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Introduction

1. Introduction

1.1. Background, motivation

Nowadays, especially in the field of bridge construction there is an increasing interest
about the high strength steels (HSS), but the currant European standard does not provide the
sufficient basis to promote the spread of its application. The hollow sections are frequently used
both at the territory of bridge and building construction, due to their good structure forming
capabilities and easy assembly. In this study, firstly the briefreview of design recommendations
on these structures is considered, taking into account the restrictions coming from the
application of HSS and the current research directions. After that the main purpose is to develop
such design formulae, which —keeping the adequate level of safety -lead to more economical

results, based on series of relevant numerical simulations.

1.2. Problem statement, aims

In the third Eurocode, the part 1-8 contains the design formulae correspond to the hollow
section joints, but in many cases they result in a very conservative solution, especially with the
prescriptions of HSSs, according to the part 1-12. Because of the continuously increasing
interesting on this area, from economical point of view a less conservative design methodology
would be highly beneficial. Unfortunately, the number of experiments on HSS steels are very
low, and at the majority of the cases they focus on the fatigue behaviour instead of the static
resistance, which is also valid for hollow section joint experiments, where in addition the
sections are usually filled by concrete. These reasons lead to the necessity of the detailed static
investigation of HSS hollow section joints, which involves the accuracy of the standard design

formulae.

1.3. Solution strategy

For the mentioned purpose, after the review of the design recommendations I develop a
parametric finite element model, which must be validated according to real experiments to
obtain relevant results. During the numerical simulations, both axial and bending loads will be
considered, and for several assemblies - covering a large field of applicable CHS sections - I
determine the load-bearing capacity of the joint. By the comparison of the numerical and
standard results, I suggest modified formulae for the characteristic value of the static
resistances. After that, by taking into account the material and geometrical uncertainties, |
perform Monte-Carlo simulations to determine a partial safety factor for the new resistance

formulae, and compare the final results with the Eurocode.
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2. Literature review

2.1. Laboratory experiments

Nowadays, in those studies which investigate the static behaviour, usually the results of
quite old tests are used for the validation of the numerical model, performed in the previous
century. The present laboratory experiments are mainly concentrates on the examination of the
fatigue behaviour, the stress distribution around the weld. The other group of the experiments
is investigate the mechanical response of the concrete filled sections, where the static and
fatigue resistance are both considered. In this study, the utilized experimental results are the
part of a very large test series, which was conducted between 1964 and 1991, resulted in a
valuable tubular joint database (Lesani, Bahaari, & Shokrieh, 2013). At these tests, the
geometry of the specimen, the material properties and load-bearing capacity were recorded,

thus these will be the initial data for the validation.

2.2. Failure modes

Generally, in case of hollow section joints the EC distinguish six types of failure modes
(Eurocode 3 EN 1993-1-8:2005 (E), 2005), the chord face failure [a], the chord side wall
failure [b], the chord shear failure [c], the punching shear failure [d], the brace failure [e] and
local buckling [f] (Figure 2.2). If we keep the prescribed geometric restrictions, only two failure
modes should be considered, the chord face failure and the punching shear failure, beside the
individual failure of the brace or chord. These modes can be seen on (Figure 2.1), where on the
left figure instead of a T a K joint is represented, but it reflects very well the characteristics of

this failure.

Figure 2.1. Chord face failure (left) and punching shear failure (right) of hollow section
joints (Wardenier, Kurobane, Packer, Vegte, & Zhao, 2008)
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The chord face failure is the most usual failure mode for joints with a single bracing such
as T-joints, and in case of K and N joints with a gap between the bracings if the bracing to chord
width ratio is less than 0.85 (Tata Steel, 2011). It is practically the plastification of the chord
cross-section. The punching shear failure usually caused by a crack initiation in the chord face,
leading to the rupture of the chord. Generally it is not typical, only in the case when the chord
width to thickness ratio is relatively small. Both failure modes can be the result of axial or (in

plane or out of plane) moment loading, or of course the combination of them.
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Figure 2.2. The different failure modes of hollow section joints in general case
(Eurocode 3 EN 1993-1-8:2005 (E), 2005)
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2.3. Numerical analyses

In the earlier decades, for the main failure modes (Chapter 2.2) different resistance
models were developed based on mechanical simplifications and laboratory experiments. A
typical example for this is the study of (H.S.Mitri, 1988), where the in plane moment resistance
of tubular T and Y joints was investigated. As the punching shear is the typical failure for this
loading case, a model for this have been built, where the yield stress developing through the
thickness of the chord is equilibrated by the bending moment (Figure 2.3). It is worth to mention
that the current EC formula is also based on this approach. After the model formulation, they

compared the received results with the available laboratory results, taken from different

database.
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Figure 2.3. Punching shear model for in plane bending (H.S.Mitri, 1988)

Similarly to the previous simplified model, for the chord plastification the so called ring
model was introduced, firstly in 1967 (Wardenier, Packer, Zhao, & Vegte, 2010). This model
is based on the assumption that most of the loads is transferred at the saddles of the brace, since
the chord is stiffer at these parts on the perimeter, thus here the stresses significantly larger
comparing to the middle parts of the chord. According to (Figure 2.4), it is assumed that the
axial load on the brace is transferred to the chord as two concentrated forces. At the
development of the design formula, they calculated the plastic moment capacity (according to
the model at point A and B the moment reaches this limit value), which was equilibrated by the

bending moment coming from the axial forces at the saddles of the brace.
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Figure 2.4. The ring model developed for the chord plastification
(Wardenier, Kurobane, Packer, Vegte, & Zhao, 2008)

In the recent past, (Lesani, Bahaari, & Shokrieh, 2013) presented their work about T and
Y joints subjected to axil compressive loads. Here a parametric model, made of shell elements
was developed to investigate the behaviour of the connection. Here, the angle between the brace
and chord varied between 30° to 90°, and for the different geometries they determined the load-
displacement diagrams together with the study of the ovalization, which is the characteristic
plastic deformation of the chord circumference at the brace intersection. The applied finite

element model can be seen on (Figure 2.5).

Figure 2.5. Numerical model of the investigated T and Y joints (Lesani, Bahaari, & Shokrieh, 2013)
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2.4. Design methods

The currant valid European standard, the Eurocode contains the necessary design
formulae of hollow section joints in (Eurocode 3 EN 1993-1-8:2005 (E), 2005). At this part, a
wide range of connections can be found. Before the calculation of the resistances, the EC
prescribe some geometric restrictions corresponding to the hollow sections, but with this step
the general six failure modes can be reduced to only two mode (Chapter 2.2). The design
formulae are available for axial load, in plane and out of plane bending, furthermore it provides
an interaction formula for the case of combined loading. It is very important that this part does
not contain the necessary modifications for the case of high strength steels, it is in (Eurocode 3
EN 1993-1-12:2007:E, 2007), the further details can be found in Chapter 3.1.2. Beside the
Eurocode, in the practice the recommendations of the CIDECT (Construction with Hollow Steel
Sections) design guide is also widely used, although this is not official, only a proposition. In
case of hollow section T joints, practically it offers the same formulae for the design resistances

as the Eurocode.
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3. Design method according to the EC3-1-8

In the Eurocode 3-1-8, Chapter 7 deals with the hollow section joints, involving many
types of members (CHS, RHS, SHS, gusset plates, I girders, etc.). The purpose of this part is to
give a brief review on the design aspects on these connections together with the resistance
formulae, taking into account the specific limitations due to the high strength steel. Generally,
if we consider the hollow section joints, we can distinguish many types, such as K, T, KT, N,
X, etc. joints, but in this work, from this large set I will focus only to T connections made of

CHS members.

3.1. Review on the design of T joints according to the Eurocode
It is worth to mention that this chapter of the standard provides design formulae to static
resistance, but does deal with the fatigue problems, the high strength steels and the member
resistances. The first one is not considered in this study, but if we apply HSS steels we must
use the prescriptions of the EC-3-12, and in case of axially loaded members (chord or brace)

the EC-3-1-1, beside the following design aspects, formulae.
3.1.1. Geometric restrictions

Before the actual design of the joints, the EC prescribes some geometric restrictions
(Eurocode 3 EN 1993-1-8:2005 (E), 2005) on the shape of the members and connections, which
provides the validity to the usage of the resistance formulae. Generally, these constraints are
not so strict, the applicable dimensions are within a large scale. Now let us summarize the
specific geometric restrictions:

[1] the nominal wall thickness of the hollow sections should be larger or equal with

2.5 mm, and in case of the chord less than 25 mm

[2] the compressed members of the joint should satisfy the requirements for Class 1

or Class 2 according to the (Eurocode 3 EN 1993-1-1:2005 (E), 2005)
[3] the diameter of the brace to the chord ratio should be between 0.2 and 1.0:
02<d,/dy <10 (3.1)
[4] the diameter to thickness ratio of the chord should be between 10 and 50:
10 < dy/ty <50 (3.2)
[5] the diameter to thickness ratio of the brace should be less than 50:

d,/t, < 50 (3.3)
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3.1.2. Design formulae

As it was mentioned, beside the formulae of the Eurocode 3-1-8, the design resistances
of the brace and chord members should be determined according to the (Eurocode 3 EN 1993-
1-1:2005 (E), 2005) for axial loading. In this work I consider only such assemblies which
satisfies the geometric (in the engineering practice, usually these constraints are easy to keep)
and section Class requirements, thus only the flexural buckling failure mode should be

considered beside the following formulae in case of the compression members.

According to the applied material grade, the static design resistance should be reduced by
a factor prescribed in the standard. If it is between S355 and S460, this factor is 0.9 (Eurocode
3 EN 1993-1-8:2005 (E), 2005), but if we apply HSS (greater than s460), according to
(Eurocode 3 EN 1993-1-12:2007:E, 2007) this reduction factor changes to 0.8. This procedure
takes into account the larger deformations in case of chord plastification (thus for the other
failure modes this reduction is quite conservative). In 2004, the researchers verified the 0.9
value by laboratory tests, and recommended the 0.8 value for higher steel grades, but it is only

an assumption, it has not been proved yet (Gogou, 2012).

Now, let us consider the different resistance formulae for the case of T joints, consist of
Circular Hollow Section members, made of HSS. As it was mentioned in Chapter 1.2, only two
failure modes are needed to be taken into account (if we keep the geometric prescriptions),
namely the chord face failure and punching shear failure, thus only these modes are considered

in this part. The notation of the joint can be seen on (Figure 3.1).

Figure 3.1 Notation of a general T joint
(Wardenier, Kurobane, Packer, Vegte, & Zhao, 2008)

Axial resistances

[1] In case of chord face failure, the axial resistance is:

0,2 2

Yo kpfyots 0,8

———— (2,8 +14,2p% , .
sin 60, 28+ B )yMS (3-4)

N1,Rd =
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where v is the half diameter to thickness ratio:

TN (3.5)
fyo is the yield strength of the chord material, ¢, is the thickness of the chord, 0.8 is the reduction

factor correspond to the high strength steel, yys is the partial safety factor for hollow section

joints (its value is 1.0), B is the ratio of the mean diameter of the brace to the chord:

B—%, (3.6)
and ky, is the chord stress factor:
k, = min(1 — O,3np(1 + np), 1) for compression, and 1 for tension, (3.7)

where n,, is the ratio of the maximum compressive stress in the chord to the yield strength:

o
n, = 0Fd (3.8)
f50

[2] For the case of punching shear failure, the axial resistance formula:

: f50 1+sin6, 0,8
if dl < dO - Zto: Nl,Rd = ﬁtondl 2 sin2 91 YMS. (39)

In plane and out of plane moment resistances

In case of T connections, the two types of moment loading can be seen on (Figure 3.2).

Mip
N Mop
"Wl qu. o
__TliRe
T T———— 1" ——— D

Figure 3.2. In plane and out of plane moments in case of T connections (Wardenier, Kurobane,
Packer, Vegte, & Zhao, 2008)

[1] Inplane moment resistance in case chord face failure:

fyOt(Z) dl
sin 91

0,8
Mip,l,Rd = 4,85 ﬁﬁkp M . (3.]0)

[2] Out of plane moment resistance in case chord face failure:

M _fpotods 2,7 08
op1Rd = "5 0, 1+0,81B Pyys

(3.11)
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[3] Inplane moment resistance for the case of punching shear failure:

" _ fyotedi 1+ 3sin6, 0,8
ip,1L,Rd — \/’g 4 sin2 91 Vs ’ (312)

[4] Out of plane moment resistance for the case of punching shear failure

. _ fyotodi 3 +5sin6; 0,8
op,L,Rd = V3 4sin?260; yus

(3.13)

3.2. Design resistances of the investigated T joints according to the standard
The object of this study is to improve the design resistance formula of these T joints, but
for this purpose, a wide range of hollow section dimensions should be investigated. In the
practice, there are only a few manufacturer, who produce high strength steel CHS sections,
from them I chose the products of the Continental Steel Pte Ltd. From the homepage of this
company, the available dimensions can be downloaded (Cold Formed Hollow Sections, 2013).
According to this brochure, I composed fourteen assemblies (Table 3. 1), applying four different

chord sizes and five different brace sizes.

Diameter of Thickness of Diameter of Thickness of
the chord the chord (t9) the brace the brace (t1)

(do) [mm] [mm] (d1) [mm] [mm]

[1] 508 25 406 20
[2] 508 25 323.9 14
[3] 508 25 244.5 12
[4] 508 25 168.3

[5] 508 25 101.6 5
[6] 406 20 323.9 14
[7] 406 20 244.5 12
[8] 406 20 168.3 8
[9] 406 20 101.6 5
[10] 323.9 14 244.5 12
[11] 323.9 14 168.3 8
[12] 323.9 14 101.6 5
[13] 244.5 12 168.3 8
[14] 2445 12 101.6 5

Table 3.1. The fourteen applied assemblies (own source)

In the numerical model, I use relatively small brace lengths, thus in this way the flexural
buckling failure mode can be avoided, only the compression/bending moment resistance of the

brace cross section should be calculated. In the following, I will check the geometric restrictions

10
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and calculate the design resistances for the first assembly in detail, after that I summarize the

results in tabulated form for all the others.

3.2.1. Checking of the geometric constraints for the first assembly

Initial data
dy = 508 mm to = 25mm
d; = 406 mm t; = 20mm
fyo = 690 MPa VMS = 1
dq do
=—=20,799 y=——=12,70
A do 2t,
0, =90° Ymo =1

Checking of the thickness of the chord and brace
t; =2mm, ty = 2mmandty, < 25mm, (3.14)
where all thicknesses are within the allowable range.

Checking of the section Class

The limit of the Class 2:

7062 = 70222 = 23,841 > A 20,300,
fo f (3.15)

thus, this section is Class 3.

Checking the diameter of the brace to the chord

d
0,2 <-1=10,799 < 1,0. (3.16)
do
Checking the diameter to thickness ratio of the chord
do
10 < PN = 20,320 < 50. (3.17)
0
Checking the diameter to thickness ratio of the brace
dy
— = 20,300 < 50. (3.18)

t

11
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3.2.2. Determine the static resistances for the first assembly
Design axial resistance

[1] Chord face failure

As we can see from equation (3.7) and (3.8), k, is the function of the maximal
compressive stress in the chord, thus the axial normal force, and in this case the design axial
resistance. Practically, it means that we have to use an iterative method to calculate the
resistance of the joint. Firstly, let us determine the maximal normal stress in the chord. The
compression of the brace results in the bending of the chord, thus for this purpose the classical
equation of the elementary strength of materials is used (of course, this is an approximation).
The maximal bending moment from a concentrated load (applied at the middle of the girder),

and the corresponding normal stress in the chord:

Fl  Njgql Mo gq do
Mypg = = = —=2 Ooga = —227, 3.19
0Fd = g g 0,Ed I 2 (3.19)

where [ is the length of the chord' and I, is the secondary moment about any axis which passes

through the centre of gravity:

I, = : (3.20)

From this, the value of k,, and n,, can be determined:

Nlel dO Nlel dO Nlel dO
= d _— = i 1— d —1 d —1. 1.
™ =g, 26, - M0 g o \ U er 28, ) (3:21)

Now, if we substitute (3.27) into (3.4):

Niral dy Niral dy YO'kafyot(z) 0,8
Nirg=|1-03—= 1 ' 2,8 + 14,22 . (3.22)
LRd ( 8L, 2f, T8l 2f 50 sin 0, 28+ B)yMS

By this step, we get an implicit formula for the axial resistance, thus we need to apply iteration
technique. I solve this problem in MS Excel 2013, where the last value of the k,, reduction

parameter:

kp.iase = 0,9358. (3.23)

Y In case of compression it is 5-dp. The reason and determination of this size can be found in Chapter 4., and of
course the same dimensions are applied in the numerical simulations.

12
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Finally, the axial resistance, according to (3.4):

yo'zkpfyot(z) P 0,8
Ni racff = W (2,8 + 14,2 )YMs = 6093,29 kN. (3.24)

[2] Punching shear failure

In this case, we do not need any special solution methodology, only the application of the design

formula. Firstly, let us the check the necessity of this failure mode:
thus we must take into account the punching shear failure:

fyo 1+sin®, 0,8
N1 Rrdpsf = ﬁtoﬁ

=10162,35 kN. .2
1 Zsin2 91 YMs (3 6)

[3] Normal resistance of the brace

Because the flexural buckling is not considered, the compressive resistance of the brace is equal
with the tensile resistance, namely:
) -(%-o)
2 2 )"

NiRdnr = -~ fyo = 16734,64 kN. (3.27)

The final axial resistance is smallest one from the previously determined values:

Nirage = Min(N; race; Nirapsts Nirdnr) = 6093,29 kN. (3.28)
Design in plane moment resistance
[1] Chord face failure

Similarly to the previous case, this failure mode is also the function of the maximum
normal stress in chord, so that I apply the same method to calculate the bending moment
resistance. The in plane bending of the joint leads to the concentrated bending of the chord. The
maximal bending moment from a concentrated moment (applied at the middle of the girder)
and the corresponding normal stress in the chord:

Mip,1,rd S Mo,gq do
4 0.Ed L, 2°

Mo ga = (3.29)

13
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Now, the value of k,, and n,:

Mip1ra d Mip1ra d Mogq d
n, = —22R420 G~ min (1 — 0,3 —2LRd o (1 + 2L ) 1). (3.30)
0

P74l 26y, Al I, 2f,

Now, if we substitute (3.23) into (3.10) the moment resistance, we get:

Mip1,ra do Mip1,ra do fyot(z)d1 0,8
My ipg = 1— L 1 L 4,852 .
ip,1Rd TR TN Ry BT sin 6, JrB yus (330
x yo x yo

The final resistance after the iteration:

Mip, 1 ractr = 4,85 yfn(’alfﬁk = 1730,58 kNm. (3.32)

[2] Punching shear failure
The moment resistance for the case of punching shear:

fyotodi 1+ 3sin@, 0,8

M; = = 1313,32 kNm. 3.33
ip,1,Rd.psf \/§ 4 sin2 91 Vs m ( )
[3] Bending resistance of the brace
The plastic section modulus of the brace:
D\’ _.D, (D 2 (D
O raly GmaGo|
=2 — = 2982 :
Yot 2 3nm 2 3 982,59 e,
thus the bending resistance:
Wplfyo
Mip 1,rdbr = Y = 2057,98 kNm. (3.35)
Mo

The final resistance is the smallest of these three resistances:
Mip1.rdec = Min(Mip1racrs Miparapst Mipirdbr) = 131332 kNm.  (3.36)
Design out of plane moment resistance
[1] Chord face failure

In this case, I neglect the normal stresses coming from the warping of the chord due to
the out of plane bending, and use / for the value of k,. Thus, the out of plane moment

resistancefor chord face failure:

14
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M _fotody 27 e 98 _ cee08 kN 3.37
OPLRACI = G o T 081p Py o008 Nm (337

[1]  Punching shear failure

y _ fyotodf3 +sin6, 0,8
op,1,Rd.psf = V3  4sin?60; yys

= 1641,65 kNm. (3.38)

[2] Bending resistance of the brace

The bending resistance of the section is exactly the same as in case of in plane bending:

B Wplfyo B
Mop,1,Rdbr = Yoro = 2057,98 kNm. (3.39)

Finally, the out of plane moment resistance:

Mop,l,Rd,Ec = min(Mop,l,Rd.cff; Mop,l,Rd.psf; Mop,l,Rd.br) = 586'08 kNm. (3.40)
3.2.3. Tabulated results for all the assemblies
Checking of the geometric constraints

The proper geometric dimensions can be found in (7able 3.1), now only the results (Table

3.2) of the geometric checking are presented:

t1>2 to=>2 to <25 0,2 < 10< di/t1 <

di/t; Class 2

mm mm mm di/do <1 do/to <50 50
[1] Yes Yes Yes 20,30 Yes Yes Yes Yes
[2] Yes Yes Yes 23,14 Yes Yes Yes Yes
[3] Yes Yes Yes 20,38 Yes Yes Yes Yes
[4] Yes Yes Yes 21,04 Yes Yes Yes Yes
[5] Yes Yes Yes 20,32 Yes Yes Yes Yes
[6] Yes Yes Yes 23,14 Yes Yes Yes Yes
[7] Yes Yes Yes 20,38 Yes Yes Yes Yes
[8] Yes Yes Yes 21,04 Yes Yes Yes Yes
[9] Yes Yes Yes 20,32 Yes Yes Yes Yes
[10] Yes Yes Yes 20,38 Yes Yes Yes Yes
[11] Yes Yes Yes 21,04 Yes Yes Yes Yes
[12] Yes Yes Yes 20,32 Yes Yes Yes Yes
[13] Yes Yes Yes 21,04 Yes Yes Yes Yes
[14] Yes Yes Yes 20,32 Yes Yes Yes Yes

Table 3.2. Results of the geometric checking (own source)
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Axial resistances

Nra,etf [KN] NRa,pst [KN] Nrd,nr [KN] Nra,ec [KN]
[1] 6093,29 10162,36 16734,64 6093,29
[2] 4553,97 10134,20 9404,78 4553,97
[3] 3275,47 7649,93 6047,88 3275,47
[4] 2359,39 5265,78 2779,86 2359,39
[5] 1829,00 3178,86 1047,00 1047,00
[6] 3818,18 8107,36 9404,78 3818,18
[7] 2691,34 6119,94 6047,88 2691,34
[8] 1801,64 4212,62 2779,86 1801,64
[9] 1276,96 2543,09 1047,00 1047,00
[10] 1799,57 4283,96 6047,88 1799,57
[11] 1139,39 2948,84 2779,86 1139,39
[12] 729,31 1780,16 1047,00 729,31
[13] 1105,25 2527,57 2779,86 1105,25
[14] 641,16 1525,86 1047,00 641,16

Table 3.3. Axial resistances of the investigated assemblies (own source)

In plane moment resistances

Mgag,crr [KNm] MRa,pst [KNm] MRd,mr [KNmM] MRrg,ec [KNm]

[1] 1730,58 1313,32 2057,98 1313,32
[2] 1101,45 835,87 928,36 835,87
[3] 627,63 476,30 447,98 447,98
[4] 297,38 225,68 141,96 141,96
[5] 108,38 82,24 32,22 32,22

[6] 881,59 668,70 928,36 668,70
[7] 502,35 381,04 447,98 381,04
[8] 238,02 180,54 141,96 141,96
[9] 86,74 65,30 32,22 32,22

[10] 329,39 266,73 447,98 266,73
[11] 156,07 126,38 141,96 126,38
[12] 56,88 46,06 32,22 32,22

[13] 142,55 108,32 141,96 108,32
[14] 51,95 39,48 32,22 32,22

Table 3.4. In plane moment resistances (own source)
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Out of plane moment resistances

MgRag,crr [KNm] MRd,pst [KNm] MRgd,mr [KNm] MRg,ec [KNm]
[1] 468,87 1313,32 2057,98 468,87
[2] 359,42 835,87 928,36 359,42
[3] 260,64 476,30 447,98 260,64
[4] 172,35 225,68 141,96 141,96
[5] 100,32 82,24 32,22 32,22
[6] 239,31 668,70 928,36 239,31
[7] 172,10 381,04 447,98 172,10
[8] 112,81 180,54 141,96 112,81
[9] 65,12 65,80 32,22 32,22
[10] 87,60 266,73 447,98 87,60
[11] 56,83 126,38 141,96 56,83
[12] 32,47 46,06 32,22 32,22
[13] 43,58 108,32 141,96 43,58
[14] 24,52 39,48 32,22 24,52

Table 3.5. Out of plane moment resistances (own source)

In (Table 3.3), (Table 3.4) and (Table 3.5) the most critical failure modes are highlighted,
because at the numerical simulations the purpose is to determine the resistance of the
connection, but in many cases the strength failure of the brace overtakes the failure of the joint.
Thus, in the finite element simulations only those assemblies are considered, where the
resistance of the brace is larger than the other two resistances, or the difference is less than 25
%. For example, in (Table 3.4) at the third assembly the brace failure precedes the punching
failure, but they are very close to each other, the difference is about 1 %. In this case, the real

failure mode cannot be predicted by the standard.
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Taking into account this selecting process, in the numerical simulations the following

assemblies will be considered during the different loading cases (N, My, Mo):

Diameter of Thickness of Diameter of Thickness of
the chord  the chord (to) the brace thebrace (1) N M; My

(do) [mm] [mm] (d1) [mm] [mm]

[1] 508 25 406 20
[2] 508 25 323,9 14
[3] 508 25 244,5 12
[4] 508 25 168,3

[5] 508 25 101,6 5
[6] 406 20 323,9 14
[7] 406 20 244,5 12
[8] 406 20 168,3 8
[9] 406 20 101,6 5
[10] 323,9 14 244,5 12
[11] 323,9 14 168,3 8
[12] 323,9 14 101,6 5
[13] 244,5 12 168,3 8
[14] 244,5 12 101,6 5

Table 3.6. The selected for assemblies for the numerical simulations (own source)
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4. Numerical modelling technique

The aim of this study is to investigate HSS T joints, utilizing different geometrical
dimensions, and compare the numerical results with the design resistances of the standard. For
this purpose, a parametric numerical model is developed in Ansys 14.5, where the main
constituents of the model are the chord, brace and the weld region. In this chapter, firstly the
development of the geometry, after that a convergence test and the validation process are

discussed.

4.1. Development of the geometry
4.1.1. Joint geometry

For the creation of the geometry, instead of shell only volume elements are used, because
in this way the weld region can be modelled correctly. The different constituent parts of the

joint can be seen on (Figure 4.1).

Figure 4.1. The basic constituents of the T joint (own source)

Firstly, the geometry of the chord is created, after that perpendicular brace. Those parts
of the brace, which were located inside the chord are deleted, but during this process, the chord
remains intact. In this figure, we can see that the volume of the chord and brace are divided into
some parts, because at the inner parts of the joint (closer to the intersection line) a finer mesh

will be used in order to obtain adequate results, but at the outer parts only a coarse one to reduce
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the computational time. The weld region is modelled separately after the tubes, and then added

to the inner volumes. The geometry of the full joint can be seen on (Figure 4.2).

Figure 4.2. The full geometry of the joint (own source)

4.1.2. Modelling of the weld

Basically, in case of tubular joints two welding methods are utilized in the practice. The
most widely spread type is the full penetration weld (for example in (API, 2005)), which means
that the weld around the intersection of the chord and brace should be fully penetrated. Another
option is when the weld starts with full penetration at the crown toe and gradually becomes a
fillet weld at the crown heel. In this study, the first methodology is considered, where the weld
region which locates outside of the brace is very small, thus it has no significant effect on the
static strength. The effect of the weld size on the resistance is not part of this work, thus a

uniform throat thickness is applied during the simulations (@=5 mm).

At the creation of the weld, firstly I calculate the intersection point of the weld and chord,
obtaining symbolic results (in the function of throat thickness and the angle between the weld

and brace). After that, the three lines which enclose the weld as a volume region are created.
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Now, the areas between the lines are easy to create, and finally the volume, which is the weld

region itself. The final shape of the weld can be seen on (Figure 4.3).

{ ™Y

A »,

Figure 4.3. The final form of the region with two sections wn source)
4.1.3. Applied material model

In case of these steel structures the basic material models are the linear elastic, linear
elastic-perfectly plastic and the linear elastic-isotropic hardening models. In this work the
second model is utilized (Figure 4.4), but with a very small slope on the plastic region
(E1/10000) in order to promote the numerical convergence. The Young’s modulus on the elastic

part is 200000 N/mm?, and Poisson’s ratio is 0,3 (Eurocode 3 EN 1993-1-1:2005 (E), 2005).

51IG

(x10**-2)

u] .25 .5 .75 1 1.25
125 375 _B25 875 1.125

EPBE
Figure 4.4. The applied material model wn source)
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4.2. Convergence test, the finite element mesh generation
In this numerical model only volume elements are applied, namely SOLID187 3D 10-
Node Tetrahedral Structural Solid Elements. The geometry of this finite element can be seen

on (Figure 4.5).

Figure 4.5. The applied SOLID187 finite element (SOLID187 Element Description, 2013)

At the territory of finite element modelling, the applied mesh size is always a critical point. To
determine the adequate sizes, I perform a convergence test, which means that I utilize different
mesh sizes, practically finer and finer mesh, till the mechanical response of the structure
becomes repeatable. Because this model needs a very large number of elements for the correct
modelling, I do not use uniform mesh size, since it would lead to an uneconomical solution
(requires larger computer capacity and computational time). At this model, two different mesh

sizes are applied, according to (Figure 4.6).

Region

Region Il

Figure 4.6. The different mesh size regions (own source)
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At the middle parts of the joint, such as the weld region and some parts of the chord and
brace a finer mesh is used, and the outer regions have a coarser mesh size. In the convergence

test, five different mesh size sets are applied (Table 4.1).

First set Second set Third set Fourth set Fifth set

l. I. l. I. l. I. l. I. l. I.
17,5 52,5 15 45 12,5 37,5 10 30 7,5 22,5

Table 4.1. The applied mesh size sets during the convergence test (own source)

During this procedure, the brace of the T joint is subjected to compressive force, and at
every timestep, the value of the force and axial displacement (parallel with the axis of the brace)
are recorded. In this case, the actual values are not important, only the characteristic of the
curves, which reflect the mechanical response. If the difference between the “current” and the
“previous” diagrams is relatively small, the “previous” mesh size is adequate for the following
numerical simulations. The force-displacement diagrams, originated from the different mesh

sizes can be seen on (Figure 4.7).
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——75.225 ——10_30 12.5 37.5 =15 45 ——17.5 52.5

Figure 4.7. The results of the convergence, the force-displacement diagrams (own source)

From this diagram, we can see that the first and second (fourth and fifth set) curve are practically

the same, thus the fourth mesh size set is used in the further calculations, namely 10 mm at the
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inner parts and 30 mm at the outer regions. After this testing method, the finite element mesh

can be created, (Figure 4.8) shows the result of this process, the applied mesh.

Figure 4.8. The finite element mesh of the investigated T joint (own source)

4.3. Boundary conditions
In the numerical simulations, at the ends of the chord I supported the nodes against

translational motion in X, Y and Z directions, which results in a clamped support (Figure 4.9).

Figure 4.9. The applied clamped support at the ends of the chord (own source)

At the end of the brace, according to the applied external force system, different boundary
conditions are applied. In case of compression, the end of the brace is restrained against in and
out of plane translations, furthermore, in case of in plane bending the out of plane motions and

in case of out of plane bending the in plane motions are inhibited. This type of support system
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helps to avoid the local buckling failure of the brace, which would lead to wrong results if our
aim is to determine the resistance of the joint. The applied external loads together with the

boundary conditions at the end of the brace can be seen on (Figure 4.10).

r ™\

compression

r ™\

in plane bending

out of plane bending
L. o

Figure 4.10. The applied boundary conditions at the end of the brace (own source)

The length of the chord has an influence on the internal forces at the intersection of the brace
and chord. To obtain correct results, this phenomena should be investigated, and then minimize
its effect. For this purpose, the stresses in a point, which locates on the top surface of the chord
(according to (Figure 4.9)) and near to the intersection line is studied for the case of different
chord lengths. The results of this parametric simulation can be seen on (Figure 4.11), where the
von Mises stresses are illustrated in the function of chord length. Of course, the magnitude of
the stresses is not relevant in this case, only the characteristic of the received curves. From this
figure, we can see that in case of bending this effect tends to zero after a certain value of the
length, in this study it is chosen to 9-do according to the diagram (in this test, the diameter of
the chord was 500 mm, thus the 4500 mm corresponds to this size). If we consider the
compression force, the stress is increasing linearly with the chord length, thus in this case the
lower length is the more advantageous to reduce this effect. On the other hand, below a certain

(small) size we eliminate the developing of the chord face failure, so taking into account these
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aspects the applied length size is 5-do for the case of compression (it corresponds to the 2500

mm on the figure).

von Mises stress [MPa]

80
70
60
50
40
30
20
10

500 1500 2500 3500 4500

Length of the chord [mm]

In plane bending Out of plane bending Compression

Figure 4.11. The effect of the chord length (own source)

The length of the brace should be relatively small, because in this way we can avoid the flexural

buckling of this member. This length is set to 2-d; during the numerical analyses. The applied

dimensions can be seen on (Figure 4.12).

Figure 4.12. The length of the chord and brace in case of compression (bending) (own source)

4.4. Validation of the finite element model

The validation of the finite element model is based on (Lesani, Bahaari, & Shokrieh,

2013), where the results of earlier experiments are utilized. A very large number of tests were

performed between 1964 and 1991 on tubular joints, and stored in database. In this case beside
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the experimental, the numerical results of the article are also available. The investigated
specimen was subjected to compressive force during the experiment, and had hinged supports
at the ends of the chord. The proper geometric dimensions and the yield strength are listed in

(Table 4.2), where the original numbering of the joints is applied.

Joint L.D. do [mm] to [mm] d{ [mm] t; [mm] Lchora [mm] Fy [Mpa]

J10 457,6 4,9 165,2 4,7 2286 392

Table 4.2. The main geometric sizes and material properties of the specimen
(Lesani, Bahaari, & Shokrieh, 2013)

The length of the brace is the half of the chord, and during the experimental and numerical tests
the in and out of plane translations of the brace end were restrained, such as in this study. I
applied the same material model as in the article, namely linearly elastic-perfectly plastic with
200000 N/mm? Young’s modulus and 0,3 Poisson’s ratio. At the end of the chord, in this
simulation instead of the fixed support a hinged one is used (as in the experiments). Because I
use volume elements, which only have translational degree of freedoms, I supported only a few
nodes to allow the rotation of the model. The exact finite element model together with the

boundary conditions, which are used during the validation process can be seen on (Figure 4.13).
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Figure 4.13. The applied finite element model for the validation (own source)

As a result of the laboratory experiments, the load bearing capacity is available, thus this
value is the base of the validation. In the finite element software, the arc-length method is used
to calculate the capacity for the nonlinear analysis. The failure criteria is based on the force-
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displacement diagram, namely the load-bearing capacity is defined as the peak load on the

diagram, after this value the curve starts to decrease, and that is why this method is utilized,

because it is able to determine this region. The result of the simulation can be seen on (Figure

4.14), where the displacement values correspond to the end of the brace.

Force [kN]
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Result of my simualtion Experimental result Earlier FEM results

Figure 4.14. The force-displacement diagram of the validation (own source)

Now let us compare the load-bearing capacities coming from the different sources (7able

4.3). We can see that the difference between the experimental and my numerical result is about

14 %, but the exact material properties were not recorded during the experiments.

Consequently, the assumed values of the validated finite element model were used in my

simulation,

which resulted in a very low (about 4 %) deviation between the numerical models,

thus this model has been successfully validated.

Joint Test result Result of M. FEM result
L.D. [KN] Lesani et al. [kN] [KN]
J10 98,1 109,28 114,83

Table 4.3. Comparing the results of the validation process (own source)
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5. Development of design formulation

The aim of this chapter is to propose a modified design formula for the joint resistance,
taking into account the different loading conditions. For this purpose, firstly I perform
numerous parametric simulations for compression, in plane and out of plane bending utilizing
the selected assemblies (Table 3.6), after that I evaluate the results and determine the modified

resistance formulae.

5.1. Parametric simulations

5.1.1. Analysis methodology

Similarly to the validation process, the arc-length method is used for the nonlinear
analysis. In this study, the material and geometrical nonlinearities are considered. To reduce
the computational time, the solver is terminated after the first limit point is reached, thus the

force applied before the termination will be the load-bearing capacity.
5.1.2. Results for the first assembly

For the first assembly, I show the results in details, after that I summarize them in
tabulated form. In case of compression, the characteristic of the failure process is the force-
displacement diagram, which can be seen on (Figure 5.1), where the received curve reflects
very well the linearly-elastic behaviour in case of lower loads, and after that the development
of the plastic mechanisms. The investigated point here also the end of the brace. The load-

bearing capacity is §706,1 kN, which is about 42 % higher comparing to the EC resistance.

10000
9000
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Force [kN]

4000
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0
0,00 5,00 10,00 15,00 20,00 25,00

Displacement [kNm]

Figure 5.1. The load-displacement curve for the first assembly (own source)
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The deformation and plastic strains can be seen on (Figure 5.2), where the left figure
(deformation) shows properly the plastification of the chord (chord face failure), but at the

failure only the close region around the intersection line is in plastic state.

Figure 5.2. The deformation (left) and plastic strain (vight) figures for compression

(own source)

In case of bending, instead of the force-displacement diagram I represent the moment-
rotation curves (Figure 5.3). In both cases (in and out of plane bending), the rotation is based
on the displacement of the middle line of the brace, which is calculated from the average of two
point locate on the diameter of the brace (we get these points at the end cross section of the

brace if we intersect it with the axis of the moment vector).

2500,00

2000,00

1500,00

1000,00

Moment [kNm]
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0,00
0 1 2 3 4 5 6 7 8 9

Rotation [°]

in plane bending out of plane bending

Figure 5.3. Moment-rotation curves for the first assembly (own source)

In case of these figures, we can recognize the characteristic linear-elastic-perfectly plastic
behaviour again, and of course for out of plane bending the resistance is lower, in this case

about with 25 %. The in plane moment resistance is 2/74,31 kNm (about 61 % higher than EC
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resistance), and out of plane moment resistance is /620,22 kNm, which is about 245 % higher
comparing to the standard resistance (the necessary conclusion is at the end of the Chapter
5.1.2). The deformation and plastic strains of the first assembly can be seen on (Figure 5.4) and

(Figure 5.5).

Figure 5.4. The deformation (left) and plastic strain (right) figures for in plane bending

(own source)

In case of the first figure, the punching shear failure mode appears, as the Eurocode
predicted by the resistance formulas, but in case of the out of plane bending we can also
recognize the punching shear failure, in contract to the EC chord face failure prediction. The
resistance according to the Ansys also much closer to the this resistance, which means that
either the chord face failure formula is too conservative, or the model is wrong, although in
case of the compression and in plane bending it reflects well the failure modes, thus this problem

needs further investigation.

Figure 5.5. The deformation (left) and plastic strain (right) figures for out of plane bending

(own source)
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5.1.3. Tabulated results for all the assemblies

For the selected assemblies | summarized the results in (Table 5.1), (Table 5.2) and (Table

5.3) together with over-capacity, according to the simulations.

Axial resistances

Nra,ec [KN] Nr,rEm [KN] NRra,Ee/NR,FEM [-]

[1] 6093,29 8706,10 1,43
[2] 4553,97 6359,78 1,40
[3] 3275,47 4591,88 1,40
[4] 2359,39 2630,80 1,12
[5] -

[6] 3818,18 5622,79 1,47
[7] 2691,34 3815,41 1,42
[8] 1801,64 2558,63 1,42
[9] -

[10] 1799,57 2694,64 1,50
[11] 1139,39 1667,97 1,46
[12] 729,31 1034,28 1,42
[13] 1105,25 1679,43 1,52
[14] 641,16 962,51 1,50

Table 5.1. Results of the parametric simulations for compression (own source)

In plane moment resistances

MRg,ec [KNm] Mg, rem [KNm] NRra,Ec/NR,FEM [-]
[1] 1313,32 2114,31 1,61
[2] 835,87 1322,98 1,58
[3] 447,98 735,98 1,64
[4] -
[5] -
[6] 668,70 1091,35 1,63
[7] 381,04 635,03 1,67
[8] -
[9] -
[10] 266,73 431,42 1,62
[11] 126,38 214,21 1,70
[12] -
[13] 108,32 186,92 1,73
[14] 32,22 58,77 1,82

Table 5.2. Results of the parametric simulations for in plane bending (own source)
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Out of plane moment resistances

MRg,ec [KNm] Mg, rem [KNm] NRra,E¢/NRr,FEM [-]

[1] 468,87 1620,22 3,46
[2] 359,42 1028,91 2,86
[3] 260,64 654,21 2,51
[4] -

[5] -

[6] 239,31 827,93 3,46
[7] 172,10 554,50 3,22
[8] 112,81 247,08 2,19
[9] -

[10] 87,60 550,83 6,29
[11] 56,83 204,64 3,60
[12] 32,22 65,42 2,03
[13] 43,58 166,12 3,81
[14] 24,52 57,79 2,36

Table 5.3. Results of the parametric simulations for out of plane bending (own source)

First of all, in case of compression the over-capacity of the fourth assembly is very small
comparing to the other ones, thus this one needs more analysis. From the plastic strain figure
(Figure 5.6), we can recognize the failure of the brace, thus this result should not be used for

the further investigations.

Figure 5.6. Plastic deformations of the fourth assembly (own source)

Furthermore, in case of out of plane bending, the deviations between the numerical and
standard results are very large (in all cases the over-capacity is higher than 100 %), thus this

loading case is not considered at the modification of the design formulae.
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5.2. Modification of the design formulae
As it was mentioned in the previous chapter, only the axial and in plane bending is
considered here. At the modifications, firstly I analyse the standard design formulae, then
propose some modifications in that, and finally determine the introduced parameters with an

optimization process, taking into account my numerical results.
5.2.1. Axial resistance

In case of compression, for all the assemblies the chord face failure is the critical, thus
only this resistance formula can be modified according to the finite element results. The original

standard formula, without the partial safety factor and reduction factor:

VO'Z kpfyO tg

di\
— ). 5.1
sin O, <2'8 +14,2 <d0> ) 6D

The common in this formula, and the formulae for X, K and N joints is the following term:

Ngq =

m, (5.2)

sin 04
thus in the modified formula I keep this term in this form. If we take a look at the actual failure
mode (according to the experiments, for example on (Figure 2.1), it comes oft around the weld,
not around the brace, as the design formula implies. In this study a weld with a=5 mm was
applied during the numerical simulations, which angle (o) to the brace is 30°, so its length
parallel with the chord (Figure 5.8):

__¢d (5.3)
cos(a)’

ac

Besides taking into account this modified size I introduce some parameters in the original

formula in the following way:

k,fyoté d, + 2a,\*
Nramoa = v™* ( pfy_o 0) (Xz + X3( : dO_C) ) (5.4)

sin 60,

Practically, this is an optimization problem, where the optimal value of the x;, x2, x3 and x4

parameters should be determined, taking into account the numerical results:
f(x1,x2,x3,%4) = Nramoa (X1, X2, X3, X4) — Npa,pem = min!. (5.5)

In this formula, f is the function to be minimized, Nrg 04 18 the modified axial resistance

function and Ngg rpy represents the results obtained by the numerical simulations. There are
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different ways to solve this problem, now the nonlinear least squares method is applied in the

Matlab R2013a mathematical software. The received parameters are shown in (Table 5.4).

X1 X2 X3 X4

0,0999  4,8827 20,0093  2,4558

Table 5.4. The received parameters to the modified axial resistance formula (own source)

Thus, the proposed modified formula for axial compression:

k,f,ot2 dy + 2a,\>*°8
N = 100999 ([ P2Y2 D V(48827 + 20,0093 (—C) .
Rd,mod 14 ( sin 91 + dO (5.6)

After this, the coefficient of determination (Cod) are calculated so that to characterize the

exactness of the approximation functions. The general formula of this index-number:

X4 -9)°
Xy -y

In this equation, y refers to the measured data, y is the fitted data and y is the mean of the

R?=1 (5.7)

observed data. This R’ index-number is always between zero and one, and the closer to the one
this number the more exact the regression. Now, the received resistances (from the EC, Ansys

and the modified formula) and Cod value are summarized in (Table 5.5).

Nra,ec [KN] Nr,rEm [KN] Nr,mod [KN] CoD

[1] 6093,29 8706,10 8773,65
2] 4553,97 6359,78 6372,49
[3] 3275,47 4591,88 4586,10
[6] 3818,18 5622,79 5564,10
[7] 2691,34 3815,41 3802,85
[8] 1801,64 2558,63 2587,21 0,9996
[10] 1799,57 2694,64 2605,11
[11] 1139,39 1667,97 1613,20
[12] 729,31 1034,28 1087,02
[13] 1105,25 1679,43 1642,98
[14] 641,16 962,51 955,44

Table 5.5. The standard, Ansys and modified axial resistances (own source)

For the graphical representation of the received results a column diagram is utilized (Figure

5.7), where the Ansys resistances have unit values, and the others are compared to this one:
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Figure 5.7. The received axial resistances, comparing to the numerical results (own source)
5.2.2. In plane bending resistance

In this case, contract to the compression the punching shear failure is the dominant.

Utilizing the previously applied procedure, firstly let us consider the general formula for this

failure (without the partial safety factor):

fotod? 1+ 3sin@ f otod?
__ yo*t0*1 1 — yoto*“1 ..
Mipra = 73 4sin2e, —\/§ 0,8 (for T joints). (5.8)

This formula does not contain experimentally determined parameters, thus we cannot apply the
previous train of thought, namely the introduced parameters. In this case, the increased size of
the brace by the a. is utilized, because the actual failure occurs around the weld again, as (Figure
5.8) shows. Furthermore, the reduction factor refers to the chord face failure, thus we can obtain

such results which are closer to the reality if we neglect it.

On these basis, the proposed modified formula:

Mip Rdmod = — N - (5.9)
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Figure 5.8. The shape of the actual failure in case of punching shear
(Wardenier, Kurobane, Packer, Vegte, & Zhao, 2008)

The received moment resistances together with standard and numerical results (Table 5.6):

MRgaec [KNm]  Mgyrem [KNm] MR moa [KNm]

[1] 1313,32 2114,31 1736,36
[2] 835,87 1322,98 1120,67
[3] 447,98 735,98 652,93
[6] 668,70 1091,35 896,53
[7] 381,04 635,03 522,35
[10] 266,73 431,42 365,64
[11] 126,38 214,21 180,39
[13] 108,32 186,92 154,62
[14] 32,22 58,77 61,20

Table 5.6. The standard, Ansys and modified in plane moment resistances (own source)

Now, the resistances are still below the numerical results (except the last assembly, where

the difference is very small), but significantly closer to them, which results more economical

design according to the utilized material quantity. Of course, this modification is also seems to

a good choice in case of the punching shear failure formula corresponding to compression, but

in this study I cannot support this theory with numerical results (since in all cases the failure

mode was chord face failure for compression)
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The graphical representation of the received results from the three sources (Figure 5.9):

1,20

e
%ﬂﬁ%%%%%%%
R Y

ﬁ%ggg
§ Y
. ?////Mw M 4%

%%%g
,%%5/
%%é%%‘%ﬁ

%@%%ﬁ?
e
%ﬁ%&ﬁﬁﬁﬁfﬁﬁ

R
NN Ny

o
O

o

1,00
0,80
0,40
0,20
0,00

2due)sisay

3]

[2]

-

—

(o]

—

Assembly number

Modified formula

Ansys

Eurocode
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6. Design method calibration

In this chapter, the aim is to allocate a safety factor for the previously determined axial/
design formula, based on stochastic analysis. For this purpose, I determine the number of
necessary repetition number for the Monte-Carlo analysis, and perform the simulation in
Matlab and Ansys. If the results show sufficiently correspondence, I repeat the simulation for

all the assemblies in Matlab, and determine the final value of the partial factor.

6.1. Stochastic modelling

During these simulations, both geometric and material uncertainties are taken into
account, where the exact mean values, standard deviations and distribution types are taken from
(JCCS, 2000). At the material uncertainties the yield strength of the S690 HSS, and at the
geometric uncertainties the thickness of the chord is set to stochastic variable, since it has the
largest effect on the load-bearing capacity due to its quadratic form. In the Ansys simulations I
use the twelfth assembly, because its running time is quite low (about four minutes) comparing
to the first few assemblies, where the geometry is significantly larger, thus the necessary
computational time also very high (about two hours). Unfortunately, the advised stochastic
material properties are not valid for high strength steels, practically there are no available
laboratory experiments on them. In this study, the necessary sources are missing to perform
such tests, thus the recommendations correspond to the reinforcing steel bars are utilized. The

proposed (Table 6.1) distributions for the chord thickness and yield strength:

Mean value Standard deviation Distribution

to 14 mm 1 mm Gauss

fyo 750 MPa 30 MPa Gauss

Table 6.1. The applied stochastic variables (own source)

In case of the chord thickness, at the calculation of the mean value the (JCCS, 2000) allows the
increasing or decreasing of the characteristic value with 1 mm, but in this case there is no

specific reason to change it, thus I apply the characteristic one.

6.2. Determination of the necessary repetition number
This number is always a sensitive point in the Monte-Carlo analysis, thus we have to
determine it very circumspectly. The main object is to test the modified resistance formula, and
determine a safety factor for that. In the Ansys it would take a lot of time to investigate all the
assemblies in stochastic way, thus I would like to perform the necessary simulations in Matlab,

where this time reduces to a few minutes instead of numerous days. For this purpose, firstly
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with the help of the Matlab 1 determine a characteristic curve for the standard deviation of the
normal resistance (all simulations in Chapter 6.2 refers to the twelfth assembly). At this curve,
I consider several repetition numbers, and for these numbers I repeat the Monte-Carlo
simulation 100 000 times (in this case there were not differences in the output if I repeated this
test again), and record the standard deviation of the axial resistance for each repetition number
(this 1s very similar to the convergence test applied at the determination of the necessary mesh
size). The results of these tests can be seen on (Figure 6.1). Practically this curve represents

that if we apply a repetition number, than how much can we rely on the obtained results.

25,00

20,00

15,00

10,00

5,00

Standard deviation of the axial resistance

0,00
0 500 1000 1500 2000 2500 3000

Repetetion number of the MC simulation

Figure 6.1. Variation of the standard deviation in the function of the repetition number
(own source)

The aim of this curve is to select such a number, which provide sufficiently reliable results.
From this figure, we can see that in case of low values the connection is exponential, but after
a certain value it becomes approximately linear. For the Ansys simulation, I chose 500, because
after this value the slope of the curve significantly decreases. The purpose of the probabilistic
finite element simulation is to validate my Matlab algorithm. Fortunately, probabilistic design
is available in Ansys, thus after the proper definition of the stochastic variables I perform the
Monte-Carlo analysis, utilizing the Latin Hypercube Sampling technique (LHS) (in this case,
the program check the stochastically generated values before each simulation, and generates a

new one if it is very close to a previously generated value, because in that case practically it
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will not provide new results). The results of the MC simulation in Ansys are represented on the
following figures, where the histogram of the chord thickness (Figure 6.2), the yield strength
(Figure 6.3) and the axial resistance (Figure 6.4) can be seen (similarly to the previous Chapter,

the load-bearing capacity is based on the arc-length method).

.2

.18

.16

.14

0 dHtp =D

MOog D eo dR g

d N
: .

10.55%9 12.626 14.693 16.7&
11.5%82 13.659 15.727

Figure 6.2. The histogram of the chord thickness obtained by the Ansys (own source)

125

.1125 75\1\_

A TS
[=]
a
wn
+\_
(‘-lr-/-/

/ n

.05

L0375 AR

Lol o i 1 R =TS (T B

642 .954 698.552 T754.189 809.787

Figure 6.3. The histogram of the yield strength obtained by the Ansys (own source)
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From the two figures above we can see that the input parameters follow correctly the given

normal distribution for the case of the applied repetition number.
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Figure 6.4. The histogram of the axial resistance obtained by the arc-length method in Ansys
(own source)

On the last figure, the resistance histogram shows the characteristic shape of the normal
distribution, but do not follow it as well as the chord thickness and the yield strength. Practically
it means that the obtained results not sufficiently accurate, for that we would need more

simulations, but they will not be used for any further purposes, only for the validation.

After the finite element simulation, I perform the Monte-Carlo analysis in Matlab for the
same repetition number. Now, let us compare the results obtained by Ansys and Matlab. On the
following chart (Table 6.2), beside the received resistances I represent the deviations for the
deterministic (it was determined in Chapter 5.2.1, when the modified design formula was

created) and stochastic case.

Probabilistic results Deviation
Nrrem [KN] NR,mod [KN] Probabilistic Deterministic
1059,30 1159,60 8,65 % 5,10 %

Table 6.2. Comparison of the different probabilistic results (own source)

The deviation even in the stochastic case is low, but if we compare it with the original
deterministic case, it is almost negligible, thus my Matlab algorithm has been successfully

validated.
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6.3. Identification of the safety factor
In this part, firstly I determine the value of the safety factor for the first assembly in the
Matlab, applying very large repetition number and the principles of the Eurocode, after that I
summarize the obtained results for all the assemblies in tabulated form. Eventually, I make a

suggestion on the final value of this factor.
6.3.1. Partial safety factor for the first assembly

The geometry of the considered assemblies can be found in (Table 3.1), and the input
stochastic variables in (Table 6.1), but of course in this case the mean value of the chord
thickness is different. At the Monte-Carlo simulation, in Matlab the repetition number is chosen
to 100 000, and the probability density function of the axial resistance according to the modified
formula obtained in this way can be seen on (Figure 6.5), which reflects very well the
characteristic shape of the normal distribution. At the creation of this function, the Matlab firstly
represent the histogram of the compression resistance, after that fits a density function to the

data.
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Figure 6.5. The probability density function of the axial resistance for the first assembly
(own source)

Before the determination of the safety factor, we must determine the characteristic value
of the resistance (at the middle of this function the mean value of the resistance can be found),
corresponds to the different assemblies. Generally, the Eurocode prescribe 95 % confidence
level for the design values, which means that in the 5 % of the cases it allows the failure due to

the different uncertainties (for example the real yield strength of the S690 steel grade is allowed
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to be less than 690 MPa in the 5 % of the cases). For the determination of the characteristic
resistance I apply the same methodology, so that firstly I represent the cumulative distribution
function, then calculate the value which corresponds to 0,05. This procedure can be seen on

(Figure 6.6).
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Figure 6.6. Determination of the characteristic value from the distribution function (own source)
For the first assembly, the characteristic resistance obtained by this way:
Ng char = 8198,00 kN (6.1)

The design resistance is obtained by using the modified formula with the deterministic value

of the chord thickness and yield strength (Table 5.5):
Ng pesign = 8773,65 kN (6.2)

Finally, the safety factor can be calculated by dividing the design resistance with the

characteristic resistance:

N .
Y= =107 6.3)
R,Char

We can see that in this case the difference is quite small, thus the value of the safety factor is

also low, although it corresponds only to the first assembly, and it is not the final value yet.
6.3.1. Tabulated results for all the assemblies

Now, applying the same procedure, I determine the characteristic values and the safety

factors for all the assemblies, which are summarized in (Table 6.3).

44



Design method calibration

NR,Design [KN] NR,char [KN] v I-1
[1] 8773,65 8198,00 1,07
[2] 6372,49 5396,00 1,18
[3] 4586,10 3581,00 1,28
[6] 5564,10 4449,00 1,25
[7] 3802,85 3438,00 1,11
[8] 2587,21 2339,00 1,11
[10] 2605,11 2179,00 1,20
[11] 1613,20 1352,00 1,19
[12] 1087,02 911,00 1,19
[13] 1642,98 1315,00 1,25
[14] 955,44 765,00 1,25

Table 6.3. The characteristic and design resistances with the safety factors for all the
assemblies (own source)

Because these assemblies cover a very large field from the applicable sections, these
results can be relevant in the practice. The value of the safety factor varies from 1,07 to 1,28,

thus for the benefit of safety this study propose the largest received value, namely:
Vfinal = 1,28 (64)

Finally, let us compare the design values obtained by the modified formula (taking into

account the safety factor) and the Eurocode (Table 6.4):

Nra,ec [KN] NRd,mod [KN]  NRd,mod/Nra,Ec [-]

[1] 6093,29 6854,41 1,12
[2] 4553,97 4978,51 1,09
[3] 3275,47 3582,89 1,09
[6] 3818,18 4346,95 1,14
[7] 2691,34 2970,98 1,10
[8] 1801,64 2021,25 1,12
[10] 1799,57 2035,24 1,13
[11] 1139,39 1260,31 1,11
[12] 729,31 849,24 1,16
[13] 1105,25 1283,58 1,16
[14] 641,16 746,44 1,16

Table 6.4. Comparing the design axial resistances (own source)

Form this table we can see that the obtained design resistances are still above the standard
resistances, thus the application of the modified formula leads to more economical design

besides keeping the safety prescriptions of the Eurocode.
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7. Conclusions

In this study, numerous welded steel T joints made of high strength steel were investigated
for axial compression and bending. After a brief review on the design recommendations of the
Eurocode, a parametric numerical model was developed in Ansys to determine the load-bearing
capacity of the connection, utilizing a very large field of applicable sections with the help of
fourteen assemblies. After the convergence test, the successful validation of the finite element
was followed, based on the results of a real experiment, and the corresponding validated
numerical model. According to the failure mode, a few assemblies were excluded due to the
early failure of the member, which overtook the failure of the connection. The results of the
materially and geometrically nonlinear numerical simulations implies that the standard design
formulae are rather conservative, thus an improvement can be beneficial from economical point
of view. With the help of the nonlinear least squares method, new design formulae have been
developed by an optimization according to the received results. After obtaining the formulae of
the characteristic axial and in plane bending resistance, the determination of the partial safety
factor was succeeded. For this purpose, both the material and geometric uncertainties were
taken into account in the stochastic model, where at the structural steel as an assumption the
stochastic properties of the reinforcing bars were utilized, due to the lack of real test results,
thus in the future the experimental investigation of HSS material is really important, to specify
the calibration. For one assembly, a Monte-Carlo simulation was performed in Matlab and
Ansys. Due to the fact that the results showed sufficient correspondence, henceforth only the
Matlab was used to determine the partial safety factors for all cases. After the stochastic
simulations, a recommendation on the final value of the safety factor was given. Eventually,
the design resistances obtained by the proposed formula and the Eurocode were compared,
where the new resistances - besides keeping the adequate level of safety - indicates a more
economical design solution, besides the assumptions of this study. In the future, the necessary

laboratory investigations on T joints could support the validity of the received results.

46



References

8. References

API. (2005). Recommended Practice for Planning, Designing and Constructing Fixed Offshore
Platforms—Working Stress Design. American Petroleum Institue.

Cold Formed Hollow Sections. (2013). Retrieved from
http://www.consteel.com.sg/downloadfiles/cold%20formed%20hollow%20sections.pdf

Eurocode 3 EN 1993-1-1:2005 (E). (2005). Design of Steel Structures. Part 1-1: General Rules and
Rules for Buildings.

Eurocode 3 EN 1993-1-12:2007:E. (2007). Design of Steel Structures. Part 1-12: Additional Rules for
the Extension of EN 1993 up to steel grades S700.

Eurocode 3 EN 1993-1-8:2005 (E). (2005). Design of Steel Structures. Part 1-8: Design of Joints.

Gogou, E. (2012). Use of High Strength Steel Grades for Economical Bridge Design. Delft University of
Technology, 90.

H.S.Mitri. (1988). Ultimate In-Plane Moment Capacity of T and Y Tubular Joints. J. Construct. Steel
Research 12, 69-80.

JCCS. (2000). Probabilistic Model Code. Part 3: Materila Properties.

Lesani, M., Bahaari, M., & Shokrieh, M. (2013). Detail Investigation on Un-stiffened T/Y Tubular Joints
Behavior Under Axial Compressive Loads. Journal of Constructional Steel Research, 91-99.

SOLID187 Element Description. (2013). Retrieved from
http://inside.mines.edu/~apetrell/ENME442/Documents/SOLID187.pdf

Tata Steel. (2011). Design of Welded Joints.

Wardenier, J., Kurobane, Y., Packer, J. A., Vegte, A. v., & Zhao, X.-L. (2008). Design Guide for circular
hollow section (CHS) joints under predominantly static loading. C/IDECT.

Wardenier, J., Packer, J., Zhao, X.-L., & Vegte, G. v. (2010). Hollow Sections in Structural Applications.
CIDECT.

47



