(FLOAT(M)*PI/AA)))*& 

                 COS((FLOAT(M)*PI*X)/AA)*COS((FLOAT(N)*PI*Y)/BB) 

      !BENDING MOMENT BMX(IPON) 

      BMX(IPON,IIPON)=-D11*CX(IPON,IIPON)-D12*CY(IPON,IIPON) 

      !BENDING MOMENT BMY(IPON) 

      BMY(IPON,IIPON)=-D22*CY(IPON,IIPON)-D12*CX(IPON,IIPON) 

      !TWISTING MOMENT BMXY(IPON) 

      BMXY(IPON,IIPON)=D66*CXY(IPON,IIPON) 

      !SHEAR FORCE QX(IPON) 

      QX(IPON,IIPON)=QX(IPON,IIPON)+G1*S55*& 

((CMN*FLOAT(M)*PI/AA)+AMN)*& 

       COS((FLOAT(M)*PI*X)/AA)*SIN((FLOAT(N)*PI*Y)/BB) 

      !SHEAR FORCE QY(IPON) 

      QY(IPON,IIPON)=QY(IPON,IIPON)+G1*S44*& 

((CMN*FLOAT(N)*PI/BB)+BMN)*& 

       SIN((FLOAT(M)*PI*X)/AA)*COS((FLOAT(N)*PI*Y)/BB) 

     END DO 

     END DO 

 RETURN 

 

     END SUBROUTINE SUMS 

This subroutine is left with the original comments in it, so the meaning of the 

different matrices should be clear. NPON refers to the number of the output points, 

hence the summation goes twice from 1 to NPON. Now it is clear that even in the first 

cycle we already refer to the matrix under discussion, which explains the need for 

initializing these matrices a few lines before. The equations are equal to those of 

expressions (2.41)-(2.45). 

└ SUBROUTINE OUTP 

SUBROUTINE OUTP (NPON,XCORD,YCORD,W,BMX,BMY,BMXY,QX,QY) 

 

REAL,DIMENSION (:) :: XCORD,YCORD 

REAL,DIMENSION (:,:) :: BMX,BMY,BMXY,QX,QY,W 

 

OPEN (UNIT=60,FILE="RESULT.TXT",FORM="FORMATTED",& 

STATUS="REPLACE",ACTION="WRITE") 

DO IPON=1,NPON 

  DO IIPON=1,NPON 

    WRITE (60,"(8F18.5)") XCORD(IPON),YCORD(IIPON),W(IPON,IIPON)& 

,BMX(IPON,IIPON),BMY(IPON,IIPON),& 

BMXY(IPON,IIPON),QX(IPON,IIPON),& 
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QY(IPON,IIPON) 

  END DO 

END DO 

CLOSE (60) 

 RETURN 

 

END SUBROUTINE OUTP 

Finally I wrote a completely new subroutine to handle the output. What I needed 

here is to create a text file filled up with the results. The OPEN statement was 

mentioned at SUBROUTINE DATA, the only difference is that now the ACTION 

specifier is set to WRITE. The WRITE command is very similar to the READ 

command, as it operates on a device associated with the unit number, which now is 

the opened text file. 
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3. GRAPHICAL SOLUTION 

The graphical user interface (GUI) was programmed in the 

latest release of the Visual Basic .NET programming 

environment which is a fully object oriented language based 

on the .NET 4.5 framework of Microsoft. Although terms ‘Visual 

Basic’ and ‘Visual Basic .NET’ are not the same, from now on I 

will use the term Visual Basic or shortly VB to refer to the 

language of the graphical user interface. 

Software engineers talk about five generations of languages. 

The first-generation is the machine language: 0s and 1s. 

Between these levels FORTRAN is sad to be a third-generation 

language as it provides much more sophisticated language 

elements such as subroutines, loops and data structures. The 

Visual Basic development environment belongs to the family of 

the fifth-generation languages. To be able to place it 

somewhere among the other common languages, it can be said 

that aside from a few stylistic differences VB is comparable with 

C#. In fact, VB is not a whole lot easier to use than C#, and C# 

is not significantly more powerful, the difference between them 

is rather one of style. As a matter of fact, all the notions I 

intended to impellent in the program could be done, I never had 

to drop an idea because of the deficiency of the VB language 

skills and this proves the selection to be good.  

Again I have to emphasize that in the lack of any previous 

experience, I had to start learning VB from scratch. It was 

mentioned at FORTRAN either, but it is a completely different 

case in the meaning that now I did not have a good basis code 

to start from, the programming work started with a really blank 

sheet. 

To the compilation I used the Visual Studio 2012 integrated 

development environment (IDE) from a Visual Basic 

developer’s point of view. The VB commands in this section will 

be highlighted by applying Courier View font style. The 

modern IDE’s, such as Visual Studio 2012 has word correction 

options, the typed commands are edited to look like a normal 

text, therefore the old style full-caps command input is dropped. 

3.1 Introduction to Visual Basic .NET 

I must adumbrate, that the present thesis does not attempt to 

give even a basic knowledge of the Visual Basic .NET language, 

because it could be hardly done under the limit of a reasonable 

page number. Even so, some very fundamental things must be 

mentioned to be able to prepare the reader at least to read and 

Object Oriented 

Programming 

(OOP) 

OOP is a programming 

paradigm that means 

concepts as “objects”, 

each with its own set of 

properties, methods 

and events. Strictly 

speaking object is a 

programming structure 

that encapsulates data 

and functionality as a 

single unit.  

For example a Button is 

a control object of VB. It 

has properties like the 

text on the button or the 

site of it and events like 

pressing it down or 

releasing it. It can be 

said what should 

happen on pressing the 

button, therefore in 

may be considered as 

an independent 

“machine” with a 

distinct role. 

An object oriented 

language may be 

viewed as a collection 

of interacting objects, 

as opposed to the 

imperative languages, 

in which a program is 

seen as a list of tasks to 

execute. 

At first sight it must be 

ambiguous what an 

object is, but later it will 

me illustrated with own 

examples. 
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understand the general purpose and mechanism of the solutions discussed in the next 

sections. For those who are interested in the topic I suggest to start with (Foxall, 2010). 

An application is a set of instructions directing the computer to perform tasks. The 

structure of an application is the way how all these instructions are organized and 

executed. 

First of all a glossary is provided in Table 3, after which this section will use many in 

context. 

Keyword Description 

Namespace A collection of classes that provide related 
capabilities. For example, the 
System.Drawing namespace contains 
classes associated with graphics. 

Class A definition of an object. Includes 
properties (variables) and methods, each 
can be Subs or Functions. 

Sub A method that contains a set of 
commands, allow data to be transferred as 
parameters, and provides scope around 
local variables and commands, but does 
not return a value. 

Function A method that contains a set of 
commands, returns a value, allow data to 
be transferred as parameters, and 
provides scope around local variables and 
commands. 

Return Ends the currently executing Sub or 
Function. Combined with a return value 
for functions. 

Dim Declares and defines a new variable. 

New Creates an instance of an object. 

Nothing Used to indicate that a variable has no 
value. Equivalent to null in other 
languages and databases. 

Me A reference to the instance of the object 
within which a method is executing. 

Module A code block that isn’t a class but which 
can contain Sub and Function methods. 
Used when only a single copy of code or 
data is need in memory. 

Table 3  - Most commonly used VB keywords, (Sheldon et al, 2012) 
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From these, ones have bigger importance from the point of view of the present thesis, 

so discuss this in details now. 

Let’s start with namespace. VB has a serious number of classes. When .NET was being 

created, the developers realized that attempting to organize all of these classes requires 

a system. Therefore a namespace is a system what is used to organize and group classes 

containing common functionality. 

Very shortly a class is a definition of a class the same way as the source code is the 

definition of the application. It designates a common set of data and behavior within the 

application. 

To declare a variable we use the dim statement, which is the short form of ‘Dimension’ 

and comes from the ancient past of VB. It can be replaced with the commands Private 

or Public with which the developer can limit the accessibility of the declared variables in 

the project. VB supports the general scalar variable types like integer, single precision real 

(single), double precision real (double), string, character (char) and boolean. Most of them 

should be familiar from the previous chapter, but the Boolean type variable is new. It is a 

logical variable which can take the values ‘true’ or ‘false’. Of course arrays and other 

structures can be declared either, these will be discussed later. 

The nothing keyword is a way of telling the system that the actual variable does not 

use any more memory on the heap. 

A sub or subroutine can be declared with the next statement: 

Sub Main() 

     . . . 

End Sub  

If the subroutine has arguments, they can be specified between the parentheses, while 

the actions to carry out on invoking the sub can be placed instead of the dots. When all 

the commands of the subroutine were executed, the control is given back to the code that 

invoked the sub. 

The declaration of a function is very similar. The differences are that the function must 

return a value and we also have to declare the type of that value in advance. The 

declaration looks like: 

Function Main() as single 

     . . . 

     return var1 

End Sub  

This sample function carries out some actions than returns the variable var1 which is 

a real number with single precision. 

Functions and subroutines can also be combined with the private and public 

modifiers to limit the accessibility of the procedures. 

A VB program is built up from standard building blocks. A solution can include one or 

more project. In our case we speak about one project, so there is no need to talk about 

the higher levels of program structure. A project can contain one or more assemblies, 
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which are composed of one or more source files. A source file provides the definition and 

implementation of classes, modules, etc. which altogether contain all the code. 

A simple program basically consists of the following parts: 

 Namespace declaration 

 A class or module 

 One or more procedures 

 Variables 

 The Main procedure 

 Statements & Expressions 

 Comments 

The always first to introduce “Hello World” program has the following structure in VB: 

' A "Hello, World!" program in Visual Basic.  

Module Hello 

  Sub Main() 

      MsgBox("Hello, World!") ' Display message on computer screen. 

  End Sub  

End Module 

Here using namespace is not necessary, but examples will be shown later to this type of 

statement. In turn we can see the Main subroutine, placed on the module Hello. This 

sub uses a message box to print to thee screen the string ‘Hello World!’. Declaring 

variables also could have been dropped now, but for example the string ‘Hello World’ could 

be set as a string variable and then this could be used in the argument of the message 

box. As it has been certainly appeared, the single quotation mark is used to leave 

comments in the code. 

Visual Basic is said to be event driven. This means that the procedures can be attached 

to the event of an arbitrary control, as the clicking of a button or releasing a specific key 

on the keyboard, etc. 

Since I am planning to make a graphical user interface, it is time to speak about the 

visual part. Next to the events, properties and methods, objects do have an interface to 

allow the user to interact with them at runtime. For example we now that a button has a 

click event, a text written on it, etc., we can only interact with a button through its interface, 

which is well known for anyone ever used any program. 

 

Usually the pressing down of this button causes a window to close. It happens because 

the close method of the window is attached to the click event of the button. Although 

a button has its own design, it is not on the fly, it is on a form. Forms are essentially 

windows, and the two terms are often interchangeably. More accurately, window refers to 

what the user sees and interacts with, whereas form refers to what you see when you 

design. Think of a form as a canvas on which you can build your program’s interface. 
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3.2 BENSYS Program structure 

The relationship between the hours spent on the two main parts of the program is 

visualized on Figure 29. In numbers, the length of the code of the graphical user interface 

is 152 (and growing) in comparison with the 9 pages of FORTRAN. Consequently the all-

round introduction of this part cannot be the objective of this thesis. Instead, the most 

important and fundamental solutions will be introduced. 

 

Figure 29 – Percentage from the whole program code 

Worth mentioning, that writing a program such BENSYS cannot be done simply from 

books. Sometimes to find a simple solution needs a very long search and a lot of try on 

programmer’s forums and other sources. In the next subsections I will guide through the 

user on the path of a general working session and explain the most important tricks and 

solutions on the go. I assume that the reader is in possess of the program and so he is 

able to follow the train of thought. 

3.1.1. The splash form 

Every self-respecting programmer creates a so called splash. It is what appears first 

when opening an application and can be used to give a hint about the main objectives and 

the functionality of the program. The splash of BENSYS can be seen on Figure 30. 

Although it does not contain any control to interact with, actions still can be attached to 

this form using the load event of it. Every form has a load event and the commands, 

functions and subroutines in the event are executed when the form is loaded, in other 

words it is the first entry of the form. The load event of the splash form contains the 

registry operations and the necessary commands to shading the form and giving control 

to the next form. Thanks to the moderate extent, next to the load event I enclose now the 

whole class as an example, which is the design view about the form. 

94%

6%

Percentage from the whole program code

Visual Basic Fortran
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Public Class Splash 

 

    Public Shared langOpt As String 

    Public Shared langOptOld As String 

    Public Shared textDir As String 

 

    Private Sub Form2_Load(sender As Object, e As EventArgs) Handles Me.Load 

 

        'registry operations 

        langOpt = My.Computer.Registry.GetValue("HKEY_CURRENT_USER\" & _ 

                        "Software\BENSYS\language\", "LangOpt", "English") 

        langOptOld = langOpt 

        textDir = My.Computer.Registry.GetValue("HKEY_CURRENT_USER\" & _ 

                            "Software\BENSYS\directory\", "textDir", "") 

 

        'shading 

        Dim sngOpacity As Single 

        Me.Show() 

        System.Threading.Thread.Sleep(6000) 

        For sngOpacity = 1 To 0 Step -0.01 

            Me.Opacity = sngOpacity 

            'Let the form repaint itself 

            Me.Show() 

            'Create a delay 

            System.Threading.Thread.Sleep(20) 

        Next 

 

        ProjectForm.Show() 

        Me.Close() 

 

 

    End Sub 

End Class 

After the class statement there is the declaration section, where 3 string variables are 

defined and their publicity is set to public, because later I will need to access these 

variables from outside of this form. If I want to use these variables not just outside, but on 

other forms, then I have to add the specifier ‘shared’ to the declaration. 

After the declarations, the load event takes place. Yes, it is a subroutine, which is 

attached to the load event of the form, which is named as form2, by the words ‘Handles 

Figure 30 – BENSYS splash screen 
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Me.Load’ at the end of the subroutine declaration statement. Therefore the commands in 

the sub are fired when the load is loaded. 

The registry is a repository used to store application, user and machine specific 

information, database connection strings, file locations, and more. It is organized in a 

hierarchical structure. The top nodes, called the hives, are pre-defined and you can’t take 

actions on them. Under each hive, a number of keys are listed. Keys can have subkeys 

and can contain one or more values. Keys have different data types, but I do not want to 

spend time with these, since windows always chooses the suitable type when writing to 

the registry. There are multiple ways to access the registry, the most professional is to use 

the Registry object. This object is an object property of My.Computer. The My object 

is basically a shortcut to other useful objects that aren’t so easy to be accessed on their 

own. The My object has the object property Computer which has the object property called 

Registry. We can use this object to perform all registry operations. To read keys from 

the registry, the following code is added: 

langOpt = My.Computer.Registry.GetValue("HKEY_CURRENT_USER\" & _ 

                        "Software\BENSYS\language\", "LangOpt", "English") 

On the left side of the equal sign there is a variable that we would like to assign a value. 

On the right side we can see an example to the use of the GetValue method of the 

Registry object. In its argument we have to define the full path of the registry key, the 

name of the key and the default value. The default value stands for the case when the key 

does not exist at the moment of the query, for example at the first run of the program. 

Note, that the hive of the key is HKEY_CURRENT_USER, which means that the language 

setting can be different for each user of the computer. The other registry operation is the 

same, except that is relates to the working directory setting. These operations result that 

the user will start the program with those language and working directory options that he 

left on closing the program.  

After the registry operations, the load event continues with the control of the shading of 

the form. This can be done with the combination of the use of the Opacity property of 

the form and the Sleep method of the Thread object under the System.Threading 

namespace. The command 

System.Threading.Thread.Sleep(6000)  

means that the system waits 6000 milliseconds until the next command is executed in 

the code. It means that in the for…next cycle the delay between two opacity state is 20 

milliseconds, so the speed of the change can be set by the argument of the Sleep 

method. After setting a new opacity value to the form, it must be repainted. It can be 

achieved on many ways, but the only one that worked well is to force the form to show 

itself repeatedly with the use of the Show method. After the opacity is reduced to zero the 

cycle finishes and the remaining commands first show the ProjectForm form and then 

close the present form. By these commands not just showing and closing is done, but the 

control is given to the new form either, as the showing of the form invokes the load event 

of that form. 
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3.1.2. The Project Form 

Similarly to other software, 

I wanted a form where the 

user can initialize the 

settings for the working 

session, this can be seen on 

Figure 31. The user can first 

set the language, the 

working directory, but of 

course the actual values on 

the form are those that were 

chosen on the last run. 

Then the user has two 

options, these are 

separated with radio 

buttons. If one decides to 

start a new working 

session, then it is able to set 

the project name and the 

dimensions for data input. If 

the choice is to resume an 

existing work, then the user 

has to select a BENSYS save file to read from. In this case nothing has to be set because 

all settings of the program is stored in the save file.  

The save and open solutions will be discussed later in details, now let assume that on 

pressing the folder button next to the textbox a window appears and we can browse for a 

file and select it. As a result the path of the selected should be written in the textbox, as 

shown on Figure 32. 

By pressing the OK button the control is given to the Main form, which is named like this 

on purpose, this is the core of the application. 

3.1.3. The Main Form 

The Main form is presented on Figure 33. Actually it is not a form, but a window. The 

difference was highlighted before, namely the form is the ‘design time’ equivalent of the 

window that is visible when running the application. 

The selections are controlled by tabs and radio buttons, let’s first discuss the geometry. 

Geometry 

First let’s think over what is needed than we can have a look on the solutions. We can 

choose from 4 section types as ‘Homogeneous’, ‘Sandwich’, ‘Voided’ and ‘Laminated’. 

Each has its own radio button, whose clicked property can take values true or false 

depending on the choice of selection. One of the key features of the radio button is that if 

Figure 31 – Project form 

Figure 32 – Loading existing project 
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we place more than of it on a panel or a form, than only one of them can be clicked. This 

means that if we click on one, it will automatically change its clicked property to true and 

change the other’s click property to false. So if we want to have different controls on the 

form depending on the cross section, we should attach some actions to the 

CheckedChanged property of each radio button. Obviously these commands are going 

to fire when the radio button’s clicked property changes, independently from the 

direction of the change. For instance the CheckedChanged event of the first radio button 

is declared on the Main form, and takes the following form: 

Private Sub rbtHomg_CheckedChanged(sender As Object, e As EventArgs) Handles 

rbtHomg.CheckedChanged 

        '----------------------------------------------------------- 

        ’DEFINES WHAT HAPPENS IF THE HOMOGENEOUS BUTTON IS CLICKED 

        '----------------------------------------------------------- 

        HomogeneousGeom() 

End Sub 

Now the application of the modules gets its meaning. Although the subroutine 

HomogeneousGeom() is invoked on the Main form, its code is placed on the 

GeometryModule module. In this way the path of operations is see through and easy to 

follow. Consequently, all of the variables, functions and subroutines that have actions 

when the focus is on the ‘Geometry’ tab is located on the GeometryModule module. 

Unfortunately this thought cannot be continued with the introduction of the 

HomogeneousGeom() subroutine, but later we will finish this discussion.  

Figure 33 – The Main form after loading with some of the object types marked 

textbox label 

radio button 

tab form 

BEN_clas

s 
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What is important now is to introduce an object, called BEN_class. It is one of my own 

created objects and by getting to know it, the definition of an object will be surely clearer. 

To understand the need to create such an object, let’s think through what happens exactly 

when changing the section type from ‘Homogeneous’ to ‘Sandwich’. When being in 

‘Homogeneous’ state, there are controls on the form like textboxes and labels, see Figure 

33. The geometry of a sandwich plate is not the same, therefore these controls need to 

be removed and others should be added. For example to add the controls of the 

‘Homogeneous’ choice right after clicking on the OK button of the Project form needs the 

following steps: 

 Declare objects local to the subroutine with the Dim statement (13 db). 

 Set the location and size of each one. 

 Set other properties such as the text (depending on the actual language setting), 
background color, etc. 

 Add handlers to the objects to handle their events. These will be detailed later, 
but keep in mind that it means a circa hundred lines of code for each textbox. 

 Add the objects. 

Then changing to ‘Sandwich’ requires: 

 Removing the handlers of the ‘Homogeneous’ controls. It is an extremely 
important step because otherwise the next time when the ‘Homogeneous’ type 
would have been chosen, the handlers would be added again and then invoking 
some event of these controls would execute the corresponding actions twice and 
third in the next round, etc. 

 Removing the ‘Homogeneous’ controls. 

 Repeating the steps of the previous list with the ‘Sandwich controls’ 

Maybe it is not obvious now, but it is a lot to do and it must be done for every four section 

types, and of course as the geometry gets more complicated, the number of the controls 

to work with gets higher. So it would be very productive to encapsulate these actions into 

one object and then reuse the same object everywhere where the same functionality is 

needed. The elements of the BEN_class object can be seen on Figure 33 in the red 

rectangle. At the end of this point it will be clear that explaining all of the details is not an 

option to choose. Even so, it is necessary to introduce once the creation of an own object, 

because actually it is the real deal of programming and provided the body of the thesis.  

In the next pages the full code of the BEN_class object is presented, the line numbering 

is meant to help us follow the lead of operations. Before all, I have to apologize for the 

formatting errors, but the different compilers do not include too improved text formatting 

tools and inside the program there is no point of margins neither. As it can be seen, the 

lines begin with increased indentation. Where it doesn’t, that means that the command 

should be regarded as the continuation of the command in the previous line. As the ‘&’ in 

FORTRAN, the symbol of continuation is now the underline, as on the next example. 

very_very_long_command_can_be_continued_in_the _ 

next_line 

Of course the underline can be placed in the command itself, but if it is prevented by a 

space than in means continuation. 



Imports BEN___SYS.Splash 1 
Imports BEN___SYS.ProjectForm 2 
Public Class BEN_class 3 
 4 
    Private exist = False 5 
    Private WithEvents box As New BEN_box 6 
    Private box_label As New Label 7 
    Private box_label_long As New BEN_label 8 
    Private box_dim As New Label 9 
    Private boxtext As Single = 1.0 10 
    Private box_font As New Font(box_label.Font.Name, box_label.Font.Size) 11 
    Private box_long_font As New Font(box_label_long.Font.Name, 12 
box_label_long.Font.Size) 13 
    Private box_pan As String 14 
    Private box_type As dimtypes 15 
 16 
    Private err1() As String = {"A value must be specified", "A mező 17 
kitöltése kötelező"} 18 
    Private err2() As String = {"The value must be greater than 0", "Az érték 19 
0-nál nagyobb kell, hogy legyen"} 20 
    Private err3() As String = {"Only numeric input is allowed!", "Ebbe a 21 
mezőbe csak számot írhat!"} 22 
    Private err4() As String = {"Not numeric!", "Hibás formátum!"} 23 
’---------------------------------------------------------------------------- 24 
    Public ReadOnly Property benbox() As BEN_box 25 
        Get 26 
            Return box 27 
        End Get 28 
    End Property 29 
’---------------------------------------------------------------------------- 30 
    Public Property text() As String 31 
        Get 32 
            Return box_label.Text 33 
        End Get 34 
        Set(ByVal value As String) 35 
            box_label.Text = value 36 
            box_label.Size = TextRenderer.MeasureText(box_label.Text, 37 
box_font) 38 
        End Set 39 
    End Property 40 
’---------------------------------------------------------------------------- 41 
    Public Property value() As Single 42 
        Get 43 
            Return boxtext 44 
        End Get 45 
        Set(value As Single) 46 
            box.Text = String.Format("{0:F2}", value) 47 
            boxtext = value 48 
        End Set 49 
    End Property 50 
’---------------------------------------------------------------------------- 51 
    Public Property left() As Integer 52 
        Get 53 
            Return box.Left 54 
        End Get 55 
        Set(value As Integer) 56 
            box.Left = value 57 
            box_label.Left = box.Left - box_label.Width 58 
            box_dim.Left = box.Left + box.Width + 2 59 
        End Set 60 
    End Property 61 
’---------------------------------------------------------------------------- 62 
    Public Property height() As Integer 63 
        Get 64 
            Return box.Height 65 
        End Get 66 
        Set(value As Integer) 67 
            box.Height = value 68 



 Bence Balogh  

 COMPUTER PROGRAM FOR THE CALCULATION OF MINDLIN PLATES 

 

 

80  

        End Set 69 
    End Property 70 
’---------------------------------------------------------------------------- 71 
    Public Property label() As String 72 
        Get 73 
            Return box_label_long.Text 74 
        End Get 75 
        Set(value As String) 76 
            box_label_long.Text = value 77 
        End Set 78 
    End Property 79 
’---------------------------------------------------------------------------- 80 
    Public ReadOnly Property dimlabel() As Label 81 
        Get 82 
            Return box_dim 83 
        End Get 84 
    End Property 85 
 86 
    Public ReadOnly Property shortlabel() As Label 87 
        Get 88 
            Return box_label 89 
        End Get 90 
    End Property 91 
’---------------------------------------------------------------------------- 92 
    Public Property top() As Integer 93 
        Get 94 
            Return box.Top 95 
        End Get 96 
        Set(value As Integer) 97 
            box.Top = value 98 
            box_label.Top = value + 2 99 
            box_dim.Top = value + 2 100 
        End Set 101 
    End Property 102 
’---------------------------------------------------------------------------- 103 
    Public Property dimension() As String 104 
        Get 105 
            Return box_dim.Text 106 
        End Get 107 
        Set(value As String) 108 
            box_dim.Text = value 109 
        End Set 110 
    End Property 111 
’---------------------------------------------------------------------------- 112 
    Public Property type() As dimtypes 113 
        Get 114 
            Return box_type 115 
        End Get 116 
        Set(value As dimtypes) 117 
            box_type = value 118 
        End Set 119 
    End Property 120 
’---------------------------------------------------------------------------- 121 
    Public Property IsError() As Boolean 122 
        Get 123 
            Return box.IsError 124 
        End Get 125 
        Set(value As Boolean) 126 
            box.IsError = value 127 
        End Set 128 
    End Property 129 
’---------------------------------------------------------------------------- 130 
    Public Property existance() As Boolean 131 
        Get 132 
            Return exist 133 
        End Get 134 
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        Set(value As Boolean) 135 
            exist = value 136 
        End Set 137 
    End Property 138 
’---------------------------------------------------------------------------- 139 
    Public Sub Add(pan_ As String, array_ As Array, text_ As String, left_ As 140 
Integer, _ 141 
                   top_ As Integer, start_ As Single, Optional ByVal type_ As 142 
dimtypes = dimtypes.dimension) 143 
 144 
        Define(pan_, array_, text_, left_, top_, start_, type_) 145 
        JustAdd() 146 
 147 
    End Sub 148 
’---------------------------------------------------------------------------- 149 
    Public Sub JustAdd() 150 
 151 
        If box_pan = "G" Then 152 
            formMainForm.panGeometry.Controls.Add(box) 153 
            If box_label_long.Text <> "" Then 154 
formMainForm.panGeometry.Controls.Add(box_label_long) 155 
            formMainForm.panGeometry.Controls.Add(box_label) 156 
            If type <> dimtypes.none Then 157 
formMainForm.panGeometry.Controls.Add(box_dim) 158 
        ElseIf box_pan = "L" Then 159 
            formMainForm.panLoad.Controls.Add(box) 160 
            If box_label_long.Text <> "" Then 161 
formMainForm.panLoad.Controls.Add(box_label_long) 162 
            formMainForm.panLoad.Controls.Add(box_label) 163 
            If type <> dimtypes.none Then 164 
formMainForm.panLoad.Controls.Add(box_dim) 165 
        End If 166 
 167 
        If box.Text = "" Then box.Focus() 168 
        existance = True 169 
 170 
    End Sub 171 
’---------------------------------------------------------------------------- 172 
    Public Sub Define(pan_ As String, array_ As Array, text_ As String, left_ 173 
As Integer, _ 174 
                      top_ As Integer, start_ As Single, Optional ByVal type_ 175 
As dimtypes = dimtypes.dimension) 176 
 177 
        type = type_ 178 
 179 
        box.Width = 60 180 
 181 
        If boxtext <> Nothing Or type = dimtypes.none Or type = 182 
dimtypes.foundation Then 183 
            box.Text = String.Format("{0:F2}", boxtext) 184 
        Else 185 
            box.Text = "" 186 
            box.IsError = True 187 
            formMainForm.ErrorProvider1.SetError(box_dim, 188 
err1(formMainForm.LangIndex(langOpt))) 189 
        End If 190 
        box_label.Text = text_ 191 
 192 
        If array_ Is Nothing Then 193 
            box_label_long.Text = "" 194 
        Else 195 
            box_label_long.array = array_ 196 
            box_label_long.lang = langOpt 197 
        End If 198 
        box_label.Size = TextRenderer.MeasureText(box_label.Text, box_font) 199 
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        box_label_long.Size = TextRenderer.MeasureText(box_label_long.Text, 200 
box_long_font) 201 
        box.Left = left_ 202 
        box_label.Left = left_ - box_label.Width 203 
        box_label_long.Left = 14 204 
        box_dim.Left = left_ + box.Width + 2 205 
        box.Top = top_ 206 
        box_label.Top = top_ + 2 207 
        box_label_long.Top = top_ + 2 208 
        box_dim.Top = top_ + 2 209 
        box_pan = pan_ 210 
 211 
        If existance = False Then 212 
            value = start_ 213 
            'existance = True 214 
        End If 215 
 216 
        If type_ = dimtypes.dimension Then 217 
            If existance = True Then 218 
                If box_dim.Text <> dimOpt Then 219 
                    Convert(box_dim.Text, dimOpt) 220 
                    box_dim.Text = dimOpt 221 
                End If 222 
            Else 223 
                box_dim.Text = dimOpt 224 
            End If 225 
        ElseIf type_ = dimtypes.pressure Then 226 
            If existance = True Then 227 
                If box_dim.Text <> presOpt Then 228 
                    Convert(box_dim.Text, presOpt) 229 
                    box_dim.Text = presOpt 230 
                End If 231 
            Else 232 
                box_dim.Text = presOpt 233 
            End If 234 
        ElseIf type_ = dimtypes.force Then 235 
            If existance = True Then 236 
                If box_dim.Text <> forceOpt Then 237 
                    Convert(box_dim.Text, forceOpt) 238 
                    box_dim.Text = forceOpt 239 
                End If 240 
            Else 241 
                box_dim.Text = forceOpt 242 
            End If 243 
        ElseIf type_ = dimtypes.none Then 244 
            box_dim.Text = "" 245 
        ElseIf type_ = dimtypes.foundation Then 246 
            box_dim.Text = "kN/m3" 247 
        End If 248 
 249 
        box_dim.Size = TextRenderer.MeasureText(box_dim.Text, box_long_font) 250 
 251 
    End Sub 252 
’---------------------------------------------------------------------------- 253 
    Public Sub Remove() 254 
 255 
        If box.Text <> "" And box.IsError = False Then 256 
            boxtext = CSng(box.Text) 257 
        Else 258 
            boxtext = Nothing 259 
        End If 260 
 261 
        If box_pan = "G" Then 262 
            If IsNothing(box_label) = False Then 263 
formMainForm.panGeometry.Controls.Remove(box_label) 264 
            formMainForm.panGeometry.Controls.Remove(box) 265 
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            formMainForm.panGeometry.Controls.Remove(box_label_long) 266 
            If type <> dimtypes.none Then 267 
formMainForm.panGeometry.Controls.Remove(box_dim) 268 
        ElseIf box_pan = "L" Then 269 
            If IsNothing(box_label) = False Then 270 
formMainForm.panLoad.Controls.Remove(box_label) 271 
            formMainForm.panLoad.Controls.Remove(box) 272 
            formMainForm.panLoad.Controls.Remove(box_label_long) 273 
            If type <> dimtypes.none Then 274 
formMainForm.panLoad.Controls.Remove(box_dim) 275 
        End If 276 
 277 
    End Sub 278 
’---------------------------------------------------------------------------- 279 
    Public Sub Convert(from_ As String, to_ As String) 280 
        box_dim.Text = to_ 281 
        box_dim.Size = TextRenderer.MeasureText(box_dim.Text, box_long_font) 282 
 283 
        If box.Text <> 0 Then 284 
            If type = dimtypes.dimension Then 285 
                value = CSng(box.Text) * UnitChange(to_) / UnitChange(from_) 286 
            ElseIf type = dimtypes.pressure Then 287 
                value = CSng(box.Text) * UnitChange(to_, type) / 288 
UnitChange(from_, type) 289 
            ElseIf type = dimtypes.force Then 290 
                value = CSng(box.Text) * UnitChange(to_, type) / 291 
UnitChange(from_, type) 292 
            End If 293 
        End If 294 
 295 
    End Sub 296 
’---------------------------------------------------------------------------- 297 
    Private Function BENbox_onlyNumbers(ByVal KeyChar As Char) As Boolean 298 
        '------------------------------------------------------------------- 299 
        'RETURNS TRUE OR FALSE ON SOME CHARACTERS 300 
        '------------------------------------------------------------------- 301 
        Dim allowedChars As String 302 
        If type = dimtypes.force Or type = dimtypes.pressure Then 303 
            allowedChars = "-0123456789," 304 
        Else 305 
            allowedChars = "0123456789," 306 
        End If 307 
 308 
        If allowedChars.IndexOf(KeyChar) = -1 And (Asc(KeyChar)) <> 8 Then 309 
            Return True 310 
        Else 311 
            Return False 312 
        End If 313 
 314 
    End Function 315 
’---------------------------------------------------------------------------- 316 
    Private Function BENbox_onlyonecomma(ByVal KeyChar As Char) As Boolean 317 
        '------------------------------------------------------------------- 318 
        'RETURNS TRUE OR FALSE ON SOME CHARACTERS 319 
        '------------------------------------------------------------------- 320 
        Dim actualtext As String 321 
        actualtext = box.Text 322 
 323 
        If actualtext.IndexOf(KeyChar) = -1 And (Asc(KeyChar)) <> 8 Then 324 
            Return False 325 
        Else 326 
            Return True 327 
        End If 328 
 329 
    End Function 330 
’---------------------------------------------------------------------------- 331 
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    Private Sub BENbox_KeyPress(ByVal sender As Object, ByVal e As 332 
KeyPressEventArgs) Handles box.KeyPress 333 
        '------------------------------------------------------------------ 334 
        'HANDLES A KEYPRESS EVENT ON DECIDING IF IT IS NUMERIC OR NOT 335 
        'HANDLES A KEYPRESS EVENT ON ROUNDING 336 
        '------------------------------------------------------------------ 337 
 338 
        If BENbox_onlyNumbers(e.KeyChar) = True Then 339 
            If e.KeyChar = "." Then 340 
                If BENbox_onlyonecomma(",") = True Or box.Text = "" Or 341 
box.Text = "-" Then 342 
                    e.Handled = True 343 
                Else 344 
                    e.KeyChar = "," 345 
                End If 346 
            ElseIf e.KeyChar = Microsoft.VisualBasic.ChrW(Keys.Return) Then 347 
                If box.Text <> "" And box.Text <> "-" Then 348 
                    SendKeys.Send("{TAB}") 349 
                    value = Math.Round(CSng(box.Text), 2) 350 
                Else 351 
                    e.Handled = True 352 
                End If 353 
            Else 354 
                MessageBox.Show(err3(formMainForm.LangIndex(langOpt)), _ 355 
                                err4(formMainForm.LangIndex(langOpt)), _ 356 
                                MessageBoxButtons.OK, 357 
MessageBoxIcon.Information) 358 
                e.Handled = True 359 
            End If 360 
        ElseIf BENbox_onlyNumbers(e.KeyChar) = False Then 361 
            If e.KeyChar = "," Then 362 
                If BENbox_onlyonecomma(",") = True Or box.Text = "" Or 363 
box.Text = "-" Then 364 
                    e.Handled = True 365 
                Else 366 
                    e.KeyChar = "," 367 
                End If 368 
            End If 369 
        End If 370 
 371 
    End Sub 372 
’---------------------------------------------------------------------------- 373 
    Private Sub BENbox_KeyUp(ByVal sender As Object, ByVal e As KeyEventArgs) 374 
Handles box.KeyUp 375 
        '------------------------------------------------------------------ 376 
        'HANDLES A KEYUP EVENT  377 
        '------------------------------------------------------------------ 378 
 379 
        If box.Text = "" Or box.Text = "-" Then 380 
            box.IsError = True 381 
            If type <> dimtypes.none Then 382 
                formMainForm.ErrorProvider1.SetError(box_dim, 383 
err1(formMainForm.LangIndex(langOpt))) 384 
            Else 385 
                formMainForm.ErrorProvider1.SetError(box, 386 
err1(formMainForm.LangIndex(langOpt))) 387 
            End If 388 
        ElseIf CSng(box.Text) = 0 Then 389 
            If type = dimtypes.none Or type = dimtypes.foundation Then 390 
                box.IsError = False 391 
                If type <> dimtypes.none Then 392 
                    formMainForm.ErrorProvider1.SetError(box_dim, Nothing) 393 
                Else 394 
                    formMainForm.ErrorProvider1.SetError(box, Nothing) 395 
                End If 396 
            Else 397 
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                box.IsError = True 398 
                formMainForm.ErrorProvider1.SetError(box_dim, 399 
err2(formMainForm.LangIndex(langOpt))) 400 
            End If 401 
        Else 402 
            box.IsError = False 403 
            If type <> dimtypes.none Then 404 
                formMainForm.ErrorProvider1.SetError(box_dim, Nothing) 405 
            Else 406 
                formMainForm.ErrorProvider1.SetError(box, Nothing) 407 
            End If 408 
        End If 409 
 410 
    End Sub 411 
’---------------------------------------------------------------------------- 412 
    Private Sub BENbox_LostFocus(ByVal sender As Object, ByVal e As 413 
EventArgs) Handles box.LostFocus 414 
        '------------------------------------------------------------------ 415 
        'HANDLES A LOSTFOCUS EVENT 416 
        '---------------------------------------------------------------- 417 
        If box.IsError = True Then 418 
            box.Focus() 419 
        Else 420 
            value = Math.Round(CSng(box.Text), 2) 421 
        End If 422 
 423 
    End Sub 424 
’---------------------------------------------------------------------------- 425 
    Public Enum dimtypes 426 
        dimension 427 
        none 428 
        force 429 
        pressure 430 
        foundation 431 
    End Enum 432 
 433 
End Class 434 
 435 
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The individual procedures and the declaration section are separated by dashed lines.  

The object is composed of three label object and one BEN_box object which is also a 

self-made one but now it can be regarded as a simple textbox object. From lines 24-139 

the definition of the different properties take place. Property can be anything what is found 

to be important and is assumed to be queried or changed from code later. For example if 

we will have a subroutine in which we want to modify the text in the BEN_box of a 

BEN_class object, than we have to make a text property to provide a way to access it. 

Of course in this case the BEN_box have to be the property of the BEN_class either, as 

it is according to the first to properties. With these, if we assume that we have a 

BEN_class object named benclass1, than to modify the text to the string ‘new text’ 

requires the following code: 

benclass1.benbox.text=’new text’ 

If we set the property of an object to some value, we expect it to be remembered, 

therefore we have to store the values out own properties either. This is done with the 

variables in the declaration section (lines 5-23). These are declared with the Private 

keyword, which means that they are local to the class, therefore they can not be accessed 

from outside of the class, only by changing the value of the corresponding property. When 

reading a property, the value of the corresponding local variable is returned and writing a 

property is no more than assigning it a value. Property procedures enables the user to 

execute code when the property is changed. The basic structure of a property procedure 

looks like: 

Public Property propertyname() As datatype 

 Get 

     ‘ Code to return the property’s value goes here. 

 End Get 

 Set(ByVal Value As datatype) 

     ‘ Code that accepts a new value goes here. 

 End Set 

End Property 

Between the property declaration statement and the End Property statement are two 

constructs: Get and Set. The Get construct is used to place code that returns a value for 

the property when read by a client. The Set construct is where to place code that accepts 

a new property value from client code. The value between the parenthesis declares the 

type of the data what is passed to the argument. If we look at the text() property at line 

42 we can see, that it returns the module level variable boxtext, and sets the text 

property of the module level variable box_label and sets also its size to match the length 

of its content. The behavior of the other procedures is the same. The meanings are more 

or less self explanatory, but one of them is very important, the IsError() property. It can 

take the boolean values true or false and it returns true if the string of the BEN_box object 

does not have input errors as it will be explained later. 

The subroutines Add(), JustAdd() and Define() contains the commands which are 

required to add, position and initialize the mentioned four components of the BEN_class 

object. It is critical to well organize the structure of these subroutines, however these 

contain nothing special what couldn’t have been learned from any book of the topic. 

What is more important is how the input of the BEN_box object is controlled. Note, that 

the input assigns a value to a dimension of a plate, therefore we have some expectations 

towards this input. We want it to be a positive number, but not zero. More exactly zero can 
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be an input value, it just cannot be the only one, etc. Moreover if the input contains an 

error, the program should lead the user to the right direction by some notice. These 

behaviors are encapsulated into the KeyPress and the KeyUp events of the BEN_box 

object. Before introducing these, two fundamental function should be discussed. The first 

is called BENbox_onlynumbers() and begins at line 298. It attempts a character as an 

input and returns true if it is not included in the group of the allowed characters which are 

‘0123456789,’ in case of dimensions and  ‘-0123456789,’ in case of forces. The function 

BENbox_onlyonecomma() also accepts a character as input and returns true if the text 

of the BEN_BOX object includes the input character. Generally the two functions do the 

same thing, they determine from a string if a character is contained in them or not. Without 

going into the very details, the command assigned to the KeyPress event of the BEN_BOX 

object do the next operations: 

 Determines if the character input is beteen the allowed characters with the  

BENbox_onlynumbers() function. 

o If it returns true, but it is a dot, than it determines if the box already 

contains a comma or not with the BENbox_onlyonecomma() function 

and puts a comma if the result is false, otherwise disables character input 

and provides an error message. 

o If it returns false and the character is a comma, than it determines if the 

box already contains a comma or not with the 

BENbox_onlyonecomma() function and neglects the action if the result 

is true, otherwise enables it and the input character will be placed in the 

box. 

The following operations are attached to releasing up a button on the keyboard with the 

KeyUp event: 

 If after pressing a key the box is still empty or contains only a minus sign (because 

the action was disabled by the KeyPress event), than provides an error note. 

 Else if the value being shown in the box is zero than two case is possible. If the 

value under question is a dimension, than an error notice must be provided. If it 

is a force or something that can take zero value, than remove all the error notes 

because the content is valid. 

 It is very important, that parallel with setting and deleting error notes, the 

mentioned IsError() property is always set to true if the content is valid and 

false if it is not. Therefore instead of carrying out all the difficult operations above 

we can always determine from a BEN_class object if its content is valid or not. 

The last subroutine still worth mentioning. It fires when the box loses control. If the 

IsError() property is false, than it rounds the value to 2 fractional digits. 

After this small evasive let’s turn back to the geometry tab of the main form. As it was 

mentioned, clicking on the ‘Homogeneous’ radio button invokes the 

HomogeneousGeom() sub on the GeometryModule module.  

Public Sub HomogeneousGeom() 

 

        If formMainForm.rbtHomg.Checked = True Then 
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            'Add tabpage and picturebox. 

            tabpageHomgSample1 = New BEN_Pic 

             

            'Add instruction string 

            labinstHomg = New BEN_label 

            labinstHomg.array = instHomg 

            labinstHomg.lang = langOpt 

            labinstHomg.Width = 300 

            labinstHomg.Height = 26 

            labinstHomg.MaximumSize = labinstHomg.Size 

            labinstHomg.AutoSize = True 

            labinstHomg.Left = 14 

            labinstHomg.Top = 0 

            formMainForm.panGeometry.Controls.Add(labinstHomg) 

 

            'Add BENboxes 

            numboxHomg1.Add("G", textHomg1, "a =", 210, 40, 1.0) 

            numboxHomg2.Add("G", textHomg2, "b =", 210, 69, 1.0) 

            numboxHomg3.Add("G", textHomg3, "t =", 210, 98, 0.1) 

 

            'Add gridview items. 

            dataMat.Rows.Add(Gsub1(formMainForm.LangIndex(langOpt)), "", "", 

"", "", "", "", "", "", "") 

 

        ElseIf formMainForm.rbtHomg.Checked = False Then 

 

            numboxHomg1.Remove() 

            numboxHomg2.Remove() 

            numboxHomg3.Remove() 

            tabpageHomgSample1.Remove() 

            dataMat.Clear() 

            formMainForm.panGeometry.Controls.Remove(labinstHomg) 

 

        End If 

 

    End Sub  

The red rectangles show the parts of the subroutine which are in connection with the 

BEN_class. With this object the adding, positioning and all the maintenance operations 

of the controls on the geometry tab simplifies to these statements. Under the ‘Add 

instruction string’ comment we can see the commands necessary to define one 

single label with the classical methods, namely declaration, parameter settings and adding 

to the form. The difference speaks for itself…  

The commands corresponding to other choices of section type are very similar to what 

was seen at the uniform one, the main point is the use of the BEN_class object.  

Leave the rest of this subroutine and the geometry tab and follow with the load tab. 

Loads 

Being on this tab we can select from the load types uniform, concentrated, rectangular 

patch and cosine patch. The uniform case provides nothing new, we work again with 

BEN_class objects. Clicking on the ‘Concentrated’ radio button makes the form look 

like on Figure 34. 
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Here we can see another object of mine, called BEN_scroll. It containes 7 labels, 3 

textboxes (one of them actually is a BEN_box) and a trackbar. The first BEN_scroll 

object is bounded by a red rectangle. However the 

difficulty is not in the number of the components, but 

their events. Due to its complexity this object cannot 

be introduced, however the solution of one problem 

took so long that it worth mentioning.  

Sometimes on windows applications an ugly, dotted, gray line appears around a control, 

for example when it gets focus by pressing the tab button. This behavior can be seen on 

the middle picture of Figure 35. Indicating to the user that some actions were taken on a 

control, or it has the focus is a good idea, but the dotted rectangle is not. I have tried a lot 

of ideas to make it disappear, the final solution was to simply add panels with white 

background and bring them to the front so they simply cover the dotted lines. This is not 

Figure 34 – Clicking on the ‘Concentrated’ radio button. 

Figure 36 – Normal and focused 

appearance of a button. 

Figure 35 – BEN_scroll object with standard, focused and the corrected appearance. 
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the most elegant method, but in fact it works perfectly. In addition I attached to the 

GetFocus events of the controls to draw a large blue rectangle over the trackbar. 

Material 

After clicking on the material tab the program looks like on Figure 37. Most of the tab is 

possessed by a DataGridView object, named dgvMat. This object is similar to an excel 

sheet, but it has no entries, it has instead a source which can be for example a DataTable 

object. Depending on the choice of the section type, the object is filled with one or two 

empty rows. Upon clicking on some filed in the table, a description helps us to know what 

is the meaning of the content of the actual cell. Such a description can be managed by 

creating a string array with as many entries as the number of cells. After it the current state 

of selection can be determined with the ColumnIndex property of the SelectedCells 

property of the dgvMat object.  

To define a material for the selected layer, the user has two options: 

 chose a pre-defined material from the material library or 

 define a new material. 

Depending on which button was clicked, one of the forms on Figure 38 will pop up. 

When defining a new material, the type of material symmetry is already determined by 

the selected section type, only in the case of a laminated plate is allowed to switch 

between isotropic or orthotropic material. What worth mentioning is the three radio button 

Figure 37 – The ‘Material’ tab. 
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on the ‘New Material’ form next to the material parameters 𝐸, 𝐺 and 𝜈12. The perfect choise 

for this functionality would be the check box object, but due to its misleading visual 

appearance, the radio button is used instead. As it was mentioned at the introduction of 

the ProjectForm form, when placed on the same container, only one of the applied radio 

buttons can be clicked by definition. By ‘definition’ I mean that it is impossible to change 

that behavior with any property settings. Therefore I applied one panel under each radio 

button, in which it is placed, so they are contained in different containers and they can be 

independently modified. However this result is still not desirable, because only 2 of these 

material parameters are independent, therefore I wrote a simple function which controls 

the behavior of this three. 

In the material library we can see a hive structure on the left. The firs hive is named ‘User 

defined’, which is empty by definition. After completing the session in the ‘New Material’ 

form, the defined material will take place under this hive. It is important, that changing the 

section type clears the dgvMat object and creates an empty field for the new selection. 

For this case if the material was a user defined one, it still can be found in the material 

library for the lifetime of the working session, so until the program is not closed. 

Options 

The options can be accessed by clicking on the ‘gear’ button on the ToolStrip menu, 

as on Figure 39. On the appearing form we can set the followings: 

 Number of Fourier terms taken into account. The default value is 51. 

 Number of output points in one direction. This controls the quality of the 

isosurfaces that will be introduced in the next chapter, for example on Figure 47. 

The default value is 50. 

 Language. 

 Dimension of the geometrical sizes on the geometry tab. 

Figure 39 – The ToolStrip menu. 

Figure 38 – Material forms. 
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 Dimension of the pressures. This has effect on the distributed loads and the 

material parameters. 

 Dimension of the concentrated 

forces. 

 Dimension of the power type result 

components, which will be 

returned from the numerical 

solver. 

 Dimension of the deflection what 

will be returned from the numerical 

solver. 

Calculation 

Clicking on the ‘Calculation’ tab, three 

object welcome us. A ListView, a 

TabControl and a Button object. The 

first two is used to facilitate a quick overlook 

on the settings so far. If these are desirable, 

we can start the calculation by clicking on 

the button. The actions what are invoked by 

the Click event of this button deserves a 

detailed explanation. What is visible is that 

a new form appears and indicates that 

some calculations are being carried out in 

the back. While finishing these, a so called 

‘knight rider scanner’ pleases the eye. This 

s mall trick is done by setting a gif 

animation as the image property (and not the background) of a PictureBox. 

This is an important step, because the numerical solver and the graphical user interface 

are connected at this point. At first a variable is declared in the declaration section of the 

form with the following statement: 

Private p As New Process() 

When the ‘Calcualte’ button is clicked, it first writes those txt files, which were mentioned 

at the introduction of the DATA() subroutine of the numerical solver (FORTRAN). The files 

Figure 40 – The Progress Window. 

Figure 41 – Options form. 



 Bence Balogh  

 COMPUTER PROGRAM FOR THE CALCULATION OF MINDLIN PLATES 

 

 

93  

are written to that directory which is specified as the working directory (see Figure 39). 

After, the FORTRAN executable needs to be started at the same place. For this we have 

to be sure, that this exe file is placed in the working directory, no matter what it is exactly. 

The code to do is stored in the Progress() subroutine on the ProgressForm form and 

is invoked by clicking the ‘Calculate’ button either. It has the following structure: 

Public Sub Progress() 

 

        Me.Show() 

 

        lblProg2.Text = Psub1(formMainForm.LangIndex(langOpt)) 

 

        textSource = textDir & "\" & executable 

 

        If System.IO.File.Exists(textSource) = False Then 

            System.IO.File.WriteAllBytes(textSource, _ 

    My.Resources.BENSYS_1_21) 

        End If 

 

        p.StartInfo.FileName = textDir & "\" & executable 

        p.StartInfo.WorkingDirectory = textDir & "\" 

        p.StartInfo.WindowStyle = ProcessWindowStyle.Hidden 

        p.Start() 

 

        tim.Enabled = True 

 

    End Sub 

The interesting part is in the red rectangle. In Visual Studio 2012 every project has 

resources and these can be managed in the project settings window. The first step is to 

add the FORTRAN executable to the resources where it will be stored in bytes. In the 

rectangle, first a string value is assigned to the string variable textSource, which should 

be the full path of the executable with the filename for example ‘C:\directory\bensys.exe’. 

After checking whether the file already exists, the exe is rewritten with the 

WriteAllbytes subroutine under the System.IO.File namespace. The next four 

lines are no mystery. The last command enables a variable that has not mentioned before, 

a timer called tim. A timer can be considered as an internal machine which carries out 

actions when it ticks. The tick frequency of these object determines how often should the 

object execute the commands that are attached to its tick event. The need for this timer is 

that we need to know if the process is ended and the FORTRAN executable finished to 

continue with reading in the results. This could be done with the WaitForExit method 

of the p process, but I in that case no any parallel action is enabled, therefore the gif 

animation (and any other action) will be terminated until the process is working, the system 

really means to wait for the process to exit. This is outflanked by applying the timer. The 

p progress has a property called HasExited which is set to true if the progress is finished. 

Therefore the timer investigates the value of this property and if it gets ‘true’, the 

‘SOLUTION DONE!’ message lets know the user that that he can pass to the results.  

Results 

Since the view that hosts us is quite easy to understand, I won’t explain everything but 

the specialties. 

General  remarks on creating graphics will be introduced later, but I want to present the 

method of creating the isosurface picture. First a linear color gradient is produced, 

composed of 11 color and a linear transition between. When the results are read, the 
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domain of the plate is divided for small rectangles, the number of them depends on the 

‘result quality’ setting, mentioned before. For the first and last color in the ‘gradientbox’ a 

value is attached, which are always the minimum and the maximum. Similarly a value is 

attached to every small rectangle, which is the value of the queried result component in 

that particular point. Then based on the above mentioned bounds of the ‘gradientbox’, the 

program finds the color to the corresponding result value and fills the rectangle with that 

color. In limit, when the number of these small rectangles is large enough, the assembly 

of them gives a smooth 2D isosurface. I find it to be a very good trick, that although only 

eleven colors were used to create the ‘gradientbox’, the available options for one small 

rectangle is far more, actually it is bounded by the width of the ‘gradientbox’ only. 

The other interesting feature is connected with the save button in the left down corner. 

When it is pressed, a green message tells the user that the picture is successfully saved 

and then the text is fading away gradually. I have tried numerous techniques to achieve 

this and the final solution is by using a timer, actually two. As later it will be introduced, to 

create graphics I use timers, so there is a timer, let say a global timer, always running 

when the result tab has the focus, and it ticks in every 10 milliseconds. I declared another 

color string, but now it contains only shades of green, representing steps of green with 

decreasing opacity. So the idea is that when the button is clicked, the color of the text is 

set to green with full opacity, and another timer, let say a local timer is enabled (it was 

already declared but disabled), which decreases the transparency of the text with one unit 

in each thick. At the same time the global timer checks the color of the text and determines 

its opacity. If the global timer perceives that the color of the text is white again, it disables 

the local timer. For this it is necessary to synchronize the tick frequency of the timers. In 

Figure 42 - Results 
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our case both fires in 10 milliseconds, therefore it cannot be happen that that the global 

timer does not tick between two ticks of the local timer. 

Dimension casting 

If we decide to change the unit in the options, it is not a desirable result to leave the 

already typed values as they were, they should follow the change and be converted. This 

is solved by defining to arrays. The first is a string array, containing the possible options 

for a dimension, for example: 

Public Shared arrayDim() As String = {"m", "dm", "cm", "mm"} 

 The other array should contain integers, as: 

Public Shared arrayDimVal() As Single = {1, 10, 100, 1000} 

In this case the base unit is the ‘m’. Now every unit has an attached scaling factor and, 

for instance if a value is in meters, let say 6 m and we want to convert it to centimeters, 

we have to do the following: 

 find the index of ‘m’ in the first array and search the integer at the specified index 

in the second array, let it be integer_m, 

 find the index of ‘cm’ in the first array and search the integer at the specified index 

in the second array, let it be integer_cm, 

 multiple 6 by integer_m and divide by integer_cm. 

The result is of course 0.06. The frequent use of these operations calls for a function. 

From this point the task is not so complicated, only one thing should be kept in mind. The 

values in Visual Basic are usually stored as strings, because they are a text of a textbox, 

etc. Of course when it comes to calculation, these strings are converted to reals for a 

while, than converted back to string. The importance of this comment will get its meaning 

later. 

I recall the BEN_class object now. If one scrolls back, than he will see that the object 

has its own convert subroutine, which is a method of the object. Hence, if a conversation 

is needed, it is only necessary to call the Convert() method of the BEN_class object 

and the rest is on the code, which had to be formulated only once.  

Language casting 

The program supports English and Hungarian languages. My solution is the following: 

 I defined every text variable as an array, where the same meaning is written in 

English into the first entry of the array and in Hungarian into the second. 

 I defined a function called LangIndex, which returns zero or one11 as the indices 

corresponding to the English and the Hungarian entries of a string array. The 

                                                           
11 The arrays in Visual Basic are zero based, so the index of the first entry is zero. 
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argument of this function should be always one of the strings ‘English’ and 

‘Hungarian’. The actual language setting is stored in the variable langOpt. 

Therefore to assign a value to a string variable has the following form: 

rbtHomg.Text = sub11(LangIndex(langOpt)), 

where sub11() is a string array and rbtHomg is an object with a text property. 

Graphics 

There is no room now to introduce how to create graphics on a form, but they are 

explained very clearly in the different books of the topic. However there is one thing that 

worth mentioning.  

When being on the load tab let choose the concentrated load. On the right side of the 

form a picture can be seen, representing the actual position of the defined force. As I 

mentioned before, to persist graphics on a form I used graphics, however creating a simple 

picture doesn’t need one. The need for the timer is that I wanted to let the users interact 

with the picture and define the position of the load with mouse operations only. To 

introduce the operations of the timers is not feasible due to the simple fact that these are 

the longest and most complicated subroutines of the program by far. The only thing 

to memorize is that on the action of the tick event of this timer, graphics are created with 

sizes depending on the textboxes on the left of the pictures. What I did to accomplish the 

desired functionality is the following: 

 I defined a subroutine what determines the necessary values of the ETA and ETB 

parameters (Figure 43) from the position of the mouse cursor. Here the skill is in 

the declaration of the subroutine, that is why the commands are missing. Let the 

arguments be an object and a so called MouseEventArgs event. 

Figure 43 – Concentrated load. 
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Public Sub MousePrint_Load(sender As Object, e As MouseEventArgs) 

… 

End Sub 

 I attached the execution of this subroutine to the MouseClick and MouseMove 

events of the picturebox that contains the picture. 

Private Sub pboxLoadXY_MouseClick(sender As Object, e As 

MouseEventArgs) Handles pboxLoadXY.MouseClick 

 

        MousePrint_Load(sender, e) 

 

    End Sub 

 

    Private Sub pboxLoadXY_MouseMove(sender As Object, e As 

MouseEventArgs) Handles pboxLoadXY.MouseMove 

 

        MousePrint_Load(sender, e) 

 

    End Sub 

We can see, that the sender and MouseEventArgs argumentums of the events are 

passed as arguments of the MousePrint_Load() subroutine. In case of an event, the 

sender parameter always holds a reference to the control causing the event, which is 

now the mouse. The other argument, the e parameter always contains some information 

about the event. For example in the subroutine MousePrint_Load() the ‘x’ position of 

the mouse cursor can be queried by typing e.X, as this position is the ‘X’ property of the 

mouse event. 

Save and Open 

It is hard to imagine a self-respecting program without the ability to save and restore a 

working session. In this case it is solved by writing and reading txt files with the 

SteamWriter and SteamReader classes of the System.IO namespace. BENSYS is 

also capable of determining whether the txt file to open were saved from BENSYS or not. 

It is done by writing a particular string into the first line of the saved txt file, so when 

opening, the existence of this string can be checked. 
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4. VERIFICATION 

It is not expectable from any user to use an application whose results are not reliable. 

For this reason this chapter is dedicated to confirm the results with the help of finite 

element programs which have already proven. Actually I used for this purpose the AXIS 

VM for the simpler and ANSYS for the more complicated problems. Next to the numerical 

accuracy, the quality of the results, namely the skills of graphical representation will be 

contrasted as well. 

4.1. Verification of the load cases 

In this section we can kill 

two birds with one stone. 

The calculation method is 

based on the single layer 

technique, which means 

that equivalent plate 

rigidities are calculated 

for each type of cross 

section. It entails, that the 

correctness of the 

calculations after this step 

are independent from the 

correctness of the 

different cross sections. 

Simply speaking, if the 

results of a loading type 

are proved with one of the 

cross section types, this 

remains valid with the 

other section types too. 

Therefore it is logical to 

choose that section type from which we account to get less errors, the homogeneous one. 

According to its simplicity, the AXIS VM was chosen for this task. For the basis of the 

comparisons I used an 8m x 6m plate with an overall thickness of 20 cm and C16/20 

concrete material. The results are measured in 5 points on the plate, by the means of 

Figure 44. 

Uniform load 

The loading is represented on Figure 45 

and the results are summarized in Table 

4. The results were obtained with taking 

into account 51 Fourier terms and the 

differences can be seen in percentage in 

Table 5.  

It is very important, that the location of 

the measurement points in BENSYS and 

AXIS are not the same, because of the 

Figure 44 – Points of measurement. 

Figure 45 – Uniform load. 
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mentioned ‘result quality setting’. Since BENSYS does not interpolate between the results, 

a value is valid for a range, instead of a point. This is not true for AXIS, where according 

to the interpolation, the results can be obtained at any point of the plate even if the result 

will be ‘exact’ only in the nodes either. For example if we compare the results of 𝑚𝑥𝑦 in 

point 5, we see that AXIS produces the correct value which is zero. Since BENSYS does 

not calculate in the center of the middle 

plane, the result cannot be zero, which 

automatically results a 100% difference in 

the results, but don’t let it disturb us. 

Obviously this phenomenon is true for 

every measurement point, but due to the 

double symmetry of the in plane geometry 

of the plate the differences are naturally 

higher in the middle point. 

To make sure, I made a parametric study 

on the number of the Fourier-terms taken 

into account. For this I have chosen the 

deflection of the middle point as the basis 

of the comparison. The results are ordered in Table 6. I observed that above 40 terms the 

accuracy does not improve, and has a degeneracy under, so I made a lower limit of these 

value in the program to be 50. 

Finally I present the results in the form of a 2D isosurface of both AXIS and BENSYS. 

1 2 3 4 5

ez [mm] 4.00% 0.51% 4.79% 0.53% 2.74%

mx [kNm/m] 4.40% 0.60% 4.40% 0.60% 1.82%

my [kNm/m] 3.74% 0.25% 3.89% 0.25% 2.16%

mxy [kNm/m] 3.72% 9.34% 3.72% 9.34% 100.00%

vxz [kN/m] 0.56% 1.35% 0.16% 1.35% 225.00%

vyz [kN/m] 5.53% 4.61% 5.07% 4.61% 15.66%

Uniform load, PZ = -4 kN/m2

Table 5 – Differences in the results in case of a uniformly distributed load. 

Fourier terms ez.BENSYS [mm] ez.AXIS [mm]

30 -2.079

40 -2.415

50 -2.417

60 -2.418

70 -2.420

80 -2.421

90 -2.422

-2.489

Deflection of the middle point

Table 6 – Parametric study on the number of Fourier-

terms. 

Table 4 – Results from BENYS and AXIS for a uniform load. 

BENSYS AXIS BENSYS AXIS BENSYS AXIS BENSYS AXIS BENSYS AXIS

ez [mm] -1.1692 -1.1224 -1.1690 -1.1630 -1.1690 -1.2250 -1.1692 -1.1630 -1.8075 -1.8570

mx [kNm/m] -5.0000 -5.2200 -5.0000 -5.0300 -5.0000 -5.2200 -5.0000 -5.0300 -6.3546 -6.4700

my [kNm/m] -6.7670 -7.0200 -6.7670 -6.7500 -6.7670 -7.0300 -6.7670 -6.7500 -9.8372 -10.0500

mxy [kNm/m] 1.8383 1.7700 -1.8383 -2.0100 1.8383 1.7700 -1.8383 -2.0100 -0.0012 0.0000

vxz [kN/m] -2.5160 -2.5300 2.5160 2.5500 2.5160 2.5200 -2.5160 -2.5500 0.0480 -0.0600

vyz [kN/m] -2.1700 -2.0500 -2.1700 -2.2700 2.1700 2.0600 2.1700 2.2700 -0.0830 -0.0700

1 2 3 4 5

Uniform load, PZ = -4 kN/m2
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Concentrated load 

The loading is represented on Figure 

48. The results were obtained with taking 

into account 51 Fourier terms and the 

differences can be seen in percentage in 

Table 8.  

In this case the match between the 

results is excellent, so there were no 

reason to make a parametric study, the 

number of 50 for the minimum of the 

Fourier-terms is acceptable for this case 

too. However, at point 5 a relatively large difference can be seen in the results, but this is 

no surprise, since it is the nature of Fourier transformation. Sudden changes and jumps 

are hard to follow by this technique, and in fact, point 5 is the closest to the position of the 

concentrated force. I repeated the calculation with 100 Fourier-terms taken into account 

and the result haven’t changed, so we just have to accept that the method – just like any 

other - has weaknesses and it is one of them. 

Figure 47 – Isosurfaces about the deflection ez, bending moment mx and my from AXIS in the 

top line and from the BENSYS in the bottom line. 

Figure 46– Isosurfaces about the twisting moment mxy and shear forces vxy and vyz from AXIS in the top line 

and from the BENSYS in the bottom line. 

Figure 48 – Concentrated load 
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The results are again presented in 2D isosurfaces on Figure 49 and Figure 50. 

  

BENSYS AXIS BENSYS AXIS BENSYS AXIS BENSYS AXIS BENSYS AXIS

ez [mm] -0.8828 -0.8830 -1.7838 -1.8310 -1.5320 -1.5770 -0.8452 -0.8470 -2.0797 -2.4890

mx [kNm/m] -0.2570 -0.2700 -10.8548 -11.1400 -8.6170 -8.8600 -0.5428 -0.5600 -6.1126 -6.1500

my [kNm/m] -4.7698 -4.7600 -12.7618 -13.0300 -6.1685 -6.3800 -4.0453 -4.0700 -13.4760 -13.4700

mxy [kNm/m] 2.0546 2.0800 -4.6789 -4.7100 3.7920 3.8000 -2.3255 -2.3400 -1.4296 -1.5400

vxz [kN/m] -2.8430 -2.8200 13.8030 13.7300 5.1030 5.0400 -2.4500 -2.4400 -10.5150 -10.1500

vyz [kN/m] -1.1760 -1.1900 -12.6540 -12.3300 8.3630 8.6500 1.3980 1.3700 2.9660 3.0300

1 2 3 4 5

Concentrated load, PZ = -100 kN

Table 8 – Results from BENYS and AXIS for a concentrated load. 

1 2 3 4 5

ez [mm] 0.02% 2.65% 2.94% 0.21% 19.68%

mx [kNm/m] 5.06% 2.63% 2.82% 3.17% 0.61%

my [kNm/m] 0.21% 2.10% 3.43% 0.61% 0.04%

mxy [kNm/m] 1.24% 0.66% 0.21% 0.62% 7.72%

vxz [kN/m] 0.81% 0.53% 1.23% 0.41% 3.47%

vyz [kN/m] 1.19% 2.56% 3.43% 2.00% 2.16%

Concentrated load, PZ = -100 kN

Table 7 – Differences in the results in case of a concentrated load. 

Figure 49 – Isosurfaces about the deflection ez, bending moment mx and my from AXIS in the 

top line and from the BENSYS in the bottom line. 
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Rectangular patch 

The loading is represented on Figure 51. The results were obtained with taking into 

account 51 Fourier terms and the differences can be seen in percentage in Table 9.  

The differences at this load case does not justify to raise the number of the terms, so 

again, the value of 50 seems to be appropriate. Again, the statements made at the 

previous load case are valid now either. As the geometry of the load contains edges, it is 

logical to expect that from the result functions too and this sharp parts are harder to follow 

Figure 50 – Isosurfaces about the twisting moment mxy and shear forces vxy and vyz from AXIS in the 

top line and from the BENSYS in the bottom line. 

Figure 51 – Rectangular patch. 

BENSYS AXIS BENSYS AXIS BENSYS AXIS BENSYS AXIS BENSYS AXIS

ez [mm] -0.7722 -0.7730 -1.2490 -1.2860 -1.1470 -1.1820 -0.7404 0.7420 -1.6140 -1.6490

mx [kNm/m] -0.9158 -0.9100 -7.0510 -7.2400 -6.0890 -6.2600 -1.0306 -1.0300 -6.9475 -7.0000

my [kNm/m] -4.2926 -4.2900 -8.4720 -8.6800 -6.3170 -6.4900 -3.6809 -3.7000 -9.8730 -10.0000

mxy [kNm/m] 1.6806 1.7100 -1.6567 -1.6700 1.8820 1.8900 -1.9147 -1.9400 -0.2013 -0.2400

vxz [kN/m] -2.9880 -2.9200 2.8950 2.8400 2.4710 2.4400 -2.5410 -2.5000 -3.1340 -3.2200

vyz [kN/m] -1.1990 -1.1900 -3.2490 -3.2500 6.1010 6.1100 1.4590 1.4300 0.9920 1.1300

Rectangular path

1 2 3 4 5

Table 9 – Results from BENYS and AXIS for a rectangular patch load. 



 Bence Balogh  

 COMPUTER PROGRAM FOR THE CALCULATION OF MINDLIN PLATES 

 

 

103  

with Fourier transform. These and the difference in the exact location of the measurement 

points can cause a few salient difference value in Table 10. 

 

 

1 2 3 4 5

ez [mm] 0.10% 2.96% 3.05% 0.22% 2.17%

mx [kNm/m] 0.63% 2.68% 2.81% 0.06% 0.76%

my [kNm/m] 0.06% 2.46% 2.74% 0.52% 1.29%

mxy [kNm/m] 1.75% 0.80% 0.43% 1.32% 19.23%

vxz [kN/m] 2.28% 1.90% 1.25% 1.61% 2.74%

vyz [kN/m] 0.75% 0.03% 0.15% 1.99% 13.91%

Rectangular path, PZ = -4 kN/m2

Table 10 – Differences in the results in case of a concentrated load. 

Figure 52– Isosurfaces about the deflection ez, bending moment mx and my from AXIS in the 

top line and from the BENSYS in the bottom line. 

Figure 53 – Isosurfaces about the twisting moment mxy and shear forces vxy and vyz from AXIS 

in the top line and from the BENSYS in the bottom line. 
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Pyramid patch 

The loading is illustrated on Figure 55. According to the relative complicated load function 

a different kind of discussion is needed here. The modelling of this load could hardly be 

done with AXIS, so I wrote a script file in ANSYS and gave the nodal loads of each node 

separately, according to the first expression on Figure 24. These loads can be seen from 

three directions on Figure 54. The results were obtained with taking into account 51 

Fourier terms and the differences can be seen in percentage.  

The results show perfect match. 

  

Figure 55 – Pyramid patch load. 

Figure 54 – Nodal forces in ANSYS. 

Table 11 – Comparison of the deflections in the measurement points o fthe ANSYS and the BENSYS. 

BENSYS ANSYS BENSYS ANSYS BENSYS ANSYS BENSYS ANSYS BENSYS ANSYS

ez [cm] -0.1014 -0.1021 -0.1835 -0.1874 -0.1631 -0.1681 -0.0970 -0.0984 -0.2257 -0.2291

error

Pyramid

1 2 3 4 5

1.51%0.69% 2.13% 3.07% 1.42%
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Self-weight 

It was already mentioned, that 

the program is able to calculate 

the self-weight of a plate based on 

the geometry and the density of 

the applied material and then 

calculate a uniformly distributed 

load from it. The results can be 

seen in Table 12. 

Winkler foundation 

For the comparison I used now the 

AXIS program because of the 

surface support capability what 

makes it easy to take into account 

the elastic foundation. The 

foundation modulus were taken to be 

0.25 N/mm3. I investigated the effect 

with each load type, except the 

pyramid patch which is not feasible 

with axis. The differences in the 

maximum deflection are represented 

in Table 13 and also some impressive graphics are compared on Figure 56. 

4.2. Verification of the single layer models 

In this point the verification of the different equivalent single layer rigidities will be 

performed. The in plane dimensions and the location of the measurement point will be the 

same as before, but now only the deflection of the middle point will be analyzed as a result 

of  a uniformly distributed force of intensity -4.0 kN/m2. Because the calculation method of 

the result components and the other loading cases has been already proved, it is sufficient 

to only compare the deflections of the BENSYS and the ANSYS in case of the different 

section types. 

ANSYS BENSYS

homogeneous -0.2727 -0.2668 2.21%

sandwich -1.4360 -1.4238 0.86%

voided -0.0976 -0.1002 2.59%

laminated -25.8440 -25.7440 0.39%

maximum deflection [cm]

a=8 m, b=6 m, t=0.2 m

errorsection type

Table 12 – Differences between ANSYS and BENSYS in the 

maximum deflection for a self-weight load. 

AXIS BENSYS

uniform -0.0018 -0.0018 0.00%

concentrated -0.0021 -0.0020 5.00%

rectangular -0.0044 -0.0044 0.00%

a=8 m, b=6 m, t=0.2 m

load type
maximum deflection [cm]

error

Table 13 - Differences between AXIS and BENSYS in the 

maximum deflection for various load types supported by 
Winkler foundation. 

Figure 56 – Isosurfaces of bending moment mx, twisting moment mxy and shear force vxz due to 

uniform, concentrated and rectangular patch load cases, respectively. 
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For the ANSYS models I wrote script files in ANSYS APDL and these are attached to 

the thesis in Appendix B. For the homogeneous, sandwich and laminated types I used a 

Shell181 element, with multilayer options in the latter two cases. The voided plate was 

modelled using 3D Solid186 brick element. 

Homogeneous plate 

The measurements of the previous point were carried out on a homogeneous plate, so 

there is no need to further prove the correctness of this model. 

Sandwich plate 

The task is to evidence the correctness of the equivalent 

single layer rigidities of equations (2.56)-(2.59). Because 

the theory applied to 

sandwich plates is 

an approximation, it 

follows that it has a 

range where it 

provides satisfactory 

results and a range 

where it doesn’t. 

Through this 

investigation fixed 

the in plane 

dimensions and 

regarded the 

core/face thickness 

Figure 57 – Sandwich plate. 

material E [GPa] ν [-] G [GPa]

face aluminium 73.400 0.320 27.800

core pvc foam 0.286 0.300 0.110

Table 15 – Material properties of the analyzed sandwich plate. 

ANSYS BENSYS

1 -3.612 -3.803 alu/0.1 pvc foam/15 150 5.29%

2 -2.013 -2.168 alu/0.1 pvc foam/20 200 7.70%

3 -8.170 -8.410 alu/0.1 100.00 2.94%

4 -4.251 -4.215 alu/0.2 50.00 0.85%

5 -2.870 -2.817 alu/0.3 33.33 1.85%

6 -2.173 -2.119 alu/0.4 25.00 2.49%

7 -1.746 -1.701 alu/0.5 20.00 2.58%

8 -1.457 -1.424 alu/0.6 16.67 2.26%

9 -1.249 -1.225 alu/0.7 14.29 1.92%

10 -0.870 -0.871 alu/1.0 10.00 0.11%

11 -0.721 -0.735 alu/1.2 8.33 1.94%

12 -0.570 -0.600 alu/1.5 6.67 5.26%

13 -0.498 -0.538 alu/1.7 5.88 8.03%

14 -0.417 -0.469 alu/2.0 5.00 12.47%

error

pvc foam/10

defelction [cm] face material / 

thickness [cm]

core material / 

thickness [cm]

core/face 

thickness

Table 14 – Configurations of sandwich plates. 
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ratio as a free parameter. The material properties of the core and the face are summarized 

in Table 15. The results are summarized in Table 14 and are visualized on Diagram 1. It 

can be diagnosed that for sandwich plates with core/face thickness ratios in the range 

of 10 to 100 we will get reliable results. 

Voided plate 

The case is just the same as above, I had to find the range 

of exactness of expressions (2.62)-(2.67). The in plane 

dimensions and the overall thickness were fixed as 8 m, 6 m 

and 0.3 m, but now the number of free parameters is much 

more, which state requires to investigate different voided 

plates in high variety. This variety shows in the different Figure 59 – Voided plate. 

Fgure 58 – Cross section of some configurations. 

Table 16 – Different configurations of voided plates. 

ansys bensys width height width/height cells err

conf1 -0.0595 -0.0669 50 5 10.00 11 11.00%

conf2 -0.0567 -0.0620 10 5 2.00 40 8.52%

conf3 -0.0476 -0.0926 50 30 1.67 11 48.58%

conf4 -0.0513 -0.0936 54 30 1.80 11 45.25%

conf5 -0.0607 -0.0602 10 15 0.67 30 0.83%

conf6 -0.0580 -0.0570 5 15 0.33 30 1.77%

conf7 -0.0593 -0.0575 5 15 0.33 40 3.13%

conf8 -0.0571 -0.0580 5 15 0.33 50 1.56%

conf9 -0.0607 -0.0633 15 15 1.00 30 4.11%

conf10 -0.0609 -0.0607 11 15 0.73 30 0.33%

conf11 -0.0617 -0.0613 12 15 0.80 30 0.65%

conf12 -0.0603 -0.0597 9 15 0.60 30 1.01%

conf13 -0.0597 -0.0593 8 15 0.53 30 0.67%

conf14 -0.0572 -0.0576 4 15 0.27 30 0.67%

conf15 -0.0575 -0.0572 3 15 0.20 30 0.52%

conf16 -0.0545 -0.0591 5 15 0.33 25 7.78%

conf17 -0.0563 -0.0588 5 15 0.33 26 4.25%

conf18 -0.0573 -0.0586 5 15 0.33 27 2.22%

conf19 -0.0591 -0.0576 5 15 0.33 35 2.60%

conf20 -0.0587 -0.0577 5 15 0.33 33 1.73%

conf21 -0.0593 -0.0574 5 15 0.33 40 3.31%

conf22 -0.0575 -0.0613 5 15 0.33 20 6.20%

a=8 m, b=6 m, t=0,3 m
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geometry and spacing of the voids. The different configurations are summarized in Table 

16 and some of them is visualized on Fgure 58. The table is divided into 3 parts. In the 

first part the width/height ratio was over 1 and wrong results were obtained. In the second 

part I fixed the height and number of the voids on a constant value and investigated the 

results on changing the width of the voids. In the last part only the number of the voids 

was a free parameter, the other three was taken like at the best results at the second part. 

It can be stated, that to get correct results, the width/height ratio of the voids must be 

under 1.0. Moreover, if the plate has reasonable cross sectional dimensions, the accuracy 

of the calculations is not in danger. To determine whether a cross section is reasonable 

or not is not a strict thing, however at now it seems that the web thickness should be in 

magnitude with the flange thickness. 

Laminated plate 

Although the code of the corresponding calculations is the 

longest, laminated plates have a clear theory with less 

simplifications. The in plane dimensions are again 8 m and 6 

m, while in each configuration the overall thickness of the 

layers is 20 cm. The configurations and the results can be seen 

in Table 17. The measurements were carried out on a plate 

with orthotropic material, subjected to a uniformly distributed 

load. The obtained results fulfill the expectations and shows 

excellent match with the finite element calculations of ANSYS. 

  

Figure 60 – Laminated plate. 

ansys bensys

conf1 -20.4524 -20.4486 2 00 equal 0.0%

conf2 -20.4524 -20.4486 4 0000 equal 0.0%

conf3 -20.4524 -20.4486 10 0000000000 equal 0.0%

conf4 -8.9434 -9.1001 10 1111111111 equal -1.8%

conf5 -11.6040 -11.6376 10 1010110101 equal -0.3%

conf6 -17.3387 -17.2474 10 0010110100 equal -0.5%

conf7 -18.5613 -18.4896 10 0010110101 varying -0.4%

a=8 m, b=6 m, t=0.2 m

maximum deflection [cm]
layers orientation thickness error

Table 17 – Different configurations of laminated plates. 
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5. OUTCOME 

5.1. Comparison with other software 

Let me compare the different software that were used through the chapter of the thesis 

from the point of view of overall completion time of an arbitrary task. As the problem to 

solve I have chosen a moderately difficult one, the users had to solve a homogeneous 

plate subjected to a rectangular path load. It were considered as solved when the user 

could manage to determine the deflection in the middle point of the plate. At each test I 

measured the necessary time to complete the task. The results can be seen on  Diagram 

2, where the time values are represented in minutes. I tested the programs with 4 students 

and 3 advanced users of each program under discussion to have more or less 

representative results. The experts solved the task only with their favorite, that’s why zeros 

occur in the diagram. However, I want to emphasize, that these are very subjective 

results, concerning only one particular type of problem which is actually the objective of 

BENSYS and this comparison cannot provide a basis to set up an order between the 

programs. Though, as it was mentioned in the preliminary of the thesis, the major objective 

was precisely to target some configurations and provide an easy way of calculation to 

them. From this point of view the above table shows that this goal is reached as the 

solution time remained under the 5 min limit in each case. Generally it can be sad that the 

results are satisfactory for the aimed purposes and the graphics became clearly a strength 

of the program. 

5.2. Future plans 

Programming such a software is a never ending story in the meaning that it only can be 

discontinued, but not finished. Accordingly, a lot of ideas are waiting to be implemented in 

the program. First of all, it is considered to rewrite the numerical solver in a modern 

language to avoid compatibility problems with the different systems. Next to technical 

development, the program could be complemented with the following abilities: 

 Take into account different boundary conditions. 
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 Use superposition to allow the definition of load groups. 

 Derive the expressions for other load cases and section types. 

 Create a module to calculate the necessary amount of reinforcement of a 

concrete plate. 

 Level-up the graphics to 3D. 

 Improve data storage by using one or more database. 

 Improve the visual appearance. 

If any of these plans come true in the future, the up to date program will be available for 

download at the web site of the Department of Structural Mechanics 

(http://www.me.bme.hu). 

 

http://www.me.bme.hu/
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APPENDIX A 

PROGRAM BENSYS 
 

!***************** 

!DECLARATION 

!***************** 

 

IMPLICIT REAL*8(A-H,O-Z) 

DIMENSION :: A(10),D(6,6),H1(11) 

 

REAL,DIMENSION(:),ALLOCATABLE :: XCORD,YCORD 

REAL,DIMENSION(:,:),ALLOCATABLE :: BMX,BMY,BMXY,CX,CY,CXY& 

         ,QX,QY,W,WUX,WUY 

 

!***************** 

!EXECUTABLE PART   

!***************** 

      

CALL DATA (A,C,E,E11,E22,EF,GC,G12,G23,HD,H1,IQQ,M,T,TF,TW,VNU,V12,VF,WD,& 

    

 AA,BB,ETA,ETB,G1,GFS,IQ,IT,NPON,NUM,PI,PZ,U,V) 

 

!ALLOCATION 

ALLOCATE(XCORD(NPON),YCORD(NPON),BMX(NPON,NPON),BMY(NPON,NPON),BMXY(NPON,NPO

N),CX(NPON,NPON),& 

    

 CY(NPON,NPON),CXY(NPON,NPON),QX(NPON,NPON),QY(NPON,NPON),W(NPON,NPON),

WUX(NPON,NPON),WUY(NPON,NPON)) 

 

!CREATE COORDINATES OF OUTPUT POINTS 

DO IPON=1,NPON 

   XCORD(IPON)=(AA/(NPON-1))*(IPON-1) 

   YCORD(IPON)=(BB/(NPON-1))*(IPON-1) 

END DO  

                    

IF (IQQ==1) THEN 

    CALL HOMG (D11,D22,D12,D21,D66,E,S44,S55,T,VNU) 

 ELSE IF (IQQ==2) THEN 

    CALL SAND (C,D11,D22,D12,D21,D66,EF,GC,S44,S55,T,VF) 

 ELSE IF (IQQ==3) THEN 

    CALL VOID (D11,D22,D12,D66,E,HD,S44,S55,TF,TW,VNU,WD) 

 ELSE IF (IQQ==4) THEN 

    CALL LAMI (A,D,E11,E22,G12,G23,H1,M,V12) 

END IF 

                     

CALL INIT (BMX,BMY,BMXY,CX,CY,CXY,NPON,QX,QY,W,WUX,WUY) 

 

DO M=1,NUM,IT 

 DO N=1,NUM,IT 

     CALL COEF (AA,BB,D11,D22,D12,D66,DET,G1,GFS,M,N,& 

        P11,P12,P13,P22,P23,PI,S44,S55) 

     CALL CONS (AA,AMN,BB,BMN,CMN,DET,ETA,ETB,IQ,M,N,PI,PZ,P11,P12,& 

        P13,P22,P23,U,V) 

     CALL SUMS (AA,AMN,BB,BMN,BMX,BMY,BMXY,CMN,CX,CY,CXY,D11,D22,& 

        D12,D66,G1,M,N,NPON,QX,QY,PI,S44,S55,W,WUX,& 

                 WUY,XCORD,YCORD) 

     END DO 

END DO 

 

CALL OUTP (NPON,XCORD,YCORD,W,BMX,BMY,BMXY,QX,QY) 

 

STOP 

 

CONTAINS 
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!*********************** 

!DATA /!READS ALL DATA/ 

!*********************** 

 

SUBROUTINE DATA 

(A,C,E,E11,E22,EF,GC,G12,G23,HD,H1,IQQ,M,T,TF,TW,VNU,V12,VF,WD,& 

    

 AA,BB,ETA,ETB,G1,GFS,IQ,IT,NPON,NUM,PI,PZ,U,V) 

 

 DIMENSION :: A(10),H1(11) 

 

 !identification of parameters /plate type, loading type, 

    !                             symmetry condition, fourier terms, result 

density / 

 OPEN 

(UNIT=10,FILE="ID.TXT",FORM="FORMATTED",STATUS="OLD",ACTION="READ") 

    READ (10,"(I5)") IQQ,IQ,IT,NUM,NPON 

    CLOSE (UNIT=10) 

      

 !read geometrical parametrs 

    OPEN 

(UNIT=20,FILE="GEOM.TXT",FORM="FORMATTED",STATUS="OLD",ACTION="READ") 

    IF (IQQ==1) THEN 

      READ (20,*) AA,BB,T           

        ELSE IF (IQQ==2) THEN 

     READ (20,*) AA,BB,C,T 

  ELSE IF (IQQ==3) THEN 

     READ (20,*) AA,BB,TF,TW,HD,WD    

        ELSE IF (IQQ==4) THEN  

          READ (20,*) AA,BB  

    READ (20,"(i2)") M 

    J=M+1        

    DO I=1,J 

           READ (20,*) H1(I) 

          END DO           

          DO K=1,M 

            READ (20,*) A(K) 

          END DO 

    END IF 

    CLOSE (20) 

 

    !read material parametrs 

    OPEN 

(UNIT=30,FILE="MAT.TXT",FORM="FORMATTED",STATUS="OLD",ACTION="READ") 

    IF (IQQ==1) THEN 

      READ (30,*) VNU,E           

        ELSE IF (IQQ==2) THEN 

     READ (30,*) VF,GC,EF 

  ELSE IF (IQQ==3) THEN 

     READ (30,*) VNU,E    

        ELSE IF (IQQ==4) THEN  

      READ (30,*) E11,E22,V12,G12,G23       

    END IF 

    CLOSE (30) 

 

    !read load parametrs 

    OPEN 

(UNIT=40,FILE="LOAD.TXT",FORM="FORMATTED",STATUS="OLD",ACTION="READ") 

    IF (IQ==1) THEN 

      READ (40,*) PZ,GFS,G1           

        ELSE IF (IQ==2) THEN 

     READ (40,*) PZ,GFS,G1,ETA,ETB 

  ELSE IF (IQ==3) THEN 

     READ (40,*) PZ,GFS,G1,ETA,ETB,U,V    

        ELSE IF (IQ==4) THEN   

      READ (40,*) PZ,GFS,G1,ETA,ETB,U,V      
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    END IF 

    CLOSE (40) 

 

 PI=3.141592654   

    RETURN 

 

END SUBROUTINE DATA 

 

!*********************************************************************** 

!HOMOGENEOUS RIGIDITIES /!CALCULATES RIGIDITIES FOR HOMOGENEOUS PLATES/ 

!*********************************************************************** 

 

SUBROUTINE HOMG (D11,D22,D12,D21,D66,E,S44,S55,T,VNU) 

 

 D11=(E*(T**3))/(12.0*(1.0-VNU*VNU)) 

 D22=D11 

    D12=VNU*D11 

 D21=D12 

 D66=((1.0-VNU)*D11)/2.0 

 S44=(E*T)/(2.0*(1.0+VNU)*(1.2)) 

 S55=S44 

 RETURN 

 

END SUBROUTINE HOMG 

 

!****************************************************************** 

!SANDWICH RIGIDITIES /!CALCULATES RIGIDITIES FOR SANDWICH PLATES/ 

!****************************************************************** 

 

SUBROUTINE SAND (C,D11,D22,D12,D21,D66,EF,GC,S44,S55,T,VF) 

 

 D11=(EF*T*((C+T)**2.0))/(2.0*(1.0-VF*VF)) 

    !D11=EF*T*(C**2.0+2.0*C*T+4.0*(T**2.0)/3.0)/(4.0*(1-VF**2)) 

 D22=D11 

 D12=VF*D11 

 D21=D12 

 D66=((1.0-VF)*D11)/2.0 

 S44=C*GC/1.2 

 S55=S44 

 RETURN 

 

END SUBROUTINE SAND 

 

!************************************************************* 

!VOIDED RIGIDITIES /!CALCULATES RIGIDITIES FOR VOIDED PLATES/ 

!************************************************************* 

 

SUBROUTINE VOID (D11,D22,D12,D66,E,HD,S44,S55,TF,TW,VNU,WD) 

 

    G=E/(2.0*(1.0+VNU)) 

    D11=(E*TF*HD*HD)/(2.0*(1.0-VNU*VNU)) 

    D22=D11*(1.0+(TW*HD)/(6.0*TF*WD)) 

    D12=VNU*D11 

    D21=D12 

    D66=(G*TF*HD*HD)/2.0 

    S44=(2.0*E*(TF**3))/(WD*WD*(1.0+(2.0*(HD/WD))*((TF/TW)**3))*(1.0-

VNU*VNU)) 

    S55=(G*TF*HD*(1.0+(TF/HD)))/((TF/TW)*WD) 

    RETURN 

 

END SUBROUTINE VOID 

 

!******************************************************************* 

!LAMINATED RIGIDITIES /!CALCULATES RIGIDITIES FOR LAMINATED PLATES/ 

!******************************************************************* 
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SUBROUTINE LAMI (A,D,E11,E22,G12,G23,H1,M,V12) 

 

    DIMENSION A(10),AA(6,6),A2(6,6),C1(6,6),D(6,6),H1(11),Q(6,6) 

     

    V21=V12*E22/E11 

    G31=G23 

    Q(1,1)=E11/(1.0-V12*V21) 

    Q(1,2)=E11*V21/(1.0-V12*V21) 

    Q(1,3)=0.0 

    Q(1,4)=0.0 

    Q(1,5)=0.0 

    Q(1,6)=0.0 

    Q(2,2)=E22/(1.0-V12*V21) 

    Q(2,3)=0.0 

    Q(2,4)=0.0 

    Q(2,5)=0.0 

    Q(2,6)=0.0  

    Q(3,3)=0.0 

    Q(3,4)=0.0 

    Q(3,5)=0.0 

    Q(3,6)=0.0    

    Q(4,4)=G23 

    Q(4,5)=0.0 

    Q(4,6)=0.0     

    Q(5,5)=G31 

    Q(5,6)=0.0 

    Q(6,6)=G12 

     

 Q(2,1)=Q(1,2) 

 Q(3,1)=Q(1,3) 

    Q(3,2)=Q(2,3) 

 Q(4,1)=Q(1,4) 

    Q(4,2)=Q(2,4) 

    Q(4,3)=Q(3,4) 

 Q(5,1)=Q(1,5) 

    Q(5,2)=Q(2,5) 

    Q(5,3)=Q(3,5) 

    Q(5,4)=Q(4,5) 

    Q(6,1)=Q(1,6) 

    Q(6,2)=Q(2,6) 

    Q(6,3)=Q(3,6) 

    Q(6,4)=Q(4,6) 

    Q(6,5)=Q(5,6) 

     

    DO I=1,6 

     DO J=1,6 

      D(I,J)=0.0 

      DO K=1,M 

       ANGLE=3.1415927*A(K)/180.0 

       CC=COS(ANGLE) 

       SS=SIN(ANGLE) 

    C1(1,1)=0.0 

       C1(1,2)=0.0 

       C1(1,3)=0.0 

       C1(1,4)=0.0 

       C1(1,5)=0.0 

       C1(1,6)=0.0 

       C1(2,2)=0.0 

       C1(2,3)=0.0 

       C1(2,4)=0.0 

       C1(2,5)=0.0 

       C1(2,6)=0.0  

       C1(3,3)=0.0 

       C1(3,4)=0.0 

       C1(3,5)=0.0 

       C1(3,6)=0.0    
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       C1(4,4)=0.0 

       C1(4,5)=0.0 

       C1(4,6)=0.0     

       C1(5,5)=0.0 

       C1(5,6)=0.0 

       C1(6,6)=0.0 

                C1(2,1)=C1(1,2) 

                C1(3,1)=C1(1,3) 

                C1(3,2)=C1(2,3) 

                C1(4,1)=C1(1,4) 

                C1(4,2)=C1(2,4) 

                C1(4,3)=C1(3,4) 

                C1(5,1)=C1(1,5) 

                C1(5,2)=C1(2,5) 

                C1(5,3)=C1(3,5) 

                C1(5,4)=C1(4,5) 

                C1(6,1)=C1(1,6) 

                C1(6,2)=C1(2,6) 

                C1(6,3)=C1(3,6) 

                C1(6,4)=C1(4,6) 

                C1(6,5)=C1(5,6) 

                 

      

 C1(1,1)=(Q(1,1)*(CC**4))+(2.0*(Q(1,2)+2*Q(6,6))*CC*CC*SS*SS)+(Q(2,2)*(

SS**4)) 

       C1(1,2)=((Q(1,1)+Q(2,2)-

4.0*Q(6,6))*SS*SS*CC*CC)+(Q(1,2)*(CC**4+SS**4)) 

       C1(1,6)=((Q(1,1)-Q(1,2)-2*Q(6,6))*SS*CC**3)+((Q(1,2)-

Q(2,2)+2*Q(6,6))*(SS**3)*CC) 

      

 C1(2,2)=(Q(1,1)*SS**4)+(2.0*(Q(1,2)+2*Q(6,6))*CC*CC*SS*SS)+(Q(2,2)*CC*

*4) 

       C1(2,6)=((Q(1,1)-Q(1,2)-2*Q(6,6))*(SS**3)*CC)+((Q(1,2)-

Q(2,2)+2*Q(6,6))*SS*(CC**3)) 

       C1(6,6)=((Q(1,1)+Q(2,2)-2.0*Q(1,2)-

2*Q(6,6))*CC*CC*SS*SS)+(Q(6,6)*(CC**4+SS**4)) 

       C1(2,1)=C1(1,2) 

       C1(6,1)=C1(1,6) 

       C1(6,2)=C1(2,6) 

                 

       D(I,J)=D(I,J)+(C1(I,J)*(((H1(K+1))**3)-((H1(K))**3)))/3.0 

            END DO 

        END DO 

    END DO  

  

 

    DO I=4,5 

     DO J=4,5 

      AA(I,J)=0.0 

      DO K=1,M 

       ANGLE=3.1415927*A(K)/180.0 

       CC=COS(ANGLE) 

       SS=SIN(ANGLE) 

       A2(4,4)=0.0 

       A2(5,5)=0.0 

       A2(4,5)=0.0 

       A2(5,4)=0.0 

       A2(4,4)=(Q(4,4)*CC*CC)+(Q(5,5)*SS*SS) 

       A2(5,5)=(Q(4,4)*SS*SS)+(Q(5,5)*CC*CC) 

       AA(I,J)=AA(I,J)+(A2(I,J)*((H1(K+1))-(H1(K)))) 

      END DO 

        END DO 

    END DO 

    D(4,4)=AA(4,4) 

    D(5,5)=AA(5,5) 
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 D11=D(1,1) 

 D22=D(2,2) 

    D12=D(1,2) 

 D21=D(2,1) 

 D66=D(6,6) 

 S44=D(4,4) 

 S55=D(5,5) 

    RETURN 

 

END SUBROUTINE LAMI 

 

!********************************************** 

!SUBROUTINE INIT  /INITIALISES VARIOUS ARRAYS/ 

!********************************************** 

 

SUBROUTINE INIT (BMX,BMY,BMXY,CX,CY,CXY,& 

    NPON,QX,QY,W,WUX,WUY) 

 

    REAL,DIMENSION (:,:) :: BMX,BMY,BMXY,CX,CY,& 

        CXY,QX,QY,WUX,WUY,W 

 

    DO IPON=1,NPON 

      DO IIPON=1,NPON 

     W(IPON,IIPON)=0.0 

     WUX(IPON,IIPON)=0.0 

      WUY(IPON,IIPON)=0.0 

     CX(IPON,IIPON)=0.0 

     CY(IPON,IIPON)=0.0 

      CXY(IPON,IIPON)=0.0 

     BMX(IPON,IIPON)=0.0 

     BMY(IPON,IIPON)=0.0 

     BMXY(IPON,IIPON)=0.0 

     QX(IPON,IIPON)=0.0 

     QY(IPON,IIPON)=0.0 

      END DO 

    END DO 

 RETURN 

 

END SUBROUTINE INIT 

 

!********************************************** 

!SUBROUTINE CONS  /ALCULATES THE VALUES 

!AMN,BMN AND CMN FOR A GIVEN LOADING FUNCTION/ 

!********************************************** 

 

SUBROUTINE CONS(AA,AMN,BB,BMN,CMN,DET,ETA,ETB,IQ,M,N,PI,PZ,P11,& 

    P12,P13,P22,P23,U,V) 

     

    IF (IQ==1) THEN 

        QMN=(16.0*PZ)/(PI*PI*FLOAT(M)*FLOAT(N)) 

 ELSEIF (IQ==2) THEN 

     QMN=((4.0*PZ)/(AA*BB))*SIN((FLOAT(M)*PI*ETA)/AA)& 

        *SIN((FLOAT(N)*PI*ETB)/BB) 

 ELSEIF (IQ==3) THEN 

     QMN=((16.0*PZ)/(PI*PI*FLOAT(M)*FLOAT(N)))& 

        *SIN((FLOAT(M)*PI*ETA)/AA)*& 

  SIN((FLOAT(N)*PI*ETB)/BB)*SIN((FLOAT(M)*PI*U)/(2.0*AA))*& 

        SIN((FLOAT(N)*PI*V)/(2.0*BB)) 

    ELSEIF (IQ==4) THEN 

   QMN=(256*PZ*aa*bb*sin((pi*eta*FLOAT(M))& 

        /aa)*sin((pi*etb*FLOAT(N))/bb)*sin((pi*FLOAT(M)*u)/(4*aa))**2& 

        *sin((pi*FLOAT(N)*v)/(4*bb))**2)/(pi**4*FLOAT(M)**2*FLOAT(N)**2*u*v) 

    END IF 

    AMN=(P12*P23-P22*P13)*QMN/DET 

    BMN=(P12*P13-P11*P23)*QMN/DET 

    CMN=(P11*P22-P12*P12)*QMN/DET 
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    RETURN 

  

END SUBROUTINE CONS 

     

!**************************************************** 

!COEF /!THIS SUBROUTINE CALCULATES THE COEFFICIENTS 

!     (P11,P12,P13,P22,P23,P33) AND THE DETERMINANT/ 

!**************************************************** 

 

SUBROUTINE COEF (AA,BB,D11,D22,D12,D66,DET,G1,GFS,M,& 

    N,P11,P12,P13,P22,P23,PI,S44,S55) 

 

 P11=D11*(FLOAT(M)*PI/AA)*(FLOAT(M)*PI/AA)& 

     +D66*(FLOAT(N)*PI/BB)*(FLOAT(N)*PI/BB)+G1*S55 

    P12=(D12+D66)*(FLOAT(M)*PI/AA)*(FLOAT(N)*PI/BB) 

    P13=G1*S55*(FLOAT(M)*PI/AA) 

    P22=D66*(FLOAT(M)*PI/AA)*(FLOAT(M)*PI/AA)& 

     +D22*(FLOAT(N)*PI/BB)*(FLOAT(N)*PI/BB)+G1*S44 

    P23=G1*S44*(FLOAT(N)*PI/BB) 

    P33=(G1*S55)*(FLOAT(M)*PI/AA)*(FLOAT(M)*PI/AA)& 

     +(G1*S44)*(FLOAT(N)*PI/BB)*(FLOAT(N)*PI/BB)+GFS 

    DET=P11*(P22*P33-P23*P23)-P12*(P12*P33-P23*P13)& 

     +P13*(P12*P23-P22*P13) 

    RETURN 

 

END SUBROUTINE COEF 

 

!************************************************* 

!SUBROUTINE SUMS /SUMS THE VARIOUS FURIER SERIES/ 

!************************************************* 

 

SUBROUTINE SUMS (AA,AMN,BB,BMN,BMX,BMY,BMXY,CMN,CX,CY,CXY,D11,& 

    D22,D12,D66,G1,M,N,NPON,QX,QY,PI,S44,S55,W,& 

                WUX,WUY,XCORD,YCORD) 

 

    REAL,DIMENSION(:) :: XCORD,YCORD 

    REAL,DIMENSION(:,:) :: BMX,BMY,BMXY,CX,CY,& 

          CXY,QX,QY,WUX,WUY,W 

 

 DO IPON=1,NPON 

     DO IIPON=1,NPON 

      X=XCORD(IPON) 

      Y=YCORD(IIPON) 

   !DEFLECTION W(IPON) 

      W(IPON,IIPON)=W(IPON,IIPON)+CMN*SIN((FLOAT(M)*PI*X)/AA)*& 

       SIN((FLOAT(N)*PI*Y)/BB) 

      !SLOPE WUX(IPON) 

      WUX(IPON,IIPON)=WUX(IPON,IIPON)+AMN*COS((FLOAT(M)*PI*X)/AA)*& 

        SIN((FLOAT(N)*PI*Y)/BB) 

      !SLOPE WUY(IPON) 

      WUY(IPON,IIPON)=WUY(IPON,IIPON)+BMN*SIN((FLOAT(M)*PI*X)/AA)*& 

        COS((FLOAT(N)*PI*Y)/BB) 

      !CURVATURE CX(IPON) 

     

 CX(IPON,IIPON)=CX(IPON,IIPON)+AMN*(FLOAT(M)*PI/AA)*SIN((FLOAT(M)*PI*X)

/AA)*& 

        SIN((FLOAT(N)*PI*Y)/BB) 

      !CURVATURE CY(IPON) 

     

 CY(IPON,IIPON)=CY(IPON,IIPON)+BMN*(FLOAT(N)*PI/BB)*SIN((FLOAT(M)*PI*X)

/AA)*& 

        SIN((FLOAT(N)*PI*Y)/BB) 

      !CURVATURE CXY(IPON) 

      CXY(IPON,IIPON)=CXY(IPON,IIPON)+((AMN*(FLOAT(N)*PI/BB))+& 

        (BMN*(FLOAT(M)*PI/AA)))*& 

                 COS((FLOAT(M)*PI*X)/AA)*COS((FLOAT(N)*PI*Y)/BB) 
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      !BENDING MOMENT BMX(IPON) 

      BMX(IPON,IIPON)=-D11*CX(IPON,IIPON)-D12*CY(IPON,IIPON) 

      !BENDING MOMENT BMY(IPON) 

      BMY(IPON,IIPON)=-D22*CY(IPON,IIPON)-D12*CX(IPON,IIPON) 

      !TWISTING MOMENT BMXY(IPON) 

      BMXY(IPON,IIPON)=D66*CXY(IPON,IIPON) 

      !SHEAR FORCE QX(IPON) 

     

 QX(IPON,IIPON)=QX(IPON,IIPON)+G1*S55*((CMN*FLOAT(M)*PI/AA)+AMN)*& 

       COS((FLOAT(M)*PI*X)/AA)*SIN((FLOAT(N)*PI*Y)/BB) 

      !SHEAR FORCE QY(IPON) 

     

 QY(IPON,IIPON)=QY(IPON,IIPON)+G1*S44*((CMN*FLOAT(N)*PI/BB)+BMN)*& 

       SIN((FLOAT(M)*PI*X)/AA)*COS((FLOAT(N)*PI*Y)/BB) 

     END DO 

    END DO 

 RETURN 

 

END SUBROUTINE SUMS 

 

!****************************** 

!OUTP /PRINTS OUT THE RESULTS/ 

!****************************** 

 

SUBROUTINE OUTP (NPON,XCORD,YCORD,W,BMX,BMY,BMXY,QX,QY) 

 

     REAL,DIMENSION (:) :: XCORD,YCORD 

     REAL,DIMENSION (:,:) :: BMX,BMY,BMXY,& 

          QX,QY,W 

 

OPEN 

(UNIT=60,FILE="RESULT.TXT",FORM="FORMATTED",STATUS="REPLACE",ACTION="WRITE") 

DO IPON=1,NPON 

  DO IIPON=1,NPON 

    WRITE (60,"(8F18.5)") 

XCORD(IPON),YCORD(IIPON),W(IPON,IIPON),BMX(IPON,IIPON), & 

         

 BMY(IPON,IIPON),BMXY(IPON,IIPON),QX(IPON,IIPON),QY(IPON,IIPON) 

  END DO 

END DO 

CLOSE (60) 

  RETURN 

 

END SUBROUTINE OUTP 

 

END PROGRAM BENSYS 
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APPENDIX B 

!HOMOGENEOUS PLATE / UNIFORM 

LOAD 
 

FINISH 

/CLEAR,START 

 

!precrocessing 

/PREP7 

 

AA=800 

BB=600 

TT=20 

EXY=2750 

FZ=1.0/10000 

NU=0.2 

DENS=2500e-6 

 

!geometry 

RECTNG,0,AA,0,BB 

 

!material 

MPTEMP,,,,,,,, 

MPTEMP,1,0 

MPDATA,EX,1,,EXY 

MPDATA,PRXY,1,,NU 

MPDATA,DENS,1,,DENS 

 

!element 

ET,1,SHELL181 

KEYOPT,1,8,2 

SECTYPE,1,SHELL 

SECDATA,TT,1,,9 

 

!mesh 

MSHAPE,0,2D 

MSHKEY,2 

LESIZE,ALL,MIN(AA/50,BB/50) 

AATT,1,,1,0,1 

AMESH,ALL 

 

!load 

SFA,ALL,1,PRES,-FZ 

acel,,,9.81e-3 

 

!bc 

LSEL,S,LOC,X,0 

LSEL,A,LOC,X,AA 

NSLL,S,1 

D,ALL,UX 

D,ALL,UY 

D,ALL,UZ 

ALLSEL,ALL 

LSEL,S,LOC,Y,0 

LSEL,A,LOC,Y,BB 

NSLL,S,1 

D,ALL,UX 

D,ALL,UY 

D,ALL,UZ 

ALLSEL,ALL 

 

FINISH 

 

!solution 

/SOLU 

 
ANTYPE,0 

PSTRES,ON 

SOLVE 

 

FINISH 

 

/POST1 

 

!postprocessing 

PLNSOL, U,Z,0,1.0 

 

*GET,w1,NODE,NODE(200,200,0),U

,Z 

*GET,w2,NODE,NODE(600,200,0),U

,Z 

*GET,w3,NODE,NODE(600,400,0),U

,Z 

*GET,w4,NODE,NODE(200,400,0),U

,Z 

*GET,w5,NODE,NODE(400,300,0),U

,Z 

 

!HOMOGENEOUS PLATE / 

RECTANGULAR LOAD 

 

FINISH 

/CLEAR,START 

 

/PREP7 

 

AA=800 

BB=800 

TT=20 

ETA=530 

ETB=260 

UU=200 

VV=414 

EXY=2600 

FZ=40/10000 

NU=0.3 

DENS=7.85e-9 

 

!geometry 

RECTNG,0,AA,0,BB 

*GET,maxkey,kp,,num,max 

k,maxkey+1,0,ETB-VV/2,0 

k,maxkey+2,AA,ETB-VV/2,0 

L,maxkey+1,maxkey+2 

*GET,maxkey,kp,,num,max 

k,maxkey+1,0,ETB+VV/2,0 

k,maxkey+2,AA,ETB+VV/2,0 

L,maxkey+1,maxkey+2 

lsel,s,line,,5,6,1 

*GET,maxkey,kp,,num,max 

k,maxkey+1,ETA-UU/2,0,0 

k,maxkey+2,ETA-UU/2,BB,0 

L,maxkey+1,maxkey+2 

*GET,maxkey,kp,,num,max 

k,maxkey+1,ETA+UU/2,0,0 

k,maxkey+2,ETA+UU/2,BB,0 

L,maxkey+1,maxkey+2 
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lsel,s,line,,5,8,1 

asbl,all,all,,delete,delete 

nummrg,all 

allsel,all 

 

!material 

MPTEMP,,,,,,,, 

MPTEMP,1,0 

MPDATA,EX,1,,EXY 

MPDATA,PRXY,1,,NU 

MPDATA,DENS,1,,DENS 

 

!element 

ET,1,SHELL181 

KEYOPT,1,8,2 

SECTYPE,1,SHELL 

SECDATA,TT,1,,9 

 

!mesh 

MSHAPE,0,2D 

MSHKEY,2 

LESIZE,ALL,MIN(AA/50,BB/50) 

AATT,1,,1,0,1 

AMESH,ALL 

 

!load 

ASEL,s,loc,x,ETA-UU/2,ETA+UU/2 

ASEL,r,loc,y,ETB-VV/2,ETB+VV/2 

SFA,ALL,1,PRES,-FZ 

ALLSEL,ALL 

 

!bc 

LSEL,S,LOC,X,0 

LSEL,A,LOC,X,AA 

NSLL,S,1 

D,ALL,UX 

D,ALL,UY 

D,ALL,UZ 

ALLSEL,ALL 

LSEL,S,LOC,Y,0 

LSEL,A,LOC,Y,BB 

NSLL,S,1 

D,ALL,UX 

D,ALL,UY 

D,ALL,UZ 

ALLSEL,ALL 

 

FINISH 

 

!solution 

/SOLU 

 

ANTYPE,0 

PSTRES,ON 

SOLVE 

 

FINISH 

 

/POST1 

 

!postprocess 

PLNSOL, U,Z,0,1.0 

 

 

!HOMOGENEOUS PLATE / 

CONCENTRATED LOAD 

 

FINISH 

/CLEAR,START 

 

/PREP7 

 

AA=800 

BB=800 

TT=20 

ETA=530 

ETB=260 

EXY=2750 

FZ=100 

NU=0.3 

DENS=7.85e-9 

 

!geometry 

RECTNG,0,ETA,0,ETB 

RECTNG,ETA,AA,0,ETB 

RECTNG,0,ETA,ETB,BB 

RECTNG,ETA,AA,ETB,BB 

NUMMRG,KP 

 

!material 

MPTEMP,,,,,,,, 

MPTEMP,1,0 

MPDATA,EX,1,,EXY 

MPDATA,PRXY,1,,NU 

MPDATA,DENS,1,,DENS 

 

!element 

ET,1,SHELL181 

KEYOPT,1,8,2 

SECTYPE,1,SHELL 

SECDATA,TT,1,,9 

 

!mesh 

MSHAPE,0,2D 

MSHKEY,2 

LESIZE,ALL,MIN(AA/50,BB/50) 

AATT,1,,1,0,1 

AMESH,ALL 

 

!load 

nsel,s,node,,node(ETA,ETB,0) 

F,ALL,FZ,-FZ 

ALLSEL,ALL 

 

!bc 

LSEL,S,LOC,X,0 

LSEL,A,LOC,X,AA 

NSLL,S,1 

D,ALL,UX 

D,ALL,UY 

D,ALL,UZ 

ALLSEL,ALL 

LSEL,S,LOC,Y,0 

LSEL,A,LOC,Y,BB 

NSLL,S,1 

D,ALL,UX 

D,ALL,UY 

D,ALL,UZ 

ALLSEL,ALL 
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FINISH 

 

!solution 

/SOLU 

 

ANTYPE,0 

PSTRES,ON 

SOLVE 

 

FINISH 

 
/POST1 

 

!postprocess 

PLNSOL, U,Z,0,1.0 
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!HOMOGENEOUS PLATE / PYRAMID LOAD 

 

FINISH 

/CLEAR,START 

 

/PREP7 

 

pi=3.14159265358979323846264338327950288419716939937510 

 

AA=800 

BB=600 

TT=20 

ETA=530 

ETB=260 

UU=400 

VV=300 

EXY=2750 

FZ=40/10000 

NU=0.2 

DENS=7.85e-9 

 

!geometry 

RECTNG,0,AA,0,BB 

*GET,maxkey,kp,,num,max 

k,maxkey+1,0,ETB-VV/2,0 

k,maxkey+2,AA,ETB-VV/2,0 

L,maxkey+1,maxkey+2 

*GET,maxkey,kp,,num,max 

k,maxkey+1,0,ETB+VV/2,0 

k,maxkey+2,AA,ETB+VV/2,0 

L,maxkey+1,maxkey+2 

lsel,s,line,,5,6,1 

*GET,maxkey,kp,,num,max 

k,maxkey+1,ETA-UU/2,0,0 

k,maxkey+2,ETA-UU/2,BB,0 

L,maxkey+1,maxkey+2 

*GET,maxkey,kp,,num,max 

k,maxkey+1,ETA+UU/2,0,0 

k,maxkey+2,ETA+UU/2,BB,0 

L,maxkey+1,maxkey+2 

lsel,s,line,,5,8,1 

asbl,all,all,,delete,delete 

nummrg,all 

allsel,all 

 

!material 

MPTEMP,,,,,,,, 

MPTEMP,1,0 

MPDATA,EX,1,,EXY 

MPDATA,PRXY,1,,NU 

MPDATA,DENS,1,,DENS 

 

!element 

ET,1,SHELL181 

KEYOPT,1,8,2 

SECTYPE,1,SHELL 

SECDATA,TT,1,,9 

 

!mesh 

MSHAPE,0,2D 

MSHKEY,2 

LESIZE,ALL,MIN(AA/50,BB/50) 

AATT,1,,1,0,1 

AMESH,ALL 

 

!load 

NSEL,s,loc,x,ETA-UU/2,ETA+UU/2 

NSEL,r,loc,y,ETB-VV/2,ETB+VV/2 
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CM,reszlet,NODE 

CMSEL,S,reszlet,NODE 

 

*GET,xmin,NODE,0,MNLOC,X 

*GET,xmax,NODE,0,MXLOC,X 

*GET,ymin,NODE,0,MNLOC,Y 

*GET,ymax,NODE,0,MXLOC,Y 

 

NSEL,R,LOC,Y,ymin 

*GET,xnbrnode,NODE,0,COUNT 

*DIM,xcoord,ARRAY,xnbrnode,1 

*DO,i,1,xnbrnode 

   *GET,xcoord(i),NODE,0,MNLOC,X 

   NSEL,U,LOC,X,xcoord(i)-0.1,xcoord(i)+0.1,0.01 

*ENDDO 

 

CMSEL,S,reszlet,NODE 

NSEL,R,LOC,X,xmin 

*GET,ynbrnode,NODE,0,COUNT 

*DIM,ycoord,ARRAY,ynbrnode,1 

*DO,j,1,ynbrnode 

   *GET,ycoord(j),NODE,0,MNLOC,Y 

   NSEL,U,LOC,Y,ycoord(j)-0.1,ycoord(j)+0.1,0.01 

*ENDDO 

 

CMSEL,S,reszlet,NODE 

 

*DO,i,1,xnbrnode 

 *DO,j,1,ynbrnode 

 

 *IF,j,EQ,1,THEN 

  *IF,i,EQ,1,THEN 

   CMSEL,S,reszlet,NODE 

   NSEL,R,LOC,X,xcoord(i)-0.1,xcoord(i)+0.1,0.01 

   NSEL,R,LOC,Y,ycoord(j)-0.1,ycoord(j)+0.1,0.01 

   forc=-FZ*(1-2/UU*abs(eta-xcoord(i)))*(1-2/VV*abs(etb-

ycoord(j))) 

   F,ALL,FZ,forc*((ycoord(j+1)-ycoord(j))/2)*((xcoord(i+1)-

xcoord(i))/2)     

  *ELSEIF,i,NE,1,AND,i,NE,xnbrnode,THEN 

   CMSEL,S,reszlet,NODE 

   NSEL,R,LOC,X,xcoord(i)-0.1,xcoord(i)+0.1,0.01 

   NSEL,R,LOC,Y,ycoord(j)-0.1,ycoord(j)+0.1,0.01 

   forc=-FZ*(1-2/UU*abs(eta-xcoord(i)))*(1-2/VV*abs(etb-

ycoord(j))) 

   F,ALL,FZ,forc*((ycoord(j+1)-ycoord(j))/2)*((xcoord(i)-

xcoord(i-1))/2+(xcoord(i+1)-xcoord(i))/2) 

  *ELSEIF,i,EQ,xnbrnode,THEN    

   CMSEL,S,reszlet,NODE 

   NSEL,R,LOC,X,xcoord(i)-0.1,xcoord(i)+0.1,0.01 

   NSEL,R,LOC,Y,ycoord(j)-0.1,ycoord(j)+0.1,0.01 

   forc=-FZ*(1-2/UU*abs(eta-xcoord(i)))*(1-2/VV*abs(etb-

ycoord(j))) 

   F,ALL,FZ,forc*((ycoord(j+1)-ycoord(j))/2)*((xcoord(i)-

xcoord(i-1))/2) 

  *ENDIF 

 *ELSEIF,j,NE,1,AND,j,NE,ynbrnode,THEN 

   *IF,i,EQ,1,THEN 

   CMSEL,S,reszlet,NODE 

   NSEL,R,LOC,X,xcoord(i)-0.1,xcoord(i)+0.1,0.01 

   NSEL,R,LOC,Y,ycoord(j)-0.1,ycoord(j)+0.1,0.01 

   forc=-FZ*(1-2/UU*abs(eta-xcoord(i)))*(1-2/VV*abs(etb-

ycoord(j))) 

   F,ALL,FZ,forc*((ycoord(j)-ycoord(j-1))/2+(ycoord(j+1)-

ycoord(j))/2)*((xcoord(i+1)-xcoord(i))/2)    

                *ELSEIF,i,NE,1,AND,i,NE,xnbrnode,THEN 
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   CMSEL,S,reszlet,NODE 

   NSEL,R,LOC,X,xcoord(i)-0.1,xcoord(i)+0.1,0.01 

   NSEL,R,LOC,Y,ycoord(j)-0.1,ycoord(j)+0.1,0.01 

   forc=-FZ*(1-2/UU*abs(eta-xcoord(i)))*(1-2/VV*abs(etb-

ycoord(j))) 

   F,ALL,FZ,forc*((ycoord(j)-ycoord(j-1))/2+(ycoord(j+1)-

ycoord(j))/2)*((xcoord(i)-xcoord(i-1))/2+(xcoord(i+1)-xcoord(i))/2)    

                *ELSEIF,i,EQ,xnbrnode,THEN 

   CMSEL,S,reszlet,NODE 

   NSEL,R,LOC,X,xcoord(i)-0.1,xcoord(i)+0.1,0.01 

   NSEL,R,LOC,Y,ycoord(j)-0.1,ycoord(j)+0.1,0.01 

   forc=-FZ*(1-2/UU*abs(eta-xcoord(i)))*(1-2/VV*abs(etb-

ycoord(j))) 

   F,ALL,FZ,forc*((ycoord(j)-ycoord(j-1))/2+(ycoord(j+1)-

ycoord(j))/2)*((xcoord(i)-xcoord(i-1))/2)    

                *ENDIF 

 *ELSEIF,j,EQ,ynbrnode,THEN 

                *IF,i,EQ,1,THEN 

   CMSEL,S,reszlet,NODE 

   NSEL,R,LOC,X,xcoord(i)-0.1,xcoord(i)+0.1,0.01 

   NSEL,R,LOC,Y,ycoord(j)-0.1,ycoord(j)+0.1,0.01 

   forc=-FZ*(1-2/UU*abs(eta-xcoord(i)))*(1-2/VV*abs(etb-

ycoord(j))) 

   F,ALL,FZ,p*((ycoord(j)-ycoord(j-1))/2)*((xcoord(i+1)-

xcoord(i))/2)    

                *ELSEIF,i,NE,1,AND,i,NE,xnbrnode,THEN 

   CMSEL,S,reszlet,NODE 

   NSEL,R,LOC,X,xcoord(i)-0.1,xcoord(i)+0.1,0.01 

   NSEL,R,LOC,Y,ycoord(j)-0.1,ycoord(j)+0.1,0.01 

   forc=-FZ*(1-2/UU*abs(eta-xcoord(i)))*(1-2/VV*abs(etb-

ycoord(j))) 

   F,ALL,FZ,p*((ycoord(j)-ycoord(j-1))/2)*((xcoord(i)-

xcoord(i-1))/2+(xcoord(i+1)-xcoord(i))/2)    

                *ELSEIF,i,EQ,xnbrnode,THEN 

   CMSEL,S,reszlet,NODE 

   NSEL,R,LOC,X,xcoord(i)-0.1,xcoord(i)+0.1,0.01 

   NSEL,R,LOC,Y,ycoord(j)-0.1,ycoord(j)+0.1,0.01 

   forc=-FZ*(1-2/UU*abs(eta-xcoord(i)))*(1-2/VV*abs(etb-

ycoord(j))) 

   F,ALL,FZ,p*((ycoord(j)-ycoord(j-1))/2)*((xcoord(i)-

xcoord(i-1))/2)    

                *ENDIF 

        *ENDIF 

 

 *ENDDO 

*ENDDO 

ALLSEL,ALL 

  

!bc 

LSEL,S,LOC,X,0 

LSEL,A,LOC,X,AA 

NSLL,S,1 

D,ALL,UX 

D,ALL,UY 

D,ALL,UZ 

ALLSEL,ALL 

LSEL,S,LOC,Y,0 

LSEL,A,LOC,Y,BB 

NSLL,S,1 

D,ALL,UX 

D,ALL,UY 

D,ALL,UZ 

ALLSEL,ALL 

 

FINISH 
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!solution 

/SOLU 

 

ANTYPE,0 

PSTRES,ON 

SOLVE 

 

FINISH 

 

/POST1 

 

!postprocess 

PLNSOL, U,Z,0,1.0 

 

*GET,EZ1,NODE,NODE(200,200,0),U,Z 

*GET,EZ2,NODE,NODE(600,200,0),U,Z 

*GET,EZ3,NODE,NODE(600,400,0),U,Z 

*GET,EZ4,NODE,NODE(200,400,0),U,Z 

*GET,EZ5,NODE,NODE(400,300,0),U,Z 

*GET,EZR,NODE,NODE(379.79,121.21,0),U,Z 

 


