

Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki Kar Vízépítési és Vízgazdálkodási Tanszék

Tudományos Diákköri Konferencia (2020)

Hőcsere folyamatok vizsgálata sekély tavak meder-víz határfelületén

Török Sebestyén Dániel

építőmérnök MSc. szakos hallgató

Konzulens:

Dr. Torma Péter egyetemi docens, BME Vízépítési és Vízgazdálkodási Tanszék

Budapest, 2020.

Tartalomjegyzék

1. Bevezetés	. 2
2. Vizsgálati helyszín és mérések	.3
2.1. Vizsgálati helyszín	.3
2.2. Hőáram- és hőmérsékletmérések	.3
2.3. Sebesség- és hullámzásmérések	. 5
3. Módszertan	.7
3.1. Hőmérleg és hőáram a víz-üledék határfelületen	.7
3.2. Turbulens hőáram átviteli együttható	. 8
3.3. Hővezetési együttható	.9
3.4. Diffúziós modell	10
4. Eredmények	12
4.1. Hőmérleg és a határfelületen zajló hőcsere	15
4.2. Turbulens hőáram átviteli együttható	16
4.3. Hővezetési együttható	20
4.4. Modellvizsgálatok	25
4.5. Tóközép és parti jellegzónák jellemzése, eltérései	28
5. Konklúziók	30
6. Összefoglalás	31
7. Források	32

1. Bevezetés

A tavi ökoszisztémákra gyakorolt hatások közül az egyik legjelentősebb a hőmérséklet, mivel az nemcsak befolyásolja, hanem irányítja is azok különböző biológiai és kémiai folyamatait. Miután a víztér hőmérséklete szoros kapcsolatban áll az üledék hőmérsékletével, a kettejük közti hőcserének hála, ezért annak megértése kiemelt jelentőségűnek mondható. A kapcsolat különösen szoros sekély tavak esetében, mint amilyenek a hazai nagy tavaink.

Jelen tanulmány célja egyrészről egy hővezetési és hőcseremodell felállítása a Balaton üledékének felső rétegére, valamint a meder-víz határfelületre, amellyel a víz és üledék közti hőcsere folyamatos számítása válna lehetővé. Ehhez egy a balatoni üledékre jellemző diffúziós együttható meghatározására van szükség, melyet a mérőállomásnál mért hőmérsékleti és hőáram adatok együttes ismeretében lehet meghatározni. További célkitűzés még hővezetési modellel megvizsgálni, hogy a part közelében (litorális zónában) a mederhőcsere dinamikája mennyire tér el a tóközepi (pelagikus zóna) folyamatoktól.

Másrészről megkísérlem a mederfelszínen zajló vízmozgások hatásának kimutatását a hőcserére. Miután a Balaton sekély tavak körébe tartozik, így az áramlások hatása mellett a hullámzás is elérheti a mederfeneket, így a diffúzió mellett a turbulens keveredés indukálta hőcserével is számolni kellhet. Ennek meghatározására fenékközeli sebességprofilok, hőfluxusok és hőmérsékletgradiensek segítségével teszek kísérletet.

A vizsgálatok elvégzéséhez rendelkezésemre álltak két, a Keszthelyi öbölben felállított mérőállomás adatai. Az egyik a tó közepén, míg a másik a tó partján volt felállítva. A vizsgálat időszaka 2019. május 18. és október 8. között volt.

2. Vizsgálati helyszín és mérések

2.1. Vizsgálati helyszín

A Balatonban, a Keszthelyi-öbölben két helyen történtek mérések, egyrészt a part közelében, a litorális zónában, másrészt pedig a tóközépen, a pelagikus zónában. Előbbit a Magyar Tudományos Akadámi Vízgazdálkodási Kutatócsoportja (MTA), míg utóbbit pedig a Budapest Műszaki és Gazdaságtudományi Egyetem Vízépítési és Vízgazdálkodási Tanszéke (BME) üzemeltette. A számítások során főként a tóközepi mérőállomás adatait használtam, elvégre az előző éves tanulmányomban (*A mederhőáram szerepe a Balaton energiaháztartásában*), szintén azok kerültek felhasználásra. Az 1. ábra a vizsgálati helyszínt, illetve a felállított mérőállomások helyeit mutatja.

2.2. Hőáram- és hőmérsékletmérések

A tóközepi mérések 2019. május 18. és 2019. október 8. között zajlottak. Ezen időszak alatt öt percenkét regisztrálták a környezeti változókat. A mérés során több alkalommal is előfordultak rövid idejű leállások, viszont azok csak a mért adatmennyiséget befolyásolták, a későbbi számításokat nem. A méréseknél a meteorológiai állapotváltozók, a víztér és üledék hőmérsékleti rétegződése, hullámzás, áramlási sebesség, illetve az üledékben 8 cm mélyen lévő hőáram lett mérve. A mérésnél használt mérőműszerek a 2. ábrán láthatók. A meteorológia állapotváltozók közé a léghőmérséklet, páratartalom, szélsebesség, szélirány, illetve a sugárzási és turbulens hőáramok tartoznak. Az ezeket mérő berendezések a 3. ábrán láthatók:

- Anemometer: szélsebesség és szélirány,
- Eddy covariance: turbulens hőáramok,

- Net radiometer: sugárzási hőáramok,
- Air temperature & humidity sensor: léghőmérséklet és páratartalom.

2. ábra: Tóközepi mérőállomás műszerezése (Lükő G. (2020b))

3. ábra: Merőállomás vízfelszín feletti műszerei

A víztér és üledék hőmérsékleti rétegződése kilenc darab hőmérő segítségével lett megmérve, melyek közül hat a víztestben, egy a víz és üledék határfelületén, kettő pedig az üledékben volt elhelyezve. A hőmérők a merőállomáshoz úgy voltak rögzítve, hogy azok helye előre ki volt alakítva, aminél fogva nagy biztonsággal elmondható, hogy azok helyzete a mérés időtartama alatt nem változott meg, kivéve a vízfelszínhez legközelebb eső hőmérőt, mely csupán 5 cm-re volt a vízfelszíntől egy úszóra rögzítve, így közvetlen kitéve a vízmozgásoknak, melyek következtében el tudott mozdulni. Ennek köszönhetően a hőmérő többször is felcsavarodott az állványra. Ezek az esetek jól kivehetők voltak a nyers mérési adatokon. Ilyen esetekben az volt a megoldás, hogy valaki kiment és megigazította a hőmérőt. A hőmérők magassági, és egy egymáshoz való elhelyezkedését, a 4. ábra mutatja. Az üledékben mért hőáram, két darab, egymás mellett elhelyezett hőárammérő segítségével lett megmérve. Azért használtak kettőt, hogy növeljék a mérés pontosságát és megbízhatóságát. A hőárammérő telepítése az iszap megbolygatásával jár, így nem biztosítható, hogy a mérés teljesen azonos homogénen konszolidálódott mederben történjen. Ennek az inhomogenitásnak a csökkentését volt hivatott a két műszer használata kompenzálni. Ezek az üledékben 8 cm mélyen kerültek elhelyezésre, azért, hogy egy esetleges felkavarodás ne legyen hatással a mérésre, mely úgy történik, hogy a korong alakú hőárammérő mind a felső, mind az alsó lapján mér feszültséget, majd abból számol hőáramot az alsó felületre.

4. ábra: Vízfelszín alatti berendezések: T1-T9: az egyes hőmérők magassága a vízfeszín-üledék határfelülethez (T3=0.00 m) képest; A hőárammérő helyzete.

A tóközepi mérőállomáshoz képest, a tóparti mérőállomás hosszabb időn keresztül rögzített adatokat, 2019. május 16. és 2019. november 4. között. A kapott adatok között szélsebesség, szélirány, víz- és iszaphőmérsékleti mérések voltak. Számomra az iszapban mért hőmérsékletek voltak lényegesek, melyek 0, -5 és -15 cm mélyen lettek mérve. A későbbiekben, mikor a tóközepi és tóparti eredményeket hasonlítom össze, akkor a 0-0; -4 - -5; és -12 - -15 cm-en lévő hőmérők vannak egymásnak megfeleltetve. A két merőállomás között két nagy különbség volt:

- 1) A part menti mérőállomás esetén nem voltak hőáram mérések
- Míg a tóközepi mérőállomás esetén a vízmélység 3-3.5 m volt, addig a tóparti esetén 1.5-2 m.

Az 1) azt eredményezte, hogy a későbbiekben számolt hőáramot nem tudtam mivel összehasonlítani, míg a 2) lehetőséget adott a vízmélységgel járó különbségek feltárására.

2.3. Sebesség- és hullámzásmérések

A tóközepi merőállomásnál, ahogy már korábban is említettem, történtek sebesség- és hullámzásmérések is. Az áramlási sebességek mérése egy Nortek Aquadopp (*Current profiler*) elnevezésű műszer segítségével történt, lásd a 2. ábrán, 2019. június 11. és 2019. augusztus 7. között. Az Aquadopp egy ADCP elvű műszer, azaz a mérés során a mérőműszer hangsugarakat bocsájt ki, három darabot, melyek a vízben való terjedésük során egyrészt szétszóródnak, az útjukba kerülő részecskékről, másrészt pedig visszaverődnek a kibocsátó hangforrás felé. A sebességek az így beérkező hangok frekvenciájából, a hang adott közegben való terjedési sebességéből, és a kibocsájtási frekvenciájából meghatározhatók. Ezeket a számításokat a merőműszer végezte el, így eredményként rögtön az áramlási sebességeket adta ki. A műszer valamivel több, mint egy méterrel a vízfelszín alatt volt elhelyezve, a mederfelé irányítva. A mérési tartomány 34 cellára volt osztva, a cellák magassága egyenként 80 mm volt. A mérések ezen cellákban, 8 Hz-en történtek, burst mérés formájában. Egy burst tíz perc hosszú volt, melyből öt perc volt az adatok regisztrálása, ez mélységenként 2400 adatot jelentett, amit aztán egy öt perces szünet követett. A mérésnél

megfigyelhető, hogy a hangsugarak nem csak a mederfenékig, hanem az üledékben is tartott egy darabig, viszont ezekben az esetekben fals eredmények adódtak, így a számítások során ezeket a cellákat figyelmen kívül hagytam. A sebességmérések három irányban történtek, észak/dél, kelet/nyugat, illetve fel/le irányokban. A sebességek mellett mérve volt még az egymást követő adatok korrelációja is, melyeket felhasználva elhagytam azokat a sebesség adatokat, melyek esetében a korreláció kisebb volt mint 60%. Ezt követően minden egyes burstre leátlagoltam a sebességeket, majd az így kapott átlagoknak kiszámítottam a vízszintes komponenseinek (észak/dél, kelet/nyugat) az eredőjét. A továbbiakban ezekkel az eredő sebességekkel számoltam. Végezetül órás, illetve hatórás átlagokat képeztem az eredő sebességekből.

A hullámzásmérések 2019. május 18. és 2019. október 4. közt történtek. A mérés során a vízfelszín mozgása volt követve akusztikus elven, egy Nortek Signature (*Wave profiler*) elnevezésű mérőműszer segítségével, lásd a 2. ábrán. A mérések itt 4 Hz-en történtek, burst mérésként. Egy burst 20 perc hosszú volt, melyből 17.07 percig tartott a mérés, amelyet aztán egy 2.93 perc hosszú szünet követett. Ez egy burst alatt 4096 adatot jelent. Ezen adatok feldolgozását Lükő Gabriella végezte (Lükő G. 2020a,b).

A hullámzásmérések során a hullámzás keltette sebességek nem lettek közvetlen mérve, így a mért hullámmagasságok, hullámhosszok, és periódusidők segítségével határoztam meg őket. A mederfenéken kialakuló sebességeket szerettem volna meghatározni, ezért csak a sekélyvízi és átmeneti hullámokkal foglalkoztam. A sebességek számítását bemutató egyenlet:

$$u = e_k \cdot \sigma \cdot a \cdot \frac{\cosh(k \cdot (z+h))}{\sinh(k \cdot h)} \cdot \cos\theta \tag{1}$$

ahol,

- u: hullámzás keltette sebesség [m/s]
- ek: hullámterjedés irányába mutató egységvektor, ek=1
- σ: szögsebesség frekvenciája, $\sigma = \frac{2\pi}{T} [1/s]$ ahol, *T*: periódusidő [s]
- *a*: hullám amplitúdója, $a = \frac{H}{2}$ [m]

ahol, H: hullámmagasság (esetünkben a szignifikáns hullámmagasság) [m]

- k: hullámszám, $k = \frac{2\pi}{\lambda} [1/m]$

ahol, λ : hullámhossz [m]

- z: vizsgálati mélység, ahová a sebességeket szeretnénk meghatározni [m]
- h: vízmélység, h=3.3 m
- Θ : fázisszög, $\Theta = 0^{\circ}$

Az egyenletnél a vízmélységre a mérés során lévő átlagos mélységet adtam meg, ami h=3.3 m volt. A fázisszögre Θ =0°-t vettem fel, mivel egy hullámperiódus alatt ebben az esetben lesz a sebesség horizontális komponensének értéke maximális (a vertikális ekkor 0). Azért a maximális érték kellett, mivel az határozza meg a fenéken fellépő turbulencia intenzitását. A sebességek meghatározása után, azok órás átlagait képeztem.

3. Módszertan

3.1. Hőmérleg és hőáram a víz-üledék határfelületen

A hőmérleg egy általunk lehatárolt ellenőrző térfogatra adja meg az abba belépő, illetve abból kilépő hőenergiákat és a térfogatban tárolt energia mennyiségét. Ennek gyakorlatban való felírása sokszor nehézkes, elvégre, ha elméletileg tudjuk is mire fordítódnak ez egyes energiakomponensek, a mérési eredmények gyakran nem azt tükrözik vissza. Jelen esetben hőmérleg az üledék legfelső rétegére lett felírva, mely alapján a víz-üledék határán kialakuló mederhőáram (H_{sed}), megegyezik a mért hőáramoknak (H_{hfp}), és a mederben tárolt energiáknak (ΔS_{sed}) az összegével. Hőmérleg számítását bemutató egyenlet:

$$H_{sed} = H_{hfp} + \Delta S_{sed} \tag{2}$$

ahol,

- H_{sed}: víz-üledék határfelületén ható mederhőáram [W/m²]
- H_{hfp} : mért hőáram [W/m²]
- ΔS_{sed} : mederben tárolt energia [W/m²]

Ez alapján látható, hogy a mederhőáram a kialakuló hőmérsékletkülönbség hatására jön létre. Kiszámításához rendelkezésemre álltak az üledékben mért hőmérsékleti adatok, T1, T2, illetve T3 mélységben, továbbá a 8 cm mélyen mért hőáramok. A számítás első lépéseként, a két mérőkorong által mért hőáramokat átlagoltam, hogy a továbbiakban majd már csak egyféle értékekkel kelljen tovább számolnom. Ezután a T1 és T2 hőmérők adatainak segítségével kiszámoltam interpolációval a hőárammérők mélységénél lévő hőmérsékleteket, mivel a későbbiek során már ezekkel kellett tovább számolnom. Ennek oka, hogy mederhőáramokat, a mért hőáramok mélység mentén való megváltozásából tudtam meghatározni, s ennél fogva a vizsgált térfogatom magassága, a mérőkorongok szintjével kellett megegyezzen. Ennek megértését segíti az 5. ábra:

5. ábra: Mederhőáram számításának megértését segítő skicc

Ezt követően meghatároztam a mederben tárolt energiát, ami a vizsgált térfogat ∆t idő alatt bekövetkező hőmérsékletmegváltozást jelenti, mely fel van még szorozva az üledék fajhőjével és sűrűségével. Ezt mutatja be a következő összefüggés:

$$\Delta S_{sed} = \int_{-Z}^{0} (\rho \cdot c_p)_s \cdot \frac{\partial T_s}{\partial Z} dz = \frac{\Delta T}{\Delta t} \cdot V \cdot (\rho \cdot c_p)_s \tag{3}$$

ahol,

- ΔS_{sed} : mederben tárolt energia [W/m²]
- *T_s*: üledék hőmérséklete [°C]
- Z: mérés helye [m]
- *∆T*: két mérés közötti hőmérsékletkülönbség [m]. Itt a T3, T2 és a hőárammérőnél lévő hőmérsékletből képzett átlagok különbségét néztem. További megértésért lásd az 5. ábrát.
- Δt : két mérés között eltelt idő, 5 perc
- V: vizsgált térfogat, 1*1*0.8 m³
- $\left(\rho \cdot c_p\right)_s = C \cdot \left(\rho_{viz} \cdot c_{viz}\right) + (1 C) \cdot \left(\rho_{iszap} \cdot c_{iszap}\right)$ ahol,
 - *C*: víztartalom, 65%
 - ρ_{viz} : víz sűrűsége, 1000 kg/m³
 - c_{viz} : víz fajfője, 4180 J//kg/°C
 - ρ_{iszap} : iszap sűrűsége, 2710 kg/m³
 - ciszap: iszap fajfője, 870 J/kg/°C

Az itt feltűntetett iszapjellemzőket irodalmi adatok alapján vettük fel (Rákóczi 1984 és 1987). Ezek után mederhőáramot már egyszerűen meg lehetett határozni, a mederben tárolt energia és a mért hőáramok összegzésével.

3.2. Turbulens hőáram átviteli együttható

A víz-üledék határfelületén ható mederhőáramokat a mért hőmérsékletek, áramlási sebességek, és egy turbulens hőáram átviteli együttható segítségével lehet felírni. Ezek összefüggését mutatja be az alábbi képlet:

$$H_{sed} = \left(\rho \cdot c_p\right)_{viz} C_D \cdot v \cdot (T_w - T_s) \tag{4}$$

ahol,

- H_{sed} : víz-üledék határfelületén ható mederhőáram [W/m²]
- *C_D*: turbulens hőáram átviteli együttható [-]
- *v*: áramlási sebesség vagy a hullámzás keltette sebesség [m/s]
- *T_w-T_s*: víztér-üledék köti hőmérsékletkülönbség [°C]. Esetünkben T4 és T2 hőmérők alapján számítva.

Az egyenletet átrendezve a C_D turbulens hőáram átviteli együttható kifejezhető, mely segítségével a hőáramok mérése kiküszöbölhetővé válna. A számításához rendelkezésemre

álltak az üledékben és víztérben mért hőmérsékletadatok, T2-T4 hőmérők adatai, a korábbiakban kiszámított mederhőáramok, illetve a sebesség és hullámzásmérés adatai.

Az együttható meghatározása mellett megnéztem még a mederhőáramok kapcsolatát a sebességekkel (v-H_{sed}), a hőmérsékletkülönbségekkel (Δ T-H_{sed}), illetve a kettő szorzatával (v* Δ T-H_{sed}). A kapcsolatot a determináltsági koefficiens (továbbiakban r²) segítségével néztem meg. Az r² számítását leíró összefüggés:

$$r^{2} = \frac{(\sum(x_{i} - \bar{x}) \cdot (y_{i} - \bar{y}))^{2}}{\sum(x_{i} - \bar{x})^{2} \cdot \sum(y_{i} - \bar{y})^{2}}$$
(5)

ahol,

- x_i: x adatsornak az i-edik tagja
- \overline{x} : x adatsor átlaga
- y_i: y adatsornak az i-edik tagja
- \overline{y} : y adatsor átlaga

A számítások eredményeit lásd később, az Eredmények fejezet alatt.

3.3. Hővezetési együttható

Az üledékben mért hőáramokat a mért hőmérsékletek, és egy hővezetési együttható segítségével lehet felírni. Ezek összefüggését mutatja be a következő képlet:

$$H_{hfp} = -\alpha \cdot \frac{\partial T_s}{\partial Z}\Big|_{-Z} \tag{6}$$

ahol,

– H_{hfp} : mért hőáram (8 cm mélyen) [W/m²]

- α: hővezetési együttható [W/m/°C]
- T_s : üledék hőmérséklete [°C]
- Z: mérés helye [m]

Bár a mederhőáram számításához a mért hőáramokra van szükség, ez a felírás a hővezetési modell szempontjából fontos, mivel az egyenletből kifejezhető az α hővezetési együttható, mely segítségével kiküszöbölhető válhat a hőáramoknak a mérése (melyek a mederhőáram meghatározásához szükségesek). A fenti egyenletben (6.) az egyetlen ismeretlen az α , így annak átrendezésével, az már könnyen meghatározható. A hőmérséklet és magasságkülönbség kapcsán azért a T2 és T1-es hőmérőket vesszük figyelembe, mivel a hőáram azok között lett mérve (lásd 5.ábra).

Mind a hőmérsékletek, mind a hőáramok öt percentént lettek rögzítve, így a belőlük számított α tényezők is öt percekre lettek meghatározva, viszont azokat átlagolva, illetve statisztikai módszerekkel vizsgálva egy általános α hővezetési együtthatót tudtam meghatározni. Ennek értékét lásd később, az *Eredmények* fejezet alatt. A számítás során a hiányzó hőmérséklet adatok interpolálva lettek, viszont még előtte, azért, hogy az esetleges téves méréseket kiszűrjem, két feltétellel éltem:

- Az egymás után következő hőmérsékletek között maximum +/-2 °C eltérés lehet. Amennyiben ez nem teljesült, az adott érték ki lett véve a számításból, majd annak helyére később lineáris interpolációval határoztam meg az új értéket.
- 2) Ha egy adat az adatsor szórásának háromszorosánál nagyobb/kisebb, akkor azt elvetettem, majd, mint az előbb, a helyére interpoláltam.

Az imént felsorolt feltételek a T2-T1 hőmérsékletkülönbségek alapján lettek meghatározva, azok alapján lettek felvéve a feltétel alapját képző számok (+/-2 °C, és a háromszoros szorzó).

3.4. Diffúziós modell

Az üledékben kialakuló hőmozgás diffúzió útján megy végbe feltételezésünk szerint, ezért a mért hőmérsékleteket egy diffúziós modell segítségével próbáltam felírni. A diffúziós modell Matlab szoftverkörnyezetben lett programozva és konzulensem bocsájtotta rendelkezésemre. Az én feladatom a modell feladathoz való igazításán túl, a modell alapját képző hődiffúziós együttható (K_s) kalibrálása volt úgy, hogy a mért és modellezett hőmérsékletek minél közelebb essenek egymáshoz. A kalibrációt mindkét mérőállomás esetén elvégeztem. Diffúziót leíró egyenlet:

$$\frac{\partial T_s}{\partial t} = K_s(t) \cdot \frac{\partial^2 T_s}{\partial Z^2}$$
(7)

ahol,

- *T_s*: üledék hőmérséklete [°C]
- t: mérés ideje [s]
- $K_s(t)$: hődiffúziós együttható az idő függvényében [m²/s]
- Z: mérés helye [m]

A tóközepi mérőállomásnál a modell bemeneti adati közé az üledékben elhelyezett hőmérők (T1, T2) által mért hőmérsékletek és azok elhelyezkedése, illetve a hőárammérő helyére kiszámolt hőmérsékletek tartoztak. A modellezés során ezeket a hőmérsékleteket (hőárammérőnél lévőket) próbáltam visszakapni. Ezek megadása után a számítási rácsháló felbontását (0.01 m), és a számítás időlépését (négy másodperc) kellett felvennem úgy, hogy megfeleljek a Courant-Fridrichs-Lewy (CFL) feltételnek. Ez jelen esetben azt jelentette, hogy a CFL<0.5 az időben haladó és térben centrális sémának köszönhetően. Ezt követően, a diffúziós együttható értékét kellett úgy beállítanom, hogy a mért és modellezett eredmények minél közelebb essenek egymáshoz. A modell előre jelző képesség Nash-Sutcliffe-féle hatékonysági mutatóval (NS) és az átlagos négyzetes hiba (RMSE) kiszámításával is megnéztem. Miután a modell leállt, ha a számításban egy adathiányos részhez ért, a teljes adatsort négy részre bontottam, melyek: május 19 – június 13; június 22 – július 20; július 21 – szeptember 3; szeptember 25 - október 7.

A tóparti mérőállomás bemeneti adatai az iszapban mért hőmérsékletek voltak, és mint az előbb, itt is a középső, -5 cm-en mért hőmérsékletet próbáltam visszakapni a modellezés során. A felhasználásra került adatsor 2020. május 17–2020. november 4-ig tartott, viszont

miután több adathiányos szakasz is előfordult, a teljes idősor itt is több részre kellett osszam, melyek: május 17 – június 14; június 28 – július 11; augusztus 7 – november 4. A modell rácsfelbontásán és időlépésén nem kellett változtatnom. Az adatsor hődiffúziós együtthatójának meghatározása után a hőáramok meghatározása a 6. egyenlet alapján zajlott, viszont még előtte ki kellett számoljam a meghatározott K_s-hez tartozó α -t. A hődiffúziós együttható és hővezetési együttható kapcsolata az alábbi egyenlettel írható fel:

$$K_s = \frac{\alpha_s}{\left(\rho \cdot c_p\right)_s} \tag{8}$$

ahol,

– K_s : hődiffúziós együttható [m²/s]

-
$$\alpha_s$$
: hővezetési együttható [W/m/°C]

$$- \left(\rho \cdot c_p\right)_s = C \cdot \left(\rho_{viz} \cdot c_{viz}\right) + (1 - C) \cdot \left(\rho_{iszap} \cdot c_{iszap}\right)$$

ahol,

– C: víztartalom, 65%

– ρ_{viz} : víz sűrűsége, 1000 kg/m³

c_{viz}: víz fajfője, 4180 J/kg/°C

- ρ_{iszap} : iszap sűrűsége, 2710 kg/m³
- *c*_{iszap}: iszap fajfője, 870 J/kg/°C

Az egyenlet segítségével meghatározható mind a már korábban számolt átlagos α -hoz tartozó Ks, mind pedig a modellezés során kalibrált K_s-hez tartozó α . Ezek értékeit lásd az *Eredmények* fejezet alatt.

4. Eredmények

Elsőként a mérések eredményeinek a bemutatásával kezdem, a számítások eredményeire majd csak ezt követően fogok rátérni, a 4.1-4.5 fejezetekben. A számításoknál használt függőleges koordinátarendszer origója a levegő-víz határfelületen volt, és a pozitív érték az üledék irányába mutatott.

A 6.-8. ábrákon a mért hőáramok, szélsebességek, hullámmagasságok, és a mederfenék feletti hőmérsékletváltozások láthatóak a mérés időtartama alatt. A hőmérsékletkülönbség itt a T4-T3 hőmérők alapján lett számítva (4. ábra). Mindegyik tényező kapcsán látható, hogy lekövetik a hőáram változást, azaz nagy bizonyossággal elmondható, a hőáram függ tőlük. Az ábrákon továbbá a viharok ideje is megfigyelhető, amikor a megnövekedett széllel (és annak hatására létrejövő hullámzással) a hőáramok is több esetben ugrásszerűen megnövekednek. Szélcsendes és mérsékleten szeles időben a hőmérsékletkülönbséget követik a hőáramok alakulása. Megfigyelhető azonban, hogy a hőmérséklet napi ingadozása jelentősen felülmúlja a hőáramok napi amplitúdóját. Ez a jelenség utal arra, hogy alapvetően diffúziós folyamatról beszélhetünk a meder-víz közötti hőcsere esetében. Az idősort az átláthatóság miatt három részletben ábrázoltam.

A 9.-10. ábrákon a sebességmérések eredményei láthatóak. A szél keltette áramlások kis sebességűek jellemzően pár cm/s nagyságrendűek. Ez különösen igaz a nagyobb mélységekben. Emlékeztetőül szeretném megjegyezni, hogy a sebességprofil mérő Aquadopp műszer a vízfelszín alatt ~1 m-rel helyezkedett el, vagyis a felszíni vízréteg áramlási viszonyairól – ahol a legnagyobb sebességek várhatóak – nem kapunk képet. Ami megfigyelhető az ábrákon, azok a viharok hatásai, mivel ezen esetekben a sebességek megnőtek (9. ábra), illetve az áramlások irányai is gyakorta megfordultak (10. ábra).

6. ábra: Mért hőáram kapcsolata a szélsebességgel, hullámmagassággal és a meder feletti hőmérsékletváltozással 1.

^{7.} ábra: Mért hőáram kapcsolata a szélsebességgel, hullámmagassággal és a meder feletti hőmérsékletváltozással 2.

8. ábra: Mért hőáram kapcsolata a szélsebességgel, hullámmagassággal és a meder feletti hőmérsékletváltozással 3.

9. ábra: Sebességmérés során mért sebességek nagyságának az alakulása

10. ábra: Sebességmérés során mért sebességek irányainak az alakulása

4.1. Hőmérleg és a határfelületen zajló hőcsere

A hőmérleg segítségével a víz-meder határfelületén zajló hőcserét tudtam leírni, mely végeredményeként az ott kialakuló mederhőáramot kaptam. A mederhőáram idő menti alakulását a 11. ábra mutatja, melyen jól látható a tó tavasz végi és ősz eleji átfordulása is. A tavasz végi időszak elején, az első pár napban, negatív mederhőáram értékek voltak, ami azt jelenti, hogy akkor még a meder adott át energiát a víztestnek, viszont ez a külső hőmérséklet növekedésével gyorsan megváltozott, és onnantól kezdve felcserélődtek a szerepek. A nyári időszakban az üledék hőt von el mindvégig a víztérből. Az őszi időszakra megint a tavaszi állapot az érvényes, ott ismételten a meder adott át energiát a víztérnek. Miután mind tavasszal, mind ősszel negatív értékeket mértünk, így feltételezhető, hogy az üledék a teljes téli időszak során hőt ad le a tó felé. Az ábrán továbbá még az augusztusi viharok hatása is látható. Augusztusban a mederhőáram napi ingadozása megnőtt, illetve több kiugró érték is megjelent. Az előbbi oka a tó, és az által az üledék felkeverődése lehetett, míg a kiugró értékek a viharok időpontjaiban jelentkeztek.

A határfelületi mederhőáram és a 8 cm-es mélységben mért hőáramok kapcsolatát is megnéztem, melynél azt tapasztaltam, hogy a hőáram igen jól leköveti a mederhőáramot, és napi átlagértékeiben sincs nagy eltérés. Ez azt jelenti, hogy az üledék felső 8 cm-nek a hőtároló képessége nem túl nagy, így ez felveti azt a kérdést, hogy a mederhőáram közelíthető-e a hőárammal, azaz elhanyagolható-e annak számítása, és elég-e csak a hőáramot meghatározni. A mederhőáram és hőáram összehasonlítása a 11. ábrán látható. Ezt a fajta közelítést abban az esetben tehetjük meg, amennyiben a napon belüli alakulásra nem vagyunk kíváncsiak. Az idősoron szépen látható, hogy a határfelületi hőáramnak már jelentős napi ingadozása van, amely követi a vízhőmérsékletet. Ez azt jelenti, hogy felső üledékréteg hőtárolása a napon belül már számottevő. A felszínen tapasztalt napi ciklusú menetgörbe az üledék 8 cm-es mélységében már elenyészővé válik. A délutáni órákban az üledék hőfelvétele a megnövekedett vízhőmérsékletnek köszönhetően megemelkedik, majd az éjszakai és hajnali órákban lecsökken a kiegyenlítődő üledék- és vízhőmérsékleteknek hála. Egyrészről ennek fontos ökológiai szerepe lehet, mert elősegíti az üledékréteg feletti víztér stabil rétegződését, csökkentve ezzel a víztér és az üledék közti cserefolyamatokat, mint pl. oldott oxigén.

Végezetül szeretném felhívni a figyelmet a nyári időszakon belüli változékonyságra is. Akár a felületi, akár a mélyebben mért hőáramidősort tekintjük a napi ciklusú ingadozás jelentős eltérést mutat tavasz-nyár elején, illetve július közepétől kezdődően. Előbbi időszakot kis amplitúdó, míg a másikat már intenzív ingadozások jellemzik. Ez arra enged következtetni, hogy július közepére/végére valamelyest megváltoztak az üledék hőcserét befolyásoló jellemzői. Feltételezésünk szerint az egymást követő viharoknak köszönhetően valamelyest fellazult az üledék, ami hozzájárult а hőcsere intenzitásának megnövekedéséhez.

11. ábra: Mederhőáram összehasonlítása a mért hőáramokkal

4.2. Turbulens hőáram átviteli együttható

Látva a fenti idősorokat és a viharos időszakok során megugró hőáramokat megvizsgáltam, hogy a hidrodinamikai viszonyok hogyan befolyásolják a határfelületi hőcserét. Mivel érzékelhető hőcseréről van szó, így feltételeztem, hogy a bemutatott 4. egyenlettel leírható a hőcsere folyamata. A turbulens hőáram átviteli együttható meghatározása előtt először a hőmérsékletek és sebességek kapcsolatát néztem meg a mederhőáramokkal. hőmérsékleteknél megnéztem a T5-T4, А T4-T3, T4-T2 hőmérsékletkülönbségeket, és azt tapasztaltam, hogy minél közelebb vagyok a mederhez, a kapcsolat annál erősebb (dT₅₄ alig van hatással a hőcserére, a dT₄₂ viszont már nagyban befolyásolja). Ez azt jelenti, hogy a teljes vízoszlopra nézett rétegzettségből nem tudunk közvetlenül következtetni a fenéken zajló hőcserére. Az áramlási sebességekre, melyeket a fenéktől számított 0.5 m-en (v_{0.5 m}) és 1 m-en (v_{1.0 m}) néztem azt kaptam, hogy nem állnak kapcsolatban a mederhőárammal. A hullámzás keltette sebességek esetében hasonló eredményre jutottam, mint az áramlási sebességeknél. Ezeket a kapcsolatokat mutatják be a 12.- 14. ábrák. A kapcsolatok erősségét leíró r²-eket az 1. táblázat tartalmazza.

12. ábra: dT42-Hsed kapcsolata

13. ábra: v_{0.5m}-H_{sed} kapcsolata

14. ábra: u-H_{sed} kapcsolata

Ezt követően azt néztem meg, hogyan alakul a hőmérsékletkülönbségek és mederhőáramok kapcsolata, ha hőmérsékletkülönbség fel van szorozva a sebességgel (v*dT-H_{sed}). Amikor az áramlási sebességekkel szoroztam fel őket, akkor azt tapasztaltam, a kapcsolat erőssége erősen leromlott, viszont a fenék felé haladva, az erősség nőni kezdett. Ezeknél az eseteknél (v*dT-H_{sed}) azt is megnéztem, hogyan alakulnak szorzatok attól függően, hogy a mért sebességekből számolt átlag alatti, vagy fölötti értékkel szoroztam be a hőmérsékletkülönbséget. Itt azt láttam, hogy az átlagsebesség feletti esetben a kapcsolat mintha kicsivel erősebb lenne, mint az alattiban, tehát valami hatása azért kell legyen sebességnek, viszont ezt már számszírűsítettem. Ennek oka, hogy a v*dT-H_{sed} közti kapcsolat nagyon gyenge. Mikor a hullámzás keltette sebességekkel szoroztam fel a

hőmérsékletkülönbségeket, a mederhőárammal való kapcsolat szintén gyengébbre adódott, mint amilyen előtte volt, viszont az eltérés nem volt olyan drasztikus, mint az áramlási sebességek esetében (1. táblázat). A v*dT-H_{sed} és u*dT-H_{sed} kapcsolatok a 15.-16. ábrákon láthatóak.

15. ábra: v_{0.5m}*dT₄₂-H_{sed} kapcsolata

16. ábra: u*dT42-Hsed kapcsolata

Végezetül megnéztem, hogy az augusztus hónapban hogyan alakult a mederhőáram kapcsolata a hőmérsékletkülönbségekkel (dT₄₂), a hullámzás keltette sebességekkel, illetve azok szorzatával. Ezeket mutatják be a 17.-19. ábrák. A hőmérsékletkülönbség esetében azt tapasztaltam, hogy a kapcsolat erősebb lett. Ennek valószínűsíthető oka az, hogy a kapcsolatok leírása lineáris regresszióval történt, miközben az adatokon látható, hogy nem nem lineárisan viselkednek (ha az adatokra nem egyenest, hanem egy hatványfüggvényt illesztettünk volna, valószínűleg jobb egyezést kaptunk volna a teljes idősorra). A hullámzás keltette sebességek esetében nem volt változás a mederhőárammal való kapcsolat erősségében, ellenben a szorzatnál (u*dT₄₂) jelentős növekedés volt tapasztalható. A kapcsolatok erősségét leíró r²-eket az 1. táblázat tartalmazza. Ez megerősíti azt a feltételezésünket, hogy a viharok során valamelyest fellazult üledékben a hőáram már nemcsak tisztán diffúzió útján valósul meg, hanem ekkor már szerepet kapnak turbulens folyamatok is. Előbbit az erősíti meg, hogy a hullámzás és a hőáram közti kapcsolat erőssége

17. ábra: dT₄₂-H_{sed} kapcsolata augusztusban

18. ábra: u-H_{sed} kapcsolata augusztusban

19. ábra: u*dT42-Hsed kapcsolata augusztusban

Kapcsolat	r ² teljes (v)	r ² teljes (u)	r ² aug. (u)
dT ₄₂ -H _{sed}	0.45	0.45	0.54
sebH _{sed}	0.00	0.03	0.05
seb.*dT ₄₂ -H _{sed}	0.03	0.15	0.55

 táblázat: r² értékek a mérés ideje alatt. r²_{teljes} (v): r² értékek az áramlási sebességekre a teljes mérés ideje alatt; r²_{teljes} (u): r² értékek a hullámzás keltette sebességekre a teljes mérés ideje alatt; r²_{aug.} (u): r² értékek a hullámzás keltette sebességekre augusztus hónapra Az u*dT₄₂-H_{sed} közti kapcsolat erősségnek növekedését valószínűsíthetőleg a turbulens keveredés intenzitásának a megnövekedése okozta. A 17. és 19. ábrákat összehasonlítva megfigyelhető, hogy az utóbbi esetében az értékek rendezettebbé váltak, elkezdtek felfeküdni egy görbére (ez alatt nem a 19. ábrán látható lineáris regressziós egyenes értendő). A rendeződés legjobban a negatív értékeknél figyelhető meg.

A mederhőáramok sebességek és hőmérsékletgradiensek függvényeként való felírása, illetve az egyes tagok közti kapcsolatok vizsgálata után azt kaptuk, hogy az áramlási sebességek esetén gyenge a függvénykapcsolat, a mederhőáramok alakulását a hőmérsékletgradiens hajtja meg. Ezzel szemben, a hullámzás keltette sebességek hatása már nem elhanyagolható, viszont a tóközépen a nagyobb mélységeknek köszönhetően a hullámzás hatása ritkán éri el a mederfeneket. Ezen okokból kifolyólag, nem került sor a turbulens hőáram átviteli együttható meghatározására.

4.3. Hővezetési együttható

A mérésekkel sikerült a tavasz végi felmelegedést, illetve az ősz eleji lehűlést is elkapni, így az, a hővezetési együttható értékeinél is jelentkezik. A tavasz végi időszakban egy csökkenést láthatunk az értékekben, míg ősszel (szeptember közepétől), a nyári időszakban való stagnálás után egy növekedést az átlagértékek tekintetében. Az augusztus végi, illetve őszi időszakról az mondható el, hogy α értéke nagyon ingadozik, ami valószínűleg azért van, mert az augusztusi viharok fellazították az üledék felső réteget, így kihatva a diffúzóra. Innentől már nem csak diffúzióról, hanem turbulens keveredésről is beszélhetünk. Az α időbeli alakulását a 20. ábra mutatja:

Az α idősorának kiszámoltam az átlagát: -0.30; szórását: 1.79; és mediánját: -0.71, továbbá ezeket egy hisztogramon is ábrázoltam. Ezt mutatja a 21. ábra, melyen látható, hogy α értékeinek nagy része a [-3 - +3] intervallumon belül található.

Továbbá megnéztem még, hogy a hővezetési együttható hogyan függ a hőmérsékletkülönbség (dT) előjelétől, illetve a mért hőáramoktól. A koordinátatengelyt négy részre osztottam az x és y tengelyek mentén. Az egyes negyedek számozását, lásd a 22. ábrán. A lehetséges esetek meghatározását a 6. egyenletet alapján végeztem. miszerint dT és a négy különböző kombinációban fordulhat elő előjelüket (dT>0 és a<>0) tekintve. A négy eset:

I.	$dT+$ és α - \rightarrow $H_{hfp}+$	III.	dT- és α - \rightarrow H _{hfp} -
II.	$dT+$ és $\alpha + \rightarrow H_{hfp}$ -	IV.	dT- és $\alpha + \rightarrow H_{hfp}$ -

Ezek közül a második eset igazán érdekes, amikor bár a víz melegebb, mint az üledék, mégis a hőáram az víz irányába mutat, vagyis az üledék hőt ad le a víz felé. Az ábrákon (22.-25.) mind pozitív mind negatív dT esetén egy egyértelmű trend látható, viszont az α értékének nyár végi-őszi ingadozása miatt, nem tudtam trendvonalat illeszteni rájuk.

22. ábra: Hővezetési együttható és dT hőmérsékletkülönbség kapcsolata 1.

23. ábra: Hővezetési együttható és dT hőmérsékletkülönbség kapcsolata 2.

24. ábra: Mért hőáramok és dT hőmérsékletkülönbség kapcsolata

25. ábra: Hővezetési együttható és mért hőáramok kapcsolata

Ezeken felül a nyári időszakra még megnéztem, hogy amikor kiugró α érték volt, akkor hogyan alakultak a mért hőáramok, a dT hőmérsékletkülönbségek (T2-T1), a szélsebesség, és a T1-T4-ig mért hőmérsékletek. Itt most két alkalmat fogok bemutatni: augusztus 14-16 és augusztus 21-23 közötti periódusokat. Ezt mutatják be a 26. és 27. ábrák. Ami összefüggés egyértelműen látható, hogy mikor az α-nak kiugró értéke volt, akkor a mért hőáramnak és dT-nek is. Ami már kevésbé bizonyos, az a szélsebességgel és T1-T4 hőmérsékletekkel való kapcsolat, ahol az látszik, hogy α kiugró értékei előtt azok nagysága megnőtt. Annyi látszik, hogy mindhárom α növekedést (aug. 14. délelőtt, aug. 15 délelőtt és aug. 22 délelőtt) erősen szeles időszak előzte meg. Ekkor az erős szél keltette turbulencia hatására a vízoszlop jól átkeveredett és ezzel a fenékközeli vízréteg és az üledék hőmérséklete is közel került egymáshoz. Kis hőmérsékletkülönbség esetén a hőmérsékletgradiens meghatározása bizonytalanabb, mert a különbség a műszerek mérési pontosságához közelít. Ez azt jelenti, hogy ilyen esetekben α értéke is pontatlanabbá válik, az fenntartásokkal kezelendő. Mindazonáltal ez megint rávilágít arra, hogy amennyiben számszerűsíteni akarjuk a hőcsere napon belüli menetét, akkor figyelembe kell venni a szél keltette keveredési és turbulencia folyamatokat.

26. ábra: Hővezetési együttható kapcsolata a mért hőárammal, dT hőmérsékletkülönbséggel, a szélsebességgel és a T1-T4 hőmérők által mért hőmérsékletekkel augusztus 14-16 között

27. ábra: Hővezetési együttható kapcsolata a mért hőárammal, dT hőmérsékletkülönbséggel, a szélsebességgel és a T1-T4 hőmérők által mért hőmérsékletekkel augusztus 21-23 között

4.4. Modellvizsgálatok

A modell kalibrálását mind a tóközepi, mind pedig a tóparti merőállomásra el kellett végezzem. Mindkét esetben az adatsorokat több részre osztottam, ezek felosztását lásd visszább, a *Hődiffúziós modell* fejezet alatt, mivel adathiány esetén a modell leállt. A tóközepi mérőállomás esetén mindegyik időszakra $K_s=10^{-6}$ m²/s-al kaptam ez egyik legjobb illeszkedést ($K_s=10^{-5}$ m²/s esetén is igen jó volt az illeszkedés, viszont az utólagos számítások, α visszaszámolása után, végül ezt elvetettem). Az NS-re 0.95-1, míg az RMSE-re 0.07-0.18 közötti értékek jöttek ki, amik igen jó illeszkedést jelentenek. A tóparti mérőállomás esetén az adatsor hődiffúziós együtthatójára szintén $K_s=10^{-6}$ m²/s-ot kaptam, míg az NS-re 0.97-1, az RMSE-re pedig 0.10-0.22 közötti értékeket, amik szintén igen jó előre jelző képességre utalnak. Ezt követően próbáltam felvenni az α hővezetési együttható értékét úgy, hogy mért és modellezett hőáramok (tóközepi mérőállomás) minél jobban egyezzenek. Ez $\alpha=0.8$ W/m/°C esetén történt meg, ami közel áll az α -idősor medián értékéhez.

Ezek alapján a validált modellel több vizsgálatot is elvégeztem, amelyek céljai és eredményei az alábbi három csoportba oszthatók:

- 1) Hőmérsékletek modellezése a kalibrált Ks-el
- 2) K_s-ből számított α , illetve az abból számított hőáramok
- 3) α=0.8 esetén a hőáramok alakulása

Az 1) rész azt hivatott bemutatni, hogy a választott K_s esetén a mért és modellezett eredmények milyen mértékben igazodnak egymáshoz. Ezzel lehetőség adódik a diffúziós modell, illetve a hőcsere feltételezett folyamatának értékelésére. Miután a tóközepi idősort négy, a tópartit pedig három részre osztottam, összesen hét ábrát kellene bemutatnom, hogy a teljes idősort lefedjem, de miután a mérőszámok, NS és RMSE igen jó egyezést mutattak, ezért mindkét mérőállomás esetén csak egy-egy jellemző időszakot mutatnék be. A tóközepi állomás esetén ez május 19 – június 13-ig (28. ábra), míg a tóparti esetén augusztus 7 – november 4-ig (29. ábra) terjedő időszakot jelenti. A modellezés eredményéről azt érdemes elmondani, hogy a modell mindig alul becsüli kissé a mért hőmérsékletet az üledékréteg közepén. Ennek oka lehet, hogy a diffúzión túl más hőcsere folyamat is jelen van, amit a modell viszont nem vesz számításba, illetve a mérés hiba is szóba jöhet.

28. ábra: Mért és modellezett hőmérsékletek alakulása a tóközepi mérőállomásnál május 19 – június 13 között, K_s=10⁻⁶ m²/s esetén.

29. ábra: Mért és modellezett hőmérsékletek alakulása a tóparti mérőállomásnál augusztus 7 – november 4 között, K_s=10⁻⁶ m²/s esetén.

A 2) résznél először meghatároztam a K_s-hez tartozó α -t, melyre α =3.54 W/m/°C jött ki, majd pedig azt felhasználva a hőáramokat a mérőállomásokra (30. ábra). Miután a tóparti mérőállomásnál nem volt hőárammérés, így ott csak a modellezett eredményeket tudnám bemutatni, ezért ezt most nem teszem meg. A modellezett hőáramokat a következő, 4.5-ös fejezetben mutatom majd be (33. ábra). A tóközepi állomásnál már voltak mért értékeim, így azokat összehasonlítva a modellezettekkel, azt kaptam, hogy a modellezett értékek jól

lekövetik a mért értékeket, viszont túlbecsülik azokat (30. ábra). Ennek lehetséges oka, ahogy már korábban is említettem, hogy a hőcserében a diffúzión kívül más folyamatok is részt vesznek, melyeket a modell viszont nem vesz figyelembe. Az α =-0.30-hoz (átlaghoz) tartozó hődiffúziós együtthatóra, K_s=8.50*10⁻⁸ m²/s jött ki, amely meglehetősen távol van a kalibráció során kapott 10⁻⁶ m²/s értéktől.

30. ábra: Mért és modellezett hőáramok összehasonlítása a tóközepi mérőállomásnál, α=3.54 W/m/°C esetén

A 3) résznél az α=0.8 W/m/°C-ra, mikor is a mutatók alapján a modellezett értékek lejobban illeszkedtek a mértekhez, néztem meg a mért és modellezett hőáramok alakulását. A modell, a tóközepi állomásra, július végéig jól visszaadta a mért értékeket, viszont utána már nem tudta teljesen lekövetni őket, amely oka valószínűleg az augusztusi viharok okozta iszap fellazulása volt, ami következtében a diffúzió mellett a turbulens átkeveredés is belépett a hőcserébe. Ezt támasztja alá az is, hogy a modell a kiugró értékeket nem tudta visszaadni, általában alul becsülte azokat. A mért és modellezett értékek összehasonlítása a 31. ábrán látható.

31. ábra: Mért és modellezett hőáramok összehasonlítása a tóközepi mérőállomásnál, α=0.8 W/m/°C esetén

4.5. Tóközép és parti jellegzónák jellemzése, eltérései

Az egyes jellegzónák a korábbi fejezetek során már nagyrészt bemutatásra kerültek, így most azokat próbálom majd összegezni. A tóközepi zóna esetén nagy, 3-3.5 m-es, vízmélység a jellemző, mely következtében a külső hatások csak mérsékelten, vagy egyáltalán nem érik el az üledéket. Ennek köszönhetően az iszapban mért hőmérséklet, illetve hőáram értékek változása viszonylag egyenletesnek mondható, a napi hőingadozás nem látszik rajtuk közvetlenül. Ezzel szemben, a parti zónánál kisebb vízmélység jellemző, jelen vizsgálatnál ez 1.5-2 m volt, ami következtében a külső hatások itt intenzívebben ki tudják fejteni a hatásukat az üledékre. Ez látható a mind a hőmérsékletnél, mind a hőáramnál jelentkező ingadozáson is. A 32. ábrán a tóközepi és part menti zónánál mért hőmérsékletek vannak összehasonlítva. Az ábrán látható, hogy a parti zónában mért hőmérsékletek egészen augusztus végéig nagyobbak voltak, mint a tó középiek, aztán viszont a lehűlés következtében ez megváltozott. Ezen felül megfigyelhető még az adatsorok ingadozásának mértéke is, mely, mint az előbbi, szintén az eddig elmondottakat támasztja alá.

A hőáramok esetében az α =0.8-cal számolt értékeket hasonlítottam össze, ezt mutatja a 33. ábra. Az ábrán látható, hogy a tóparti hőáram jól leköveti a tóközepit, viszont a kialakuló értékek nagyobbak. Ezen felül megfigyelhető még, hogy míg a tóközepi hőáramnál nincs nagy ingadozás, viszonylag egyenletesen változik, addig partinál igen, ami intenzívebb hőcserére utal. A kiugró értékek esetében is van eltérés, a parti zóna esetében azok szélsőségesebben jelentkeznek, ami oka a külső hatásokkal szembeni nagyobb kitettség.

32. ábra: Tóparti és tóközepi iszaphőmérsékletek összehasonlítása

33. ábra: Tóparti és tóközepi számított hőáramoknak az összehasonlítása, α=0.8 W/m/°C esetén

5. Konklúziók

Az öt hónapnyi mérési idősor rámutatott, hogy jelentős hőcsere valósul meg a Balaton mederüledéke és tó vize között. A teljes nyári időszakban a meder felveszi a hőt a víztérből, amelyet majd az azt követő téli időszakban lead. Ezt a hőleadást még a mérési időszak elején, május közepén is tapasztaltuk. A hőmérleg vizsgálatok alapján megállapíthatjuk, hogy a határfelületi hőáram jelentős napi ciklusú ingadozással bír, aminek amplitúdója rohamosan csökken az üledék felső rétegében.

A mérési adatok rámutattak, hogy egy évszakon belül is könnyen megváltozhat az üledék hőháztartási viselkedése. Azt tapasztaltuk, hogy a környezeti meghajtóerők következtében az üledék szerkezete megváltozhat és ennek következtében a hőcsere folyamata is átalakulhat. Az üledékben kialakuló hőmozgás csak diffúzióval való leírásakor az üledékben kialakult hőmérsékleteket egész jól sikerült visszakapni. A balatoni üledékre jellemző hővezetési együttható jelentős összefüggésben van a fenékközeli hőmérsékletgradienssel. Mindazonáltal egy statisztikai úton levezetett időben és mélység mentén is konstans tényező használatával a diffúziós modell képes leírni az üledék felső rétegének hőmérsékleti viszonyait mind a nyílt, mind a part menti területeken.

A hőáramok számítására meghatározott hővezetési együttható az idősor első felében, július végéig, jónak bizonyult, viszont augusztustól kezdve, mikor a viharok következtében fellazult az üledék, már pontatlanabb eredményeket adott. Ennek a július végi/augusztus eleji váltásnak az oka valószínűsíthetőleg az, hogy az iszap fellazulásával a hőcserében már nem csak a diffúzió, hanem turbulens folyamatok is részt vettek. A vizsgálatok alapján arra a következtetésre jutottunk, hogy míg a szél keltette áramlások hatása elhanyagolható, addig a hullámzás keltette periodikus vízmozgás hatására létrejövő turbulens keveredés képes megnövelni a hőcsere intenzitását, amikor a hullámzás hatása eléri a mederfeneket.

A két helyszínre végzett vizsgálatok felderítették, hogy a litorális zónában a külső hajtóerők nagyobb hatással vannak az üledékre, mint a pelagikus területen, így itt nem ajánlott a felületi hőáram üledékben mért hőárammal való közelítése. Ez azt is jelenti egyúttal, hogy a sekély viszonyok ellenére jelentős térbeli inhomogenitás jellemzi a medervíz határfelület hőcseréjét, aminek a legfőbb meghatározója a vízmélység lehet.

Végső konklúzióként azt mondanám el, hogy a hőcsere (a mikrometeorológiában a talajfelszínre elfogadott) diffúziós modellel történő leírása nem kielégítő, a turbulencia hatását is figyelembe kell venni, mivel anélkül alul becsüljük a hőcsere tényleges értékét. Annak érdekében, hogy a teljes hőcserét le lehessen írni, további vizsgálatokra lenne szükség, amelyek a mederfenék határrétegére koncentrálnak. Ezen felül, a mederhőáram hőárammal való helyettesítése, és a tóközepi mérések tóparti mérésekkel való helyettesítése kapcsán szintén az mondható el, hogy további mérésekre van szükség, és nem csak hőmérséklet, hanem hőáram mérésekre is, azért, hogy egyértelmű választ lehessen adni a térbeli inhomogenitás kérdésére.

6. Összefoglalás

A feladatom egy hővezetési modell felállítása volt a Balatonra, melyhez rendelkezésemre álltak két, a Keszthelyi öbölben felállított mérőállomás adatai. Az egyik a part mentén (litorális zónában), míg a másik a tó közepi nyílt vízi (pelagikus) zónában volt felállítva. A mérések 2019. május 18- október 8, és 2019. május 16 – november 4 között történtek.

Elsőként felállítottam az üledékre egy hőmérleget, mely segítségével meg tudtam határozni a víz-üledék határfelületén kialakuló mederhőáramot. A mederhőáramot összehasonlítva a mért hőáramokkal azt tapasztaltam, hogy viszonylag jól lefedték egymást, tehát az üledék felső, (8 cm-es) rétege nem tárolt nagy hőmennyiséget napi átlagok tekintetében. Ezzel szemben a határfelületen létrejövő hőcsere napon belüli menete jelentős ingadozást mutat.

Ezt követően а mederhőáramokat próbáltam felírni а sebességek és hőmérsékletgradiensek függvényeként, hogy ez által egy turbulens hőáram átviteli együtthatót tudjak meghatározni, mely segítségével kiküszöbölhetővé válhatnának a hőárammérések. Ehhez megvizsgáltam a tagok közti kapcsolatok erősségét. Az áramlási sebességek esetén gyenge a függvénykapcsolat, a mederhőáramok alakulását a hőmérsékletgradiens hajtja meg. A hullámzás hatása már nem elhanyagolható, azonban tóközépen a nagyobb mélységnek köszönhetően a hullámzás hatása ritkán éri el a mederfeneket.

Ezután a mért hőáramok segítségével meghatároztam egy átlagos hővezetési együtthatót, majd pedig egy diffúziós modell segítségével, egy hődiffúziós együtthatót. Az együtthatók közötti kapcsolatot felírva megnéztem azok összefüggését, majd pedig a hődiffúziós együtthatóból számítottam egy hővezetési tényezőt, mellyel kiszámítottam a hőáramokat a tóközepi mérőállomásra. Azokat összehasonlítva a mért értékekkel azt tapasztaltam, hogy a modellezett értékek kissé túlbecsülték a mérteket, melynek oka az lehet, hogy a modell a hőcserét csak a diffúzió révén számította, miközben az más úton is végbement.

Végezetül pedig összehasonlítottam a litorális és pelagikus zónákat. A számítások azt eredményezték, hogy bár tendenciában megegyeztek a hőmérsékletre és iszapban kialakuló hőáramra kapott értékek, azok nagyságban még is eltérnek, a part menti értékek nagyobbak voltak. Továbbá, míg a tóközépen számított értékeknél nem volt tapasztalható napi ciklusú ingadozás, addig a part mentinél igen. Ennek oka, hogy a part mentén kisebb a vízmélység, melynek következtében nagyobb az üledék külső hatásoknak való kitettsége. Ezek alapján az mondható el, hogy a tóközépi mérések nem helyettesíthetik a part közelieket.

7. Források

Arya S. P. (2001): Introduction to Micrometeorology, Academic Press, 2nd edition.

Condie S.A. and Webster I.T (2001): *Estimating Stratification in Shallow Water Bodies* from Mean Meteorological Conditions. Journal of Hydraulic Engineering, 127 (4), 286-292.

Foken T. (2008): *The energy balance closure problem: an overview*. Ecological Applications, 18 (6), 1351-1367.

Hipsey R. M., Bruce L.C., Boon C., Busch B., Carey C.C., Hamilton D.P., Hanson P.C., Read J.S., de Sousa E., Weber M., and Winslow L.A. (2019): *A General Lake Model (GLM 3.0) for linking with high-frequency sensor data from the Global Lake Ecological Observatory Network (GLEON)*. Geoscientific Model Development, 12, 473-523.

Kipp & Zonen (2009): *CNR 4 Net Radiometer Instruction Manual*, Manual version 1107, Delft, Netherland.

Kiss M. (2014): *Physical interaction mechanism at the littoral-pelagic interface of shallow lakes*. PhD thesis, Budapest University of Technology, Budapest, Hungary.

Lükő G. (2020a): *Felszínközeli turbulens keveredés vizsgálata sekély tavakban*, Fontus Hallgatói Ösztöndíj kutatási beszámoló, Budapest, Hungary.

Lükő G. (2020b): Momentum and heat exchange at the air-water interface of Lake Balaton from eddy-covariance measurements. MSc thesis, Budapest University of Technology, Budapest, Hungary.

Rákóczi L. 1987: A tavi üledék felkeveredése. Vízügyi Közlemények, 69(1), pp. 86-101.

Rákóczi L. 1984: A Balaton part- és mederszabályozásával kapcsolatos kutatások. 3.2 Mederüledék térképkészítés, értékelés és kotrási javaslatok. Kutatási témabeszámoló, VITUKI, Budapest.

Torma P. (2016): *Modelling wind-driven shallow lake hydrodynamics and thermal structure*. PhD thesis, Budapest University of Technology, Budapest, Hungary.

Yang Y., Wang Y., Zhang Z., Wang W., Ren X., Gao Y., Liu S., Lee X. (2017): *Diurnal* and Seasonal Variations of Thermal Stratification and Vertical Mixing in a Shallow Fresh Water Lake. Journal of Meteorological Research, 32(2). 219-232.