

TDK Dolgozat

Átszellőztetett homlokzatburkolati rendszerek

BIM alapú energetikai tervezése

Készítette:

Petresevics Fanni, LM25TC, MSc hallgató

Konzulensek:

Dr. Nagy Balázs, egyetemi adjunktus

Fürtön Balázs, doktorandusz

Budapest, 2021.11.02.

Tartalom

1.	Ábr	a-és táblázatjegyzék	4
2.	Fog	alommagyarázat	7
3.	Abs	ztrakt	9
	3.1.	Absztrakt	9
	3.2.	Summary	11
4.	Bev	ezetés	12
5.	Épi	letinformációs-modellezés és épületenergetikai-modellezés közötti átjárhatóság	
(1	BBIP)		14
	5.1.	Energetikai szimulációkhoz használt BIM fájlsémák típusai	15
	5.2.	BBIP folyamat kihívásai	17
6.	Telj	es homlokzatképzés BIM alapú energetikai számítása	20
	6.1.	Valós modell felépítése	21
	6.2.	BIM modell felépítése	22
	6.2.1.	Geometria felépítése	22
	6.2.2.	Geometria exportálása	26
	6.3.	Hőtechnikai modellezés és szimuláció	27
	6.3.1.	Geometria felépítése	27
	6.3.2.	Végeselemes háló elkészítése	29
	6.3.3.	Numerikus számítás, fizika és peremfeltételek	30
	6.3.4.	Általános limitációk és feltételezések	32
	6.3.5.	Valós szerkezet épületfizikai modelljének korlátai	33
	6.3.6.	Valós szerkezet BIM modelljének korlátai	33
	6.3.7.	BIM modell épületfizikai korlátai	34
	6.4.	Numerikus szimulációk eredményeinek feldolgozása	34

6.5. Egyszerűsített számítások	35
6.5.1. Hőátbocsátási tényező számítása	35
6.5.2. Inhomogenitások miatti korrekciók	36
6.5.3. Hőszigetelést rögzítő dübelek miatti korrekció	37
6.5.4. Tartókonzolok hőtechnikai hatása miatti korrekció	38
6.5.5. Csatlakozási hőhidak figyelembevétele	39
6.5.6. Eredő hőátbocsátási tényező számítása	40
7. Eredmények	41
7.1. Numerikus szimulációk eredményei	41
7.1.1. Hőszigetelt modell eredményei	41
7.1.2. Mechanikai hőszigetelés rögzítéssel ellátott modell	41
7.1.3. Tartókonzolokkal szimulált modell eredményei	42
7.1.4. Mechanikai hőszigetelés rögzítéssel és tartókonzollal szimulált modell	
eredményei	42
7.2. Egyszerűsített számítások	44
7.2.1. Kézi számítás eredményei	44
7.3. Eredmények kiértékelése, összehasonlítása	54
8. Összefoglalás	61
9. Köszönetnyilvánítás	62
10. Irodalomjegyzék	63

1. Ábra-és táblázatjegyzék

1. ÁBRA: ÁTSZELLŐZTETETT HOMLOKZATBURKOLAT MŰKÖDÉSI ELVE	. 12
2. ÁBRA: ÁTSZELLŐZTETETT HOMLOKZATBURKOLAT ÉPÜLETFIZIKAI VIZSGÁLATA	12
3. ÁBRA: BIM-ALAPÚ ENERGETIKAI MODELLEZÉS FOLYAMATA	13
4. ÁBRA: GBXML ÉS IFC FÁJLFORMÁTUMOK ÖSSZEHASONLÍTÁSA	16
5. ÁBRA: IFC ÉS GBXML-BE MENTETT NYÍLÁSZÁRÓ MODELLEK KÖZÖTTI KÜLÖNBSÉG SZEMLÉLTETÉSE	16
6. ÁBRA: ÉPÜLETINFORMÁCIÓS(BALRA) ÉS ÉPÜLETFIZIKAI MODELL(JOBBRA) ÖSSZEHASONLÍTÁSA	17
7. ÁBRA: A FOLYAMAT ÁTTEKINTÉSE ÉS LEHETSÉGES ÁTJÁRHATÓSÁGI PROBLÉMÁK	18
8. ÁBRA: AZ ÉPÜLETENERGETIKAI ÉS ÉPÜLETFIZIKAI MODELLEZÉS LÉPÉSEI ÉS PROBLÉMAKÖRE	20
9. ÁBRA: ÉPÜLETINFORMÁCIÓS ÉS ÉPÜLETENERGETIKAI MODELL KÖZÖTTI KÜLÖNBSÉGEK MEGJELENÍTÉSE	21
10. ábra: A modellezéshez szükséges átalakító folyamatok bemutatása	21
11. ÁBRA: AZ ÉPÜLET GEOMETRIAI MODELLJE ARCHICAD 24-BEN	22
12. ÁBRA: HOMLOKZAT ÉS ÁTSZELLŐZTETETT HOMLOKZATBURKOLAT BIM-MODELLJÉNEK KIALAKÍTÁSA	23
13. ábra: Homlokzati kialakítás épületfizikai modellje	27
14. ÁBRA: DÜBELEK ÉS KONZOLOK KIALAKÍTÁSA AZ ÉPÜLETFIZIKAI MODELLBEN	28
15. ábra: Hőszigetelt modell hálózása	30
16. ÁBRA: RÖGZÍTÉSEKKEL ELLÁTOTT MODELL HÁLÓZÁSA	30
17. ÁBRA: A MODELLEZÉSHEZ SZÜKSÉGES EGYSZERŰSÍTÉSEK SEMATIKUS FOLYAMATÁBRÁJA	32
18. ábra: Tartókonzolok és dübelek egyszerűsítése	33
19. ábra: Legördülő kereső a hőhídkatalógushoz	38
20. ábra: Hőmérsékleteloszlás ábrák csak hőszigetelt modell esetében	42
21. ÁBRA: HŐMÉRSÉKLETELOSZLÁS ÁBRÁK MECHANIKAI HŐSZIGETELÉS RÖGZÍTÉSSEL ELLÁTOTT MODELL	43
22. ÁBRA: HŐMÉRSÉKLETELOSZLÁS ÁBRÁK TARTÓKONZOLLAL ELLÁTOTT MODELL	43
23. ÁBRA: HŐMÉRSÉKLETELOSZLÁS ÁBRÁK MECHANIKAI HŐSZIGETELÉS RÖGZÍTÉSSEL ÉS TARTÓKONZOLLAL	
ELLÁTOTT MODELL	44
24. ÁBRA: TARTÓKONZOL ÉS DÜBELEZÉS KIOSZTÁS A HOMLOKZATON	48
25. ábra: Eredő hőátbocsátási tényezők numerikus szimulációkból: 1-Hőszigetelt modell; 2-	
HŐSZIGETELT ÉS DÜBELEZETT MODELL; 3-HŐSZIGETELT ÉS KONZOLOZOTT MODELL; 4-HŐSZIGETELT,	
DÜBELEZETT ÉS KONZOLOZOTT MODELL	54
26. ábra: Dübelkorrekciók meghatározása: 1-MSZ EN ISO 6946; 2-ÉMKÉK v1.1 hőhídkatalógus;	3-
TELJES HOMLOKZAT NUMERIKUS SZIMULÁCIÓJA ALAPJÁN	55
27. ábra: Tartókonzol korrekciók összehasonlítása: 1-Saját hőhídkatalógus, 2-Hilti	
HŐHÍDKATALÓGUS; 3- SAJÁT KORREKCIÓS KÉPLET; TELJES HOMLOKZATI NUMERIKUS SZIMULÁCIÓ ALAPJ	ÁN
	56
28. ábra: Teljes mechanikai rögzítés miatti korrekciók összehasonlítása: 1- Pontbeli	
hőátbocsátási tényezők saját hőhídkatalógus, Dübelkorrekció MSZ EN ISO 6946 és	
CSATLAKOZÁSI HŐHIDAK 7/2006 TNM RENDELET ALAPJÁN, 2-PONTBELI HŐÁTBOCSÁTÁSI TÉNYEZŐK SAJ	ΙÁΤ

HŐHÍDKATALÓGUS, DÜBELKORREKCIÓ ÉS CSATLAKOZÁSI HŐHÍDAK ÉMKÉK V1.1 HŐHÍDKATALÓG	US
ALAPJÁN, 3-PONTBELI HŐÁTBOCSÁTÁSI TÉNYEZŐK HILTI HŐHÍDKATALÓGUS ALAPJÁN, DÜBELKOR	REKCIÓ
MSZ EN ISO 6946 és csatlakozási hőhidak 7/2006 TNM rendelet alapján; 4- Pontbeli	
HŐÁTBOCSÁTÁSI TÉNYEZŐK HILTI HŐHÍDKATALÓGUS ALAPJÁN, DÜBELKORREKCIÓ ÉS CSATLAKOZ	ÁSI
HŐHÍDAK ÉMKÉK v1.1 HŐHÍDKATALÓGUS ALAPJÁN; 5- PONTBELI HŐÁTBOCSÁTÁSI TÉNYEZŐK SA	JÁT
KORREKCIÓS KÉPLET ALAPJÁN, DÜBELKORREKCIÓ MSZ EN ISO 6946 ÉS CSATLAKOZÁSI HŐHIDAK	7/2006
TNM rendelet alapján; 6- Pontbeli hőátbocsátási tényezők saját korrekciós képlet a	LAPJÁN,
DÜBELKORREKCIÓ ÉS CSATLAKOZÁSI HŐHÍDAK ÉMKÉK V1.1 HŐHÍDKATALÓGUS ALAPJÁN; 7-TEL	JES
homlokzati numerikus szimuláció alapján; 8-Csak tartókonzolt és csak dübelkorrek	CIÓT
TARTALMAZÓ TELJES HOMLOKZATI NUMERIKUS SZIMULÁCIÓ ÖSSZEGE ALAPJÁN	57
29. ábra: Csatlakozási hőhidak miatti korrekciók összehasonlítása: 1-7/2006 TNM rendele	т, 2-
ÉMKÉK v1.1 hőhídkatalógus, 3-Teljes homlokzati numerikus szimuláció alapján	58
30. ábra: Eredő hőátbocsátási tényezők összehasonlítása: 1-Pontbeli hőátbocsátási ténye	EZŐ SAJÁT
hőhídkatalógus/Csatlakozó hőhidak 7/2006 TNM rendelet; 2-Pontbeli hőátbocsátási	TÉNYEZŐ
SAJÁT HŐHÍDKATALÓGUS/CSATLAKOZÓ HŐHIDAK ÉMKÉK V1.1 HŐHÍDKATALÓGUS; 3-PONTBELI	
hőátbocsátási tényező Hilti hőhídkatalógus/Csatlakozó hőhidak 7/2006 TNM rendel	ет; 4-
Pontbeli hőátbocsátási tényező Hilti hőhídkatalógus/Csatlakozó hőhidak ÉMKÉK v	1.1
HŐHÍDKATALÓGUS; 5-PONTBELI HŐÁTBOCSÁTÁSI TÉNYEZŐ SAJÁT KORREKCIÓS KÉPLET/CSATLAKO	ŊΖÓ
hőhidak 7/2006 TNM rendelet; 6-Pontbeli hőátbocsátási tényező saját korrekciós kép	LET
/Csatlakozó hőhidak ÉMKÉK v1.1 hőhídkatalógus; 7-Mechanikai hőszigetelés	
RÖGZÍTÉSEK+TARTÓKONZOLOK NUMERIKUS SZIMULÁCIÓJA ALAPJÁN	59
1. TÁBLÁZAT: HOMLOKZATI RÉTEGREND KIALAKÍTÁSA	
2. TÁBLÁZAT: EGYES SZERKEZETI ELEMEK RÉSZLETEZETTSÉGI SZINTJEINEK BEMUTATÁSA	
3. TÁBLÁZAT: SZÁMÍTÁSHOZ SZÜKSÉGES MENNYISÉGEK	
4. TÁBLÁZAT: EGYSZERŰSÍTETT SZÁMÍTÁSOKNÁL ALKALMAZOTT FAJLAGOS MENNYISÉGEK	
5. TÁBLÁZAT: HÁLÓZÁSI STATISZTIKÁK EGYES MODELLEK ESETÉBEN	
6. TÁBLÁZAT: HŐÁTBOCSÁTÁSI TÉNYEZŐK KÖVETELMÉNYÉRTÉKE	35
7. táblázat: Hőhidak besorolása 7/2006 TNM rendelet értelmében	39
8. TÁBLÁZAT: NUMERIKUS SZIMULÁCIÓK EREDMÉNYEIHEZ SZÜKSÉGES ADATOK	41
9. TÁBLÁZAT: HOMLOKZATI RÉTEGTERVI HŐÁTBOCSÁTÁSI TÉNYEZŐ	44
10. TÁBLÁZAT: LAPOSTETŐ RÉTEGTERVI HŐÁTBOCSÁTÁSI TÉNYEZŐ	45
11. TÁBLÁZAT: PINCEFÖDÉM RÉTEGTER VI HŐÁTBOCSÁTÁSI TÉNYEZŐ	45
12. TÁBLÁZAT: DÜBELKORREKCIÓHOZ SZÜKSÉGES ADATOK	
13. TÁBLÁZAT: INTERPOLÁCIÓHOZ SZÜKSÉGES MODELL PARAMÉTEREK	47
14. TÁBLÁZAT: HILTI MFT-MFI M KONZOL PONTBELI HŐÁTBOCSÁTÁSI ÉRTÉKEI KATALÓGUS SZERINT	49
15. TÁBLÁZAT: HILTI MFT-MFI L KONZOL PONTBELI HŐÁTBOCSÁTÁSI ÉRTÉKEI KATALÓGUS SZERINT	50
16. TÁBLÁZAT: CSÚSZÓ KONZOL PARAMÉTEREI	50

17. TÁBLÁZAT: FIX KONZOL PARAMÉTEREI	51
18. TÁBLÁZAT: KORREKCIÓS TÉNYEZŐKET TARTALMAZÓ TÁBLÁZAT 5	51
19. TÁBLÁZAT: X KORREKCIÓS TÉNYEZŐ MEGHATÁROZÁS 7/2006 TNM RENDELET ALAPJÁN	52
20. TÁBLÁZAT: CSATLAKOZÁSI HŐHIDAK MEGHATÁROZÁSA	52
21. TÁBLÁZAT: EGYSZERŰSÍTETT SZÁMÍTÁSOK EREDMÉNYEIT ÖSSZEFOGLALÓ TÁBLÁZAT	53
22. TÁBLÁZAT: EREDŐ HŐÁTBOCSÁTÁSI TÉNYEZŐK NUMERIKUS SZIMULÁCIÓK ALAPJÁN	54
23. TÁBLÁZAT: DÜBELKORREKCIÓK ÖSSZEHASONLÍTÁSA	55
24. TÁBLÁZAT: TARTÓKONZOL KORREKCIÓK ÖSSZEHASONLÍTÁSA 5	56
25. TÁBLÁZAT: TELJES MECHANIKAI RÖGZÍTÉSEK MIATTI KORREKCIÓK ÖSSZEHASONLÍTÁSA	57
26. TÁBLÁZAT: CSATLAKOZÁSI HŐHIDAK MIATTI KORREKCIÓK ÖSSZEHASONLÍTÁSA 5	58
27. TÁBLÁZAT: EGYSZERŰSÍTETT SZÁMÍTÁSOKBÓL ÉS NUMERIKUS SZIMULÁCIÓKBÓL MEGHATÁROZOTT EREDŐ	
HŐÁTBOCSÁTÁSI TÉNYEZŐK5	59
28. táblázat: Egyszerűsített számításokból és numerikus szimulációkból meghatározott eredő	
HŐÁTBOCSÁTÁSI TÉNYEZŐK %-OS ELTÉRÉSE ϵ	50

2. Fogalommagyarázat

Rövidítés	Angol kifejezés	Magyar fordítás	Jelentés		
BBIP	BIM to BEM Interoperatibility	BIM-ből BEM-be való átjárhatóság	BIM használata az energetikai modellezésben		
BIM	Building Information Modelling	Építményinformációs modellezés	az épületek tervezési és építési folyamatainak átfogó digitális modellek segítségével történő szimulálása és optimalizálása		
BEM	Building Energy Modelling	Épületenergetikai modellezés	Az épület épület/makroszintű energiafelhasználásának fizikai alapú szimulációja		
BEPS	S Building Energy Épületenergetikai BEM alap Performance szimuláció kombinál Simulation egyenlete terhelésel energiafe		BEM alapú szimuláció, amely kombinálja a bemenő adatokat a helyi időjárásra vonatkozó információkkal, és fizikai egyenleteket használ a termikus terhelések és az ebből eredő energiafelhasználás kiszámítására		
BPM	Building Physics Modelling	Épületfizikai modellezés	Jellemzően mikroszintű vizsgálatokra használt: egy-egy összetettebb csomópont 3D analízise, vagy termékfejlesztéshez szükséges vizsgálatok futtatására használjuk		
BREP	Boundary representation	Térhatárok ábrázolása	A modellezés során a szilárd testeket összekapcsolt felületelemek gyűjteményeként ábrázolják, amelyek meghatározzák a határt a belső és a külső pontok között.		
CAD	Computer Aided Design	Számítógéppel segített tervezés	-		
gbXML	Green Building XML	-	Nyílt, kiterjeszthető, geometriai konfigurációkat és anyagtulajdonságokat tartalmazó BEM adatformátum		

HVAC	Heating, Ventillation and Air Conditioning	Fűtő, szellőztető és légkondícionáló rendszer	-
IFC	Industry Foundation Classes	-	Nyílt, kiterjeszthető, geometriai konfigurációkat és anyagtulajdonságokat tartalmazó BIM adatformátum
LOD	Level of Development	Részletezettségi szint	Geometriai kidolgozottságot, mögöttes információtartalmat és a geometriai megjelenés átgondoltságát és megbízhatóságát egyértelműsíti
LOG	Level of Geometry	Geometriai szint	A modellelemek geometriai részletességének szintjét és minőségét határozza meg.
LOI	Level of Information	Információ szint	A modellelemek információtartalmának mennyiségét és minőségét határozza meg.
SPF	STEP Physical File	-	gyakorlatban legszélesebb körben használt IFC fizikai formátum
Turtle	Terse RDF Triple Language	-	IFC formátum
RDF	Resource Description Framework	-	IFC formátum
JSON	JavaScript Object Notation	-	IFC formátum, jobb olvashatóságot biztosít, és számos szoftvereszközt kínál
HDF	Hierarchical Data Format	-	IFC formátum, hierarchikus adatbázisban tárolhatja az IFC adatokat, ami nagy teljesítményű hozzáférést biztosít a mérnöki adatokhoz

3. Absztrakt

3.1. Absztrakt

Jelenleg az építőipar az egyik legkevésbé digitalizált iparágak közé tartozik, továbbá az emberi kibocsátás egyik legjelentősebb forrása. Ennek kiküszöbölésére az elmúlt évtized során, valamint a 4. ipari forradalomnak köszönhetően az építőiparban egyre elterjedtebb körben használják az építmény-információs modellezést (BIM), amely alapvető fontosságú a digitalizáció és az építési helyszín közötti hiányosságok áthidalásához.

Szerelt, hátul szellőztetett homlokzatburkolati rendszerek tervezési folyamata a szakmában még szinte kizárólag CAD szoftverek felhasználásával történik, a komplex részletek kidolgozása legritkább esetekben valósul meg BIM alapokon. Ezen részletek, illetve maga a homlokzati kialakítás épületfizikai tervezése leggyakrabban csak egyszerűsített módszerekkel, vagy ritkább esetben a részletek különálló numerikus modellezésével történik. Ezáltal a teljes átszellőztetett homlokzatburkolati rendszer együttes viselkedését nem modellezik, így a rögzítőrendszer optimális tervezése sem képzelhető el, amennyiben nem készül BEM modell a teljes szerkezetről.

Korábbi TDK dolgozatomban végeselemes multifizikai szoftverkörnyezet alkalmazásával 3Ds modellezéssel vizsgáltam, hogy átszellőztetett homlokzatburkolati rendszerek esetében az egyes rögzítő konzolok által okozott pontbeli hőhidak mekkora hatással vannak a teljes épületre számolt hőátbocsátási tényezőre, valamint, hogy a hőhídmegszakítók milyen mértékben tudják csökkenteni a felmerülő hőveszteségeket.

Jelen kutatásban egy BIM alapokon modellezett, átszellőztetett homlokzatburkolattal rendelkező teljes épület homlokzati modelljét előállítva készítettem a teljes homlokzatot magában foglaló numerikus modellt. Először az épület teljes geometriai modelljét felhasználva készítettem el a numerikus szimulációt, hogy megkapjam a homlokzati falszerkezetek rétegtervi hőátbocsátási tényezőjét. Ezt követően pedig meghatároztam a teljes homlokzatburkolat alszerkezet épületfizikai hatását, beleértve a tartókonzolokat és rögzítőrendszert, valamint a hőszigetelést rögzítő dübeleket is. E hatásokat külön-külön is megvizsgáltam, ezáltal látható, hogy az egyes elemeknek egy teljes homlokzatot vizsgálva mekkora hatása van a szerkezet átlagos hőátbocsátási tényezőjére.

A munkafolyamatok és számítási módszerek összehasonlítása érdekében a homlokzatburkolat épületfizikai számítását elvégeztem egyszerűsített módszerekkel. Ezen túl pedig a korábbi TDK dolgozatomban bemutatott pontbeli hőátbocsátási tényezőket tartalmazó hőhídkatalógus alkalmazásával is összehasonlítottam a kapott eredményeket. Ezáltal ellenőriztem a korábbi munkámban elkészített hőhídkatalógusok gyakorlati alkalmazhatóságát a tervezési folyamatok során és megvizsgáltam, hogy a homlokzatra számolt rétegtervi hőátbocsátási tényező meghatározása során teljes épületléptékű tervezés esetében is megbízhatóan felhasználhatók-e a katalógusban található pontbeli hőátbocsátási tényezők.

A dolgozatomban vizsgált munkafolyamatok kidolgozása és bemutatása a gyakorlati, BIM alapú homlokzattervezéshez és energetikai optimalizáláshoz nyújtanak elengedhetetlen és hiánypótló információkat.

3.2. Summary

Nowadays construction industry is one of the least digitized industries and one of the most significant sources of human output. Thanks to the 4th industrial revolution, building information modelling (BIM) in the construction industry over the last decade is becoming more widespread, which is essential to bridge the gaps between digitization and construction sites.

Nowadays, professionals use mostly CAD software for the design process of ventilated facade systems. Hence, the development of complex details is rarely carried out on a BIM basis. The energy design of these structures is most often done only by simplified methods or, in rare cases, by separate numerical modelling of the details. Thus, the complex behaviour of the entire ventilated façade system is not modelled, so the optimal design of the fastening system is not conceivable unless a building energy model (BEM) is made of the entire structure.

In my previous research, using a finite element multiphysics software environment, I investigated by 3D modelling the effect of point thermal bridges caused by each fixing bracket on the thermal conductivity calculated for the entire building and the impact of thermal breaks.

In this study, I produced a BIM-based ventilated facade model of a complete building, including a numerical model that includes the entire facade. First, I performed the numerical simulation using the complete geometric model of the building to obtain the thermal transmittance of the facade. Then, I determined the impact of the support brackets and fastening system and the dowels securing the thermal insulation. I also examined these effects separately so that it can be seen how much each element has on the average thermal coefficient of the complete facade.

In order to compare the work processes and calculation methods, I performed the building physics analysis of the facade with simplified methods. In addition, I compared the obtained results using a thermal bridge catalogue containing point thermal coefficients presented in my previous research. Thus, I checked the practical applicability of the thermal bridge catalogues prepared in my previous work during the design processes and examined whether the point thermal coefficients in the catalogue can be reliably used.

The presentation of the work processes examined in my study provides essential and gap-filling information for practical, BIM-based facade design and energy optimization.

4. Bevezetés

Az átszellőztetett homlokzatburkolati rendszerek jelentős figyelmet kaptak az elmúlt években, ugyanis kedvező hőtechnikai tulajdonságain felül számos más előnyös tulajdonsággal is bír, emiatt előszeretettel használják főleg felújítások, valamint új építésű irodaházak kivitelezésekor. Az 1. ábrán látható kialakítása révén védi és tartja szárazon az épület falait és hőszigetelését, illetve csökkenti a falak hőigénybevételét és hőmozgását, ezáltal

1. ábra: Átszellőztetett homlokzatburkolat működési elve

biztosítja az épület hosszabb élettartamát, valamint a homlokzati burok konzolokkal való rögzítése által az épület mozgásából fakadó repedések elkerülhetők. A "tömeg-rugó-tömeg" szerkesztési elvnek köszönhetően rendkívül előnyös hangvédelmi tulajdonságokkal rendelkezik, és száraz technológiával készült, így egész évben kivitelezhető és kevés karbantartást igényel. A légrésben a levegő a kürtőhatás következtében alulról-felfelé áramlik, ahhoz, hogy ez a hatás biztosítva legyen jellemzően minimum 4 cm vastagságú légrés felvétele szükséges, de ez függ többek között az épületmagasságtól és a tartófal szélességétől is. A kürtőhatás miatt nagy figyelmet kell szentelni a tűzvédelemnek, ugyanis a tűz sokkal könnyebben tud terjedni ezekben az átszellőző légrésekben a felfelé áramló levegő miatt, így fontos, hogy nem éghető, A1 tűzvédelmi osztályú hőszigetelés kerüljön megválasztásra.

Az elmúlt években több kutatásban is vizsgálták többek között a légáramlást a szellőző légrésben vagy a homlokzati kialakításnak az adott épület természetes megvilágításában betöltött szerepét [1], azonban az energetikai vizsgálatok leegyszerűsítése végett az átszellőztetett homlokzatburkolatokat jellemzően egyrétegű falként kezelik és elhanyagolják a pontbeli hőhidak által okozott veszteségeket. Előző évi TDK kutatásom eredményei [2] is alátámasztják, hogy már 1 m²-nyi falfelület esetében is a rögzítőrendszerek elhanyagolásával akár 30% -al is alábecsülhetjük a homlokzatra számolt rétegtervi hőátbocsátási tényező értékét, a

2. ábra: Átszellőztetett homlokzatburkolat épületfizikai vizsgálata

homlokzaton elhelyezett nagy számú tartókonzol estében ez az érték még nagyobb is lehet. Ezek a számok is azt mutatják, hogy az alapvető energetikai paraméterek leegyszerűsítésével és elhanyagolásával a hőtechnikai számítások során nem kaphatunk reális képet az épület energiahatékonyságáról. Részletes számítások elvégzésére numerikus modellezés keretein belül van lehetőség, ugyanis jelenleg Európán belül nem létezik a rögzítések hatásait is figyelembe vevő egyszerűsített számítási módszer. Az energetikai szimulációk hagyományos módszere az építészeti adatok számszerű bevitele vagy kétdimenziós modell készítése az adott szoftver integrált felhasználói felületének alkalmazásával, azonban ez a folyamat igen időigényes és sok erőfeszítésbe kerül. A manapság egyre inkább elterjedő építményinformációs modellezés/menedzsment (BIM) bevezetésével előtérbe kerül a háromdimenziós modellezés, így az építészeti geometriák modellezéséhez szükséges idő jelentősen csökkenthető. A következő lépés tehát a homlokzatburkolati rendszerek pontosabb és optimalizálást lehetővé tevő modellezéshez a BIM és a BEM, valamint az épületfizikai modellezés (BPM) összehangolása, amely átjárhatóság előrelépést jelenthet a költségek, valamint tervezési idők csökkentésében. Ahogy azt a 3.ábra [3] is mutatja; míg a BIM szoftverek képesek adott modell fontos tulajdonságainak, mint például az épületgeometria és anyagtulajdonságok tárolására, valamint a különböző szakági tervek összehangolására, addig a BEM szerepe jelentős az energiafogyasztás csökkentésének és javításának megértésében, valamint a tervezési folyamatokat elősegítő szimulációk elkészítésében. Jelen kutatásban a választott épület [4] homlokzati részletének BIM modellje segítségével vizsgálom a tartókonzolok és rögzítőelemek pontbeli hőátbocsátási tényezőinek hatását az eredő hőátbocsátási tényezőre, valamint összehasonlítom a homlokzat numerikus modellezésével kapott eredményeket a hőhídkatalógusokat és korrekciós tényezőket tartalmazó táblázatokat felhasználó kézi számítások eredményeivel.

3. ábra: BIM-alapú energetikai modellezés folyamata

5. Épületinformációs-modellezés és épületenergetikai-modellezés közötti átjárhatóság (BBIP)

Az épületek makroszintű, jellemzően éves időtartamban végzett vizsgálata az épületenergetikai modellezés (BEM), melynek elsődleges célja az épület energiafogyasztásának becslése, de célként határozható meg a hő- és vizuális komfort vizsgálata is [5]. A BIM-alapú épületenergetikai vizsgálatok egyik fő előnye az automatizálás, amellyel időt takaríthatunk meg, csökkenthetők a felmerülő költségek, valamint az emberi tényezők által elődidézett tervezési hibák. Az alábbi BIM-alapú projektek költséghatékonyságát vizsgáló kutatásban [6] kimutatták, hogy ugyan a tervezési szakaszban jóval nagyobb ráfordítás szükséges, azonban akár 9%-al is képes csökkenteni az építési fázis költségeit, valamint jelentősen javíthatja összességében a teljes építési projektet. Az épület energiahatékonysági szimulációs (BEPS) modelljei az energiahatékony és nagy teljesítményű épületek tervezési folyamatának szerves részét képezik, mely azonban paradigmaváltást igényel az építőiparra jellemző információcsere módjában. Hagyományosan a legtöbb épülettervezéssel kapcsolatos információ rosszul, vagy fragmentáltan van dokumentálva, emiatt az információcsere gyakran az adatok töredezettségéhez és rossz adatminőséghez vezet. Az energetikai modellek bemeneteinek előkészítése nagymértékben függ a létrehozott és közölt információktól, valamint a használt szoftvertől függetlenül a modell előkészítésének tipikus folyamata ismétlődő kézi műveleteket foglal magában, amelyek gyakran meglévő adatok megkettőzéséhez, adatvesztéshez és szimulációs hibákhoz vezetnek. Ennek a nem szabványosított folyamatnak az eredményei nagymértékben változhatnak, még akkor is, ha ugyanazokkal a kezdeti építési-tervezési információkkal dolgoznak. Az információcsere módszerének javítása érdekében jelenleg nagy hangsúlyt fektetnek a BIM energetikai szimulációs eszközökkel való integrálására. Az ilyen integráció teljesen megváltoztathatja a két tartomány közötti információcsere módját azáltal, hogy kihasználja a BIM -ben létrehozott és tárolt információkat, ugyanis az energiaszimulációs eszközökhöz szükséges információk több, mint 70%-a tárolható BIM-ben, így lecsökkenthető az információk összegyűjtéséhez szükséges idő. Az információcsere érdekében történő formátumátalakításokat és az energiaszimulációs lépéseket jelenleg a GSA Épületinformációs Modellezési Útmutató 05-ös sorozata [7] határozza meg, amely egy eseti alapon mutatja be az energetikai szimulációs folyamatokat.

5.1. Energetikai szimulációkhoz használt BIM fájlsémák típusai

A modellezési folyamat a koncepcionálisszintű építészeti tervezéssel kezdődik, amely során BIM szoftverek (pl.: Autodesk Revit, ArchiCAD) segítségével elkészül az épület folyamatosan részleteződő geometriai modellje. Azonban az energetikai szoftverek jellemzően sokkal egyszerűbb geometriai ábrázolást igényelnek ennél, ezért sok esetben az épület geometriai ábrázolásának leegyszerűsítésére van szükség. Az egyszerűsítési folyamatok bizonyos mértékig automatizálhatók, de sokszor kézi erőfeszítéseket is igényelnek. Ma a két legelterjedtebb típusa az energetikai szimulációk futtatásához szükséges adatok közlésének az Industry Foundation Classes (IFC) és a Green Building XML (gbXML) formátumú fájlokban történik, amelyek az épületek különböző aspektusaira vonatkozó információkat tartalmazhatnak. Mindkét séma képes biztosítani az energiaszimulációhoz szükséges információk egy részét. Az IFC-t a korábban International Alliance for Interoperability (IAI) néven ismert nemzetközi szervezet fejlesztette ki, amelyet 2005-ben BuildingSmart névre kereszteltek át. Mindkettő értékes tulajdonságokkal rendelkezik, viszont a gbXML a geometria meghatározása során a referenciafelületet ábrázolja, amely eredményeképpen a mérnöki tűrést meghaladó felszíni és térbeli különbségeket eredményez, amely az energiafogyasztás túlbecslését eredményezi[8], így a szélesebb körben használható IFC formátum az elterjedtebb. Az IFC az egyetlen olyan nyílt, kiterjeszthető, geometriai konfigurációkat és anyagtulajdonságokat is tartalmazó BIM adatformátum, amelyet az MSZ EN ISO 16739 szabvány [9] határoz megés alkalmas a különböző szoftverek közötti információcserére. Az IFC különféle fájlformátumokba (pl.: STEP, XML, JSON) kódolható, amelyek mindegyike rendelkezik előnyökkel és kompromisszumokkal a szoftvertámogatás, a méretezhetőség és az olvashatóság terén. Mivel az épületadatok meglehetősen nagy kiterjedésűek, mind hatályukat és tárhely-méretüket tekintve, így a formátum kiválasztásának elsősorban gyakorlati megfontolásai lehetnek. A legszélesebb körű kompatibilitás és a fájlalapú importálás és exportálás legkisebb mérete érdekében a STEP fizikai fájl (SPF) használata javasolt, de lehetőség van XML-re, JSON-ra menteni, valamint zippelhető is [10]. A gbXML fájlformátum jelenlegi verziója XML -t használ. A gbXML esetében "alulról felfelé", míg az IFC esetében "felülről lefele" irányuló adatszerkezeti megközelítést használnak. Mindkettő részletes szerkezetiés anyagtulajdonságokat, helyiségekkel kapcsolatos működési profilokat, a fűtő, szellőztető és légkondícionáló rendszerekhez (HVAC) korlátozott, valamint termikus zóna adatokat biztosít. A z IFC esetében a "felülről lefelé" megközelítés egy viszonylag összetett séma nagy fájlmérettel, amelyet nehéz programozni és szoftveralkalmazásokban használni; azonban vissza tudja követni egy érték szemantikai változásait a sémán belül. Másrészt az "alulról felfelé irányuló" megközelítés rugalmas, nyílt forráskódú, és viszonylag egyszerű adatsémával rendelkezik. Az alábbi 4. ábrán látható táblázatban [11] a gbXML és IFC fájlformátumok összehasonlítását illusztráltam:

Jellemzők	gbXML	IFC		
Az épület geometriájának bemutatása	Síkfelületekkel határolt geometria	Bármilyen geometria (NURBS vagy háló-alapú)		
Adatstruktúra	XML	ifcXML, STEP, ZIP,Turtle, RDF/XML, JSON, HDF		
Adatstruktúra megközelítés	Alulról felfelé irányuló megközelítés, egyszerűbb ábrázolással	Felülről lefelé irányuló megközelítés viszonylag összetettebb ábrázolással		
Alkalmazási terület	Leginkább energiaszimulációs tartomány	Teljes építőipar lefedése		
Lehetőség termikus zónák meghatározására	Igen	Igen		
Szabvány a minimális tartalomhoz	Nem	Igen		
Anyagvastagság	Igen (csak alfanumerikusan tárolva)	Igen (valódi geom.megjelenítése)		
A HVAC rendszerrel kapcsolatos korlátozott adatok	Igen*	Igen*		

*bővítési lehetőségek

4. ábra: gbXML és IFC fájlformátumok összehasonlítása

Amennyiben gbXML formátumba mentjük a BIM szoftverben létrehozott geometriát azzal a problémával szembesülhetünk, hogy a kapott modell tulajdonképpen egy egyszerű felületmodell, mely nem, vagy csak hiányosan rendelkezik az energetikai szimulációkhoz használt legfontosabb információkkal. Ezzel szemben, ahogy az 5.ábra is mutatja; a modell IFC-be való importálása során az építészeti szerkezeten túl minden olyan adat is rögzítésre kerül, amely az adott elemekhez vannak társítva, így például a réteges szerkezetek is kezelhetők és pontosabb végeselemes szimulációk is készíthetők.

^{5.} ábra: IFC és gbXML-be mentett nyílászáró modellek közötti különbség szemléltetése

Azonban az energetikai modellezés során, ahol jellemzően nincs szükség a részletes geometriai kialakításokra, nagyon időigényes feladat leszűrni a lényeges adatokat, amelyek a kezelhető modell létrehozásához szükségesek. Energetikai szimulációkhoz emiatt alacsony geometriai részletezettségi szintű (LOG) és magas információtartalommal rendelkező (LOI) modelleket kell létrehozni, melyek tervezési szempontból sokszor nehezen használhatóvá válnak a szoftvereket összekötő kétirányú kapcsolatok és visszacsatolás hiánya miatt. A modellek LOG és LOI szintjeit a dolgozat 6.2.1 fejezetében részletesen tárgyalom, az alábbi 6. ábrán egy épületinformációs és egy épületfizikai modell megjelenítése közötti eltérések láthatók.[5]

A BIM felépítéséhez a különféle épületszerkezeti alrendszerek elkülöníthetősége volt az egyik elsődleges szempont, ez a megközelítés a mennyiségeléshez és költségvetések készítéséhez jó stratégia, hiszen arra törekszünk, hogy a szerkezetek igen részletesen, rögzítőelemekkel is modellezve legyenek. Ez a magas LOG szint a kiviteli szintű építészeti tervdokumentáció elkészítésére is alkalmas, azonban kezelhetetlenül nagy elemszám jelenik meg a BEM-ben, illetve például a réteges szerkezetek rétegenkénti modellezése már nem teszi lehetővé például korrigálatlan hőátbocsátási tényező tárolását sem, ami egyébként réteges szerkezetekkel lehetséges, és lényegesen tisztább energetikai modellt eredményez exportálást követően.

5.2. BBIP folyamat kihívásai

A BBIP kihívásainak és problémáinak jobb megértése érdekében a folyamat összetevőinek osztályozása van szükség, melyet a 7. ábra [11] szemléltet. Ezen összetevők közötti kölcsönhatás szintén hozzájárulhat a problémákhoz és kihívásokhoz, valamint a lehetséges

forrásokhoz, amelyek mindegyike a következő ábrán látható és a következőképpen magyarázható:

- 1. BIM eszközök;
- az épületinformációk BIM-fájlba való leképezésének folyamata;
- BIM fájl létrehozása; például gbXML vagy IFC;
- GUI (grafikus felhasználói felület) a BEM-eszközben
- az adatok leképezése a BIM fájlból egy olvasható fájlba a BEM eszköz számára;
- az adatok grafikus felhasználói felületről egy olvasható fájlba való leképezésének folyamata a szimulációs motorhoz

7. ábra: A folyamat áttekintése és lehetséges átjárhatósági problémák

A 7. ábrán látható 2. és 3. komponensekkel kapcsolatos két leggyakoribb probléma a fájlokkal kapcsolatos akadályok közé sorolható. Alapvetően a BIM átjárhatósági problémák három különböző kategóriában vizsgálhatók, beleértve a fájl- és szintaktikai szintet, a vizualizációs szintet és a szemantikai szintet. A BIM és az energiaszimulációs eszközök integrálása magában foglalhatja az átjárhatósági problémák mindhárom szintjét. Például egy CAD eszközben fontos, hogy vizualizálva és szemléltetve legyen a falvastagság, míg az energiaszimulációs eszköznek szüksége van egy fali komponens termikus tulajdonságaira, és csak a szükséges referenciafelületet használja, ami miatt, amennyiben nem változik kontextus függően a referenciafelület, akkor rés keletkezhet két különböző elem között. Ez a magyarázata például az eltérő szerkezeti térfogat és az energetikai szimuláció analitikai térfogatigényének. Az energiaszimulációs eszközök a problémák és pontatlanságok külön forrásai lehetnek. Az energiaszimulációs eszközök különböző számítási módokhoz vezethetnek, például fűtési és hűtési terhelésekhez a számítási módszerek különbsége miatt. Ezek a különbségek a 7. ábrán látható 4. komponensben létezhetnek, és hibákat okozhatnak a BBIP -ben. Az adatok BIM fájlból való importálása BEM által olvasható fájlba szintén kihívást jelenthet, ugyanis előfordulhat, hogy a BIM-fájl egyes attribútumait a használt energetikai szimulációs szoftver nem támogatja. Például hiába érhetők el az anyag és ablak típusai gbXML formátumban, ha az

ablaktípus nem kompatibilis az energetikai szoftverrel, akkor nem importálja a BIM-ben megadott építőanyagot vagy mechanikai adatokat. Az egyik legtöbbet jelentett probléma az eszközök közötti információcsere miatti adatvesztés.[11] Ennek megfelelően nem minden szükséges adat vihető át a BIM -modellen keresztül az energiaszimulációs eszközökbe; ezért a hiányzó adatokat vagy manuálisan kell hozzáadni, vagy automatikusan elő kell állítani a használt szimulációs eszközökkel. A problémát okozhatja a használt a BIM eszköz korlátolt exportálási képessége (például Revit IFC exchange hiányosságai) vagy magának a leképzési folyamatnak a hibája, mely során az adatok nem kerültek át megfelelően a BIM-fájlba. Ritkább esetben előfordulhat, hogy a BIM fájl nem tudja menteni az adatokat és nem tud attribútumokat meghatározni az adott információhoz. Ezek a hibázási lehetőségek a BEM szoftver esetében is fennállnak, tehát lényegében a BBIP szinte minden összetevője érintett lehet az adatvesztésben. A szükséges adatok hiánya egy másik kihívás, amely hasonló az adatvesztéshez; azonban könnyebb kezelni mindaddig, amíg az összes szükséges adatot azonosítja és biztosítja a kezdeti BIM eszköz. Egyes kutatók az adatok bizonyos BIM fájlformátumra való leképezésével kapcsolatos kihívások és magával a BIM-fájllal kapcsolatos egyéb problémák megoldására olyan módszereket javasoltak [12], amelyek lehetővé teszik az ilyen információk felülvizsgálatát a végfelhasználás előtt. Általánosságban elmondható, hogy a BIM használata során fontos az eredeti és a kezdeti információk érintetlensége a különböző szoftvercsomagok közötti oda-vissza átvitel révén, ami az adatátvitel során a "zökkenőmentes adatcsere" koncepciójának kialakulásához vezetett. Erre jelenleg zajló törekvés a Ladybug Tools fejlesztői csapatától a Pollination Cloud, ami a hagyományos, energetikai célú szakági adatcserét felhőbe terelve, részben nyílt forrású "receptek" segítségével hidalnák át. A BIM eszköz és a BIM fájl között működő köztes szoftver fejlesztése egy másik megoldás lehet, a folyamat meglévő problémáinak megoldása érdekében egy köztes szoftvert fejlesztettek ki [13], amely beolvassa az IFC fájlt például Revitből, és a BIMserver segítségével lekéri az adatokat, illetve kivonja a szükséges információkat. A fő cél az épület geometriai adataival kapcsolatos problémák megoldása és egy javított fájl létrehozása az energiaszimulációk lefuttatásához.

6. Teljes homlokzatképzés BIM alapú energetikai számítása

A BIM által kínált lehetőségek lehetővé teszik az épületenergetikai és épületfizikai számítások és modellezés integrálását közvetlenül az építészeti tervezési folyamatokba. Az épületfizikai modellezés az épületenergetikaival ellentétben a 8.ábrán látható módon jellemzően mikro szintű vizsgálatokra használt: egy-egy összetettebb csomópont 3D analízise, vagy termékfejlesztéshez szükséges vizsgálatok futtatására használjuk. Az épületszintű kiterjesztése az épületfizikai modellezésnek még várat magára, aminek néhány okát igyekszem feltárni.

8. ábra: Az épületenergetikai és épületfizikai modellezés lépései és problémaköre

A jelenleg használható BIM szoftverek egyelőre nem képesek az összes épületfizikai modellezéshez szükséges anyagtulajdonság tárolására, valamint a BIM szoftverek és energetikai szimulációs szoftverek közötti adatcsere folyamatok javarészt egyirányúak, ugyan létezik kétirányú folyamat is (Comsol Multiphysics-Revit Livelink), de ezek korlátoltak és szabályozatlanok. A 9.ábra [14] jó példa az anyagtulajdonságok tárolásának korlátaira, hiszen Archicad25-ben jelenleg csak a látható épületfizikai jellemzők tárolhatók, valamint ezek az adatok az átalakítási folyamatban elvesznek. Jelen kutatás keretében OpenBIM munkafolyamatot alkalmaztam, mely során Archicad25 volt a BIM-platform és Comsol Multiphysics 5.6 segítségével végeztem az energetikai szimulációkat. Mivel azonban a Comsol

Multiphysics 5.6 nem képes közvetlenül megnyitni az IFC fájlformátumot és jelenleg nem létezik közös formátum a megbízható geometria átvitelre a két szoftver között, így egy közbenső átalakító szoftver alkalmazására volt szükség a geometria rendszerezéséhez és egyszerűsítéséhez. Az átalakításra Rhinoceros 3D-ben került sor, melyben a geometria importálására GeometryGym kiegészítőt használtam. A folyamatot a 10. ábra szemlélteti.

Building Material	ls							?	×
10 VIIIC-01	Name Plaster - Gypsum	Priority	. 1	Name:				Editab	ile: 1
V	Plaster - Lime Sand	-		Rockwoo	I Fixrock FB1				
V IN-03 V ST-00	Rockwool Farock FB1 Wienerberger X-therm			+ STRUG	TURE AND APPEARANCE				
IF-01	Air Space - Frame Aluminium	-		+ CLASS	CLASSIFICATIONS ARCHICAD Classification - v 2.0	Mineral Thermal Insulation	1-		Û
EF-04 EC-04 ST-02 EF-01 ST-04 EF-03	Brick Brick - Finish Brick - Structural Concrete Concrete - Structural Concrete Block - Filler			* * * * *	ID AND CATEGORIES COMMON (Materials) COMBUSTION (Materials) THERMAL (Materials) STRUCTURAL ANALYSIS DATA				
ST-05	Concrete Block - Structu Fiberboard Fire Proofing	rai 1		*	PHYSICAL PROPERTIES	Open Catalog	W/mF		
EN-00	GENERIC - ENVIRONMEI GENERIC - EXTERNAL CL	NT III Ad III II			Density Heat Capacity	75,000	kg/m ^e J/kgK		
EF-00 EM-00	GENERIC - EXTERNAL FIL GENERIC - EXTERNAL MI				Embodied Energy Embodied Carbon	14,300 1,060	MJ/kg kgCO ₂ /kg		
1F-00	GENERIC - INTERNAL CL GENERIC - INTERNAL FIL GENERIC - PREFABRICAT	AD III							×
New	Delete		v				Cancel	OF	_

9. ábra: Archicad25 építőanyag katalógusában tárolható releváns épületfizikai tulajdonságok

10. ábra: A modellezéshez szükséges átalakító folyamatok bemutatása

6.1. Valós modell felépítése

A dolgozatban egy 3 szintes, lapostetős irodaház egyik homlokzatán elhelyezett átszellőztetett homlokzatburkolat rögzítőrendszereinek hőtechnikai vizsgálatát végeztem. A választott épület teherhordó falai üreges kerámia falazóelemek, amelyre szálas hőszigetelés, légzáró vakolat, valamint homlokzatburkolat

Homlokzati rétegrend	Vastagság [m]	Hővezetési tényező λ [W/mK]
belső vakolat	0,01	0,8
kerámia falazóelem	0,30	0,19
külső vakolat	0,01	0,8
ásványgyapot hsz.	0,15	0,039
átszellőző légréteg	0,04	-
homlokzatburkolat	0,02	-

1. táblázat: Homlokzati rétegrend kialakítása

került. A rétegrendi felépítést az 1.táblázat szemlélteti. A függőleges tartóvázat fix, illetve csúszó pontokkal kell rögzíteni, ezekhez kis és nagy méretű konzolokat használunk. A konzolokat a falazathoz rendszerazonos önmetsző csavarokkal kell rögzíteni. A függőleges tartóvázat MFT-L profilok alkotják, melyeket a homlokzati kiosztás során igyekeztem a hőszigetelő táblák illesztési pontjai közé helyezni, hogy minél kevesebb hőszigetelő táblát kelljen megvágni, ezzel is csökkentve a hőhidak hatását. A vízszintes tartóvázat MFP-HT 200-as függesztőprofilok alkotják, ezekre kerülnek rögzítésre a homlokzatburkoló táblák. Fontos megjegyezni, hogy a modellezés során a külső burkolatot elhanyagoltam, mert a kutatás célja a hőszigetelést átszúró rögzítőelemek hőtechnikai hatásának vizsgálata, ehhez elegendő a rögzítőelemekkel közvetlenül érintkező elemek, mint tartófal, vakolat, hőszigetelés, konzolok és dübelek figyelembevétele.

6.2. BIM modell felépítése

6.2.1. Geometria felépítése

А geometriai modell ArchiCad25-ben készült el. amelyet IFC formátumban kellett importálni, ahhoz, hogy a későbbiekben épületfizikai szimulációkhoz is felhasználható legyen. A fő szempont az volt, hogy a végeselemes szoftver által is kezelhető szilárd testekből álló, pontosan átkonvertálható geometriát alakítsak ki, melyre csak а rétegtulajdonságok kimentésével lehetőség, van

11. ábra: Az épület geometriai modellje ArchiCad 24-ben

különben pontatlan geometriai kialakítást kapunk az IFC formátumban. A szerkezetek összemetsződéseit a lehető legalacsonyabb szinten, külön testekként kell létrehozni a modellben, így elkerülve a végeselemes szoftverben a hálózási hibákat. A modellben a tartófalak, a hőszigetelés, valamint a padló rétegrendek is homogén kialakításúak, a homlokzat BIM-modelljét a 12. és 13. ábrák mutatják be.

Az elkészült modell részletezettségének jellemzéséhez a LOD-szint megállapításával kerülhetünk közelebb. A szaknyelv a LOD-betűszóval két meghatározást azonosít a BIM vonatkozásában: "Level of Detail" és "Level of Development". A két fogalom egymáshoz hasonló, mégis eltérő jelentéssel bír, ami félreértéshez vezethet. Amíg a "detail" (részlet) a legtöbb esetben csupán a geometriai, grafikai részletességre utalt, addig a "development" a geometriai kidolgozottságon túl a mögöttes információtartalom és a geometriai megjelenés átgondoltságát és megbízhatóságát is egyértelműsíti. Arra is választ ad, hogy a felhasználó milyen szinten támaszkodhat a modellből kinyerhető információra. Az LOD-szinteket általában valamilyen klasszifikációs rendszer szerint osztályozott egyes modellelemekre, vagy modellelemekből álló magasabb szintű rendszerekre vonatkoztatjuk. A LOD két részre oszlik a feloldás kettős, a geometriai részletezettség (LOG - Level Of Geometry) és az információtartalommal való feltöltöttség (LOI - Level Of Information) van az Egyesült Államok terminológiája szerint[15] LOD 100-500 szintekre osztva: a magasabb "LOD-érték" magasabb részletezettséget is jelent.

• LOG (Geometriai szint - korábban részletezettségi szint)

A modellelemek geometriai részletességének szintjét és minőségét határozza meg. Az elemek geometriai részletessége nem függ azok mögöttes információtartalmának minőségétől és mennyiségétől. Bevezetése és az LODszintektől történő különválasztása azért indokolt, mert az egyes modellelemek geometriai kidolgozottságának és a hozzáadott, nem grafikus információállomány gazdagságának mértéke merőben eltérő lehet. A LOG szint definiálása a modellezendő elemek sokszínűségétől függően nagyon bonyolult lehet, egyedi elemek (például előregyártott vasbeton szerkezetek esetében) különösen nehézzé válik. A LOG szintek tervezési fázishoz kötése segíthet abban, hogy az adott szinti LOG tegye alkalmassá a szakmai konvenciók szerinti műszaki dokumentáció modell-vetületi alapokon elkészítését, ezáltal a tervező kezét kevésbé megkötve.

• LOI (Információ szintje)

A modellelemek információtartalmának mennyiségét és minőségét határozza meg. Az információ objektumokhoz külön-külön, akár egyesével vagy az objektumok alkotta rendszerekhez is kapcsolható. Kritériumai a részletességi szinttel definiálhatók. Bevezetése és az LOD-szintektől történő különválasztása azért fontos, mert az egyes modellelemek geometriai kidolgozottságának és a hozzáadott, nem grafikus információállománygazdagságának mértéke merőben eltérő lehet.

A LOD jellemzően nem homogén a modellen belül, mindig tervezési feladat függvénye, hogy mely épületszerkezeti alrendszerek kerülnek be részletesebben, melyek érdektelenek a feladat szempontjából. Jelen BIM-modell létrehozása során az egyes elemeknél a BIMForum LOD Specification Table Part II[15] ajánlása szerinti LOG350 szintet használtam, azonban a LOI számszerinti meghatározása jelenleg nehéz, hiszen LOI szempontjából nincs nemzetközileg, vagy hazai szabványosított adattartalom. A LOI kitöltéséhez célszerű egy osztályozási rendszert is választani, mely segítségével a szerkezeti elemekhez tartozó- és az egyéb, projekt során rögzített információ rövid kódokkal rendszerezhetővé válik. Az osztályozási rendszerek sokfélék, az átjárás közöttük nem mindig lehetséges maradéktalanul. LOG350 a szinten a modellelemek meghatározott rendszerként, objektumként vagy gyártmányként grafikusan jelennek meg a modellben a valódi elemnek megfelelő mennyiséggel, mérettel, alakkal, elhelyezkedéssel, tájolással és más rendszerekhez való kapcsolódással. Nem grafikus információ is kapcsolódhat a modellhez. A modellelemek koordinációban szereplő részei a szomszédos vagy hozzájuk kapcsolódó elemekkel együtt jelennek meg, a csatlakozási és rögzítési módok ábrázolása mellett. A modellelemek mennyisége, mérete, formája, helyzete és

tájolása a modellből eredeztethető, nem modellezett információk – feliratok, méretjelölések vagy konszignációk – hivatkozása nélkül. Egyes épületszerkezetek, berendezések esetén ennél a fejlettségi szintnél megjelenik a beépítéshez és üzemeltetéshez szükséges térrész modellelemként történő leképezése. Ez a valóságban nem létező térbeli elem segít a tervezés során vizuálisan érzékeltetni az adott szerkezet vagy berendezés minimális helyszükségletét.[16] A modellezés során leegyszerűsített elemeket, valamint azok LOG és LOI szintjeit a következő 2. táblázat tartalmazza.

	valós i	modell	BIM modell		Comsol modell		
konzol	LOG	LOI	LOG	LOI	LOG	LOI	
	végtelen	végtelen	350	gyártó, termék, hővezetési tényező, sűrűség, fajhő	350	hővezetési tényező	
			•		0		
tartókonzol	LOG	LOI	LOG	LOI	LOG	LOI	
rögzítés	végtelen	végtelen	350	gyártó, termék, hővezetési tényező, sűrűség, fajhő	350	hővezetési tényező	
hőhídmegszakító	LOG	LOI	LOG	LOI	LOG	LOI	
	végtelen	végtelen	350	gyártó, termék, hővezetési tényező, sűrűség, fajhő	350	hővezetési tényező	

			homogén réteg		homogén réteg	
kerámia	LOG	LOI	LOG	LOI	LOG	LOI
falazóelem	végtelen	végtelen	350	gyártó, termék, hővezetési tényező, sűrűség, fajhő	350	hővezetési tényező
			homogén réteg		homogén réteg	
hőszigetelés	LOG	LOI	LOG	LOI	LOG	LOI
groom groom	végtelen	végtelen	350	gyártó, termék, hővezetési tényező, sűrűség, fajhő	350	hővezetési tényező
hőszigetelést	X					
tarto dübel	LOG	LOI	LOG	LOI	LOG	LOI
	végtelen	végtelen	350	gyártó, termék, hővezetési tényező	350	hővezetési tényező

2. táblázat: Egyes szerkezeti elemek részletezettségi szintjeinek bemutatása

6.2.2. Geometria exportálása

Az OpenBIM munkafolyamat alapján a geometria, valamint a hozzárendelt információ kommunikálása egy közvetítő formátumon, az IFC-n keresztül zajlik. Jelenleg a multifizikai szimulációs környezet nem felkészült az IFC állományok fogadására, ezért az IFC-t STEP fájllá (a STEP specifikáció képezi az alapját az IFC-nek a mai napig) alakításához egy közbenső lépés szükséges.

1. Az elkészült épületmodellt ArchiCadből IFC-be kell importálni, a réteges szerkezetek rétegeinek kimentése azonban nem automatikus, ezt IFC Translators ablak Geometry

conversion menüpontja alatt lehet kiválasztani, az IFC ugyanis lehetőséget ad egyszerűbb, parametrizált geometria (extrusion), valamint részletes, de már nem szerkeszthető geometria exportálására is (BREP). Nekünk az utóbbi opció kell, valamint szükséges, hogy a kompozit elemeket részekként (part) exportáljuk, így hozzáférést kapva minden egyes réteghez.

- A következő lépés az így kapott IFC fájl geometriai ellenőrzése Rhinoceros 3D szoftver segítségével, ugyanis az energetikai szoftverekben a bonyolult és hibás geometria javítása nehézkés.
 - a) Rhino import options: tolerance 1e-5 (ez fontos, ennél megengedőbb geometriai pontosság később Comsolban fog problémát okozni a hálózásnál. Ha az eredeti BIM modell szerkesztése ennél pontatlanabb, vissza kell menni és újra kell szerkeszteni!)
 - b) Modell feltakarítása szilárdtestműveletekkel (nem szabad szétvágni, mert előfordulhat, hogy a keletkező geometria nyitott polysurface, vagy surface lesz!
 - c) Ellenőrzés: SelBadObject, SelOpenSrf, SelOpenPolysrf, SelSrf, SelCrv.
 Bármelyik eredményt ad, ellenőrizni kell! Görbék törölhetőek.
 - d) Geometria egyszerűsítése: SelCol, BooleanUnion, MergeAllCoplanarFaces
- 3. A leellenőrzött és javított IFC formátumú modellt ezután tovább kell alakítani STEP formátummá, hogy beolvashassuk az energetikai szoftverbe.

6.3. Hőtechnikai modellezés és szimuláció

6.3.1. Geometria felépítése

A hőtechnikai modellezés Comsol Multiphysics 5.6 végeselemes multifizikai szoftver segítségével készült az ISO 10211:2017 szabványban leírt számítási módszertan alapján. Az Archicad25-ben készült geometriai modellt CAD import funkcióval lehet megjeleníteni, mellyel lehetőség van különböző fájlformátumok importálására beleértve a szabványos formátumokat, mint a STEP és az IGES, valamint a különböző CAD rendszerek natív fájlformátumait. A CAD importmodul tartalmazza a szükséges eszközöket az átvitel során sérült geometria

13. ábra: Homlokzati kialakítás épületfizikai modellje kijavításához, a túlságosan részletes geometria megszüntetéséhez és a szükségtelenül részletes geometriai entitások eltávolításához. Az importáláskor bekövetkező automatikus javítás mellett a CAD importmodul olyan funkciókat is kínál, amelyek lehetővé teszik a CAD modellek manuális javítását az importálás után. A geometriai modell létrehozásánál egyik fő szempont a végeselemes szoftverrel való kompatibilitás volt, így már a CAD modell létrehozásakor is egyszerűsítésekkel éltem, melyeket a 6.3.4-es alfejezetben ismertetek. A Comsol modelleket a 14. és 15.ábrán szemléltetem.

14. ábra: Dübelek és konzolok kialakítása az épületfizikai modellben

A számításokhoz szükséges kigyűjtött mennyiségek a 3. táblázat tartalmazza:

	Mennyiség	Mértékegység
hőszigetelést tartó dübelek	444	db
fix tartókonzol	69	db
csúszó tartókonzol	107	db
tartókonzol rögzítés	283	db
belső homlokzati falfelület	70,062	m ²
külső homlokzat felülete	106,28	m ²
3. táblázat: Számításhoz	szükséges me	nnviségek

A mennyiségek kigyűjtése kétféle módon történt: a számítási felületeket az élő modellnézetre rajzolt kitöltések területeként, a szerkezeti elemeket pedig azok osztályozása, valamint termék megnevezése alapján gyűjtöttem le. Az egyszerűsített számítások során a kigyűjtött mennyiségeket alkalmaztam (lásd 4. táblázat), melyeket a belső homlokzati falfelülettel fajlagosítottam, mivel a hazai energetikai számítások során belső felületekkel kell számolni.

	Mennyiség	Mértékegység
hőszigetelést tartó dübelek	6,34	db/m ²
fix tartókonzol	0,98	db/m ²
csúszó tartókonzol	1,53	db/m ²

4. táblázat: Egyszerűsített számításoknál alkalmazott fajlagos mennyiségek

6.3.2. Végeselemes háló elkészítése

A végeselemes modellezés egyik legfontosabb lépése a megfelelő végeselem háló létrehozása, mely során a geometriát véges kis számú elemre bontjuk, amelyekre felírható a megoldandó egyenletrendszer. A háló pontosságának megválasztása során mérlegelni kell az eredmények pontosságát és a futtatási időket. A Comsol Multiphysics szoftverben lehetőség van automatikus hálózásra, mely manuálisan finomítható az elemrészek mentén. Az összetett geometriák automatikus lehálózása sok esetben hibákat eredményez, melyek ugyan az elemek számának növelésével csökkenthetők, de a futtatási időt és a szükséges hardware kapacitást is megnöveli, valamint nagyon időigényes a részletesebb hálózást igénylő elemrészek beazonosítása és kézi finomítása. Egy idő után a nagyon kicsiny hálóelemek megválasztása újból a hibák számának növelését eredményezi, mert a kapott értékek a számítógép által kezelhető numerikus tartományon kívülre esnek. A hálózás finomítására automatizált funkció az adaptív hálózás [17], amely során a szoftver először egy kezdeti hálót old meg, majd iteratívan sűríti a hálót azokon a részeken, ahol a becsült hibák száma magas és újra megoldja a modellt tetszés szerinti iterációs számmal. Ez a funkció mind kétdimenziós háromszög elemekkel, mind háromdimenziós tetraéder elemekkel is működik. A modellezés során automatikus hálózás készült, mely során azonban a végeselemháló éleinek minimális és maximális méretét manuálisan adtuk meg. Erre azért volt szükség, mert a szoftverben lévő automatikus hálózó programok nem voltak képesek a geometriában lévő jelentős méretbéli eltéréseket kezelni. A minimális elemméretet ezért 5 mm-re, míg a maximumot 50 cm-re állítottuk. A végelesemes hálót és a numerikus szimulációt egy munkaállomáson futtattuk AMD Ryzen Threadripper 2950X CPU, 128 GB RAM és 2 TB SSD mellett. A végeselemes hálók tulajdonságait a különböző modellekre a következő 5. táblázat szemlélteti:

Háló statisztika								
modell	elemek száma [db]	csomópontok száma [db]	futási idő [s]					
hőszigetelt modell	285912	556	5.71					
mechanikai hőszigetelésrögzítéssel ellátott modell	7882536	21784	277.91					
tartókonzollal ellátott modell	8132999	21022	222.03					
tartókonzollal és mechanikai hőszigetelés rögzítéssel ellátott modell	7058738	42306	1198.81					

5. táblázat: Hálózási statisztikák egyes modellek esetében

A végeselemháló kialakítását a 16. és 17. ábrák szemléltetik, előbbi a hőszigetelt homlokzattal rendelkező modell, míg utóbbi a dübeleket és tartókonzolokat is tartalmazó modellt mutatja.

15. ábra: Hőszigetelt modell hálózása

16. ábra: Rögzítésekkel ellátott modell hálózása

6.3.3. Numerikus számítás, fizika és peremfeltételek

Érdemes megjegyezni, hogy jelen dolgozat miért aktuális. A korábbi BIM to BEM munkafolyamatok leírásakor érintettük, hogy rengeteg absztrakció szükséges ahhoz, hogy használható eredményeket kapjunk egy épületenergetikai modellből, amit egy magas LOD szintű BIM modellből sajnos jellemzően manuális munka árán alakíthatunk ki. A számítási kapacitás elérte azt a szintet, hogy érdemes megpróbálkozni az épületmodellek numerikus szimulációjával, hiszen a BIM-ből átvett geometriai modellek magas részletezettsége nemhogy hátrány, hanem kifejezett cél. Az eredmények értékelésekor látszik, hogy a korábbiakban leírt modellezési alapelvek mellett előkészített modell (néhány perc feltakarítani a vizsgálat tárgyát képező homlokzatmodellt) hálózása maximum pár perc, a hőtechnikai szimuláció futtatása is hasonlóan gyors.

A Comsol Multiphysics 5.6 multifizikai szoftver a szimulációk során végeselemes módszerrel oldja meg a matematikai egyenleteket. A parciális differenciálegyenletek megoldására

vonatkozó előírásokat az MSZ EN ISO 10211:2017-es szabvány tartalmazza. A hővezetésre vonatkozó parciális differenciálegyenlet a következő:

$$\nabla * q = Q \tag{1}$$

$$q = -\lambda_{eff} * \nabla * T \tag{2}$$

ahol: ∇ : nabla vektoriális differenciáloperátor, q: hőáramsűrűség, Q: hőforrás $[W/m^3]$, λ_{eff} : effektív hővezetési tényező $[\frac{W}{mK}]$ és T: hőmérséklet [K].

Az (1) egyenlet szilárd testek esetében a következőképpen alakul:

$$\nabla * q = 0 \tag{3}$$

$$q = -\lambda_{eff} * \nabla * T \tag{4}$$

A peremfeltételekre vonatkozó egyenletek a következők:

- külső peremfeltétel:

$$q_o - n * q = \alpha * (T_{ext} - T)$$

$$T_{ext} = -5^{\circ}C$$

$$\alpha = \frac{1}{R_{se}} = 25 \left[\frac{W}{m^2 * K}\right]$$
(5)

ahol: q_0 : konvektív hőáramsűrűség $\left[\frac{W}{m^2}\right]$, -n * q: a felületre normális hőáramsűrűség α : hőátadási tényező $\left[\frac{W}{m^{2}*K}\right]$, T_{ext} : külső hőmérséklet [K], T : felület hőmérséklete [K].

belső peremfeltétel:

$$-n * q = \alpha * (T_{int} - T)$$

$$T_{int} = 20^{\circ}C$$

$$\alpha = \frac{1}{R_{si}} = 7,69 \left[\frac{W}{m^2 * K}\right]$$
(6)

ahol: q_0 : konvektív hőáramsűrűség $[\frac{W}{m^2}]$, -n * q: a felületre normális hőáramsűrűség, α : hőátadási tényező $[\frac{W}{m^2 * K}]$, T_{int} : belső hőmérséklet [K], T : felület hőmérséklete [K].

6.3.4. Általános limitációk és feltételezések

A BIM-alapú energetikai tervezésnek része a BIM-alapú geometria felépítése és ellenőrzése, valamint a formátum átalakítása. Ahogy a 5.2 fejezetben ismertettem a BBIP egy összetett folyamat, így több okból kifolyólag is előfordulhatnak hibák, melyek közül az egyik legjellemzőbb az energetikai szimulációkban való jártasság hiánya. Valamint a BIM modell létrehozása során geometriai modellhibák léphetnek fel és a BIM modell energetikai szoftverbe való exportálása során is problémák adódhatnak. A lehetséges hibák kiküszöbölése érdekében mind a geometriai, mind az épületfizikai modell felépítésekor a modellek leegyszerűsítésére, limitációjára volt szükség, amely folyamatábrája a 18. ábrán látható.

egyszerűsítések					
ssz.	elméleti	ssz.	technikai		
1.	térhatárok megfelelősége	7.	VE kompatibilis modell		
2.	peremfeltételek érvényessége	8.	állandósult állapot		
3.	számítási egyszerűsítések	9.	csak hőtechnikai vizsgálat nincs kapcsolt hő-és nedvességtranszport talaj hatásának elhanyagolása egyenes rétegrendű lapostető erkélyek elhanyagolása		
4.	szabványok	10.	belső felületre számolt U kiálló részek elhanyagolása		
5.	geometriai egyszerűsítések	11.	geometria kialakítása egyszerű alakzatokból helyettesítő λ		
6.	tökéletesen kivitelezett szerkezetek	12.	illesztési pontatlanságok elhanyagolása tartóváz nem vág bele a hőszigetelésbe légzárónak feltételezett hátszerkezet		

17.	ábra: A	modellezéshez	szükséges	egyszerűsítések	sematikus f	folyamatábrá	ja
-----	---------	---------------	-----------	-----------------	-------------	--------------	----

6.3.5. Valós szerkezet épületfizikai modelljének korlátai

Jelen kutatásban csak a homlokzat hőtechnikai vizsgálata releváns, így a számításaim során nem vettem figyelembe a szerkezet kapcsolt hő-és nedvességtranszportját, a talaj hőtechnikai hatását és az illesztési pontatlanságokat, valamint egyenes rétegrendű lapostetőt alkalmaztam, hogy a rétegtervi hőátbocsátási tényező korrekciójakor csak a mechanikai rögzítések miatti korrekciót kelljen figyelembe venni. A Comsol Multiphysics szoftver a szimulációk során végeselemes módszerrel oldja meg a parciális differenciálegyenleteket, melyek peremfeltételeinek érvényességének biztosításához állandósult állapotot kellett feltételezni. A Magyarországon érvényben lévő MSZ EN ISO 6946:2017 szabvány értelmében a rétegtervi hőátbocsátási tényezőt a belső felületre kell meghatározni, valamint a szabvány 6.9.4. fejezete szerint az intenzíven kiszellőztetett légrétegek hőtechnikai hatása és a síkfelületekből kiálló részek elhanyagolhatók, amennyiben a hővezetési tényezőjük értéke meghaladja 2,5 W/mK értéket. A számítások és a modellezés során így elhanyagoltam az átszellőző légréteg, a külső burkolat, valamint a tartóváz hatásait és csak a hátszerkezetet, hőhídmegszakítókat, tartókonzolokat, hőszigetelést és az azt tartó dübeleket vettem figyelembe.

6.3.6. Valós szerkezet BIM modelljének korlátai

Ahhoz, hogy végeredményül egy kezelhető épületfizikai modellt kapjunk, már a BIM-modell létrehozásánál is egyszerűsítésekkel kell éljünk, melyek főleg a geometriai kialakítást befolyásolják. Ahhoz, hogy az IFC-ben importált BIM modellt ne keljen köztes átalakító programokban tovább alakítani és átmenjen a geometriai interferenciák ellenőrzésén, fontos, hogy a lehető legegyszerűbb alakzatokkal dolgozzunk, melyekhez az egyéb információkat manuálisan adhatjuk hozzá. A dübelek így a 19. ábrán látható módon hengerekből lettek modellezve, a tartókonzolok esetében csak a talp és a szár, míg a nyílászáróknak a kerete és üvegezése került megkülönböztetésre. Azokban az esetekben, ahol nem lehetett megfelelően egyszerűsíteni a szerkezeti elemeket, vagy túl időigényes lett volna a folyamat, helyettesítő hővezetési tényezővel dolgoztam. Ilyen szerkezetek közé tartoznak a nyílászárók feletti áthidalók, illetve az erkélyek csatlakozásánál

18. ábra: Tartókonzolok és dübelek egyszerűsítése lévő hőhídmegszakító elemek, ahol a gyártói katalógusokban a teljes szerkezetre megadott hővezetési tényezőket vettem fel és a modellezés során elhanyagoltam a fegyverzetet, valamint a vasalatot. A modell kialakítása során tökéletesen kialakított szerkezeteket lettek modellezve, azaz feltételezve lett a hőszigetelő táblák pontos, hézagmentes illeszkedése, a tartóvázak pedig olyan módon lett kialakítva, hogy az nem vág bele a hőszigetelő táblákba, tehát az illesztési vonalak mentén helyezkednek el. Az épületre elhelyezett átszellőztetett homlokzatburkolatot a talajtól kiemelt lábazatról indítottam, hogy a talaj hőtechnikai hatásait ne kelljen figyelembe venni.

6.3.7. BIM modell épületfizikai korlátai

A numerikus modellezéshez a végeselemes energetikai szoftverek szilárd testekből felépített modelleket tudnak kezelni, ezért a geometriai kialakítás során törekedni kell a térhatárok, valamint a rétegek helyes felvételére. A BIM modellt ezért alacsony geometriai részletezettségi szinten (LOG) kell kialakítani és IFC-be kell importálni, hogy biztosítsuk a geometria problémamentes átkonvertálását az energetikai szoftverbe, valamint elkerüljük a végeselemes hálózási hibákat. Fontos azonban, hogy az egyszerűsítések során tekintettel legyünk a vonatkozó szabványok előírásaira is.

6.4. Numerikus szimulációk eredményeinek feldolgozása

A numerikus szimulációk segítségével meghatározott eredő hőátbocsátási tényezők számításához meg kell határozni a lapostető, a pincefödém, valamint a nyílászárók hőveszteségét, mivel ezek is szerepeltek a modellben, azonban a homlokzati fal értékéből ki kell vonni őket. A felületek meghatározásához le kell kérni a geometriai modellből a lapostető, a pincefödém, valamint a nyílászáró felületeket és meg kell határozni a külső és belső hőmérsékletek különbségét is:

$$Q[W] = U * A * \Delta T \tag{7}$$

A teljes hőveszteséget a szimulációval meghatározott teljes belső felületi hőáram és a hőveszteségek különbségeként számoljuk:

$$Q[W] = Q_{szim} - Q_l - Q_p - Q_{ny}$$
⁽⁸⁾

ahol:

- numerikus szimulációval meghatározott teljes belső felületi hőáram: Q_{szim} [W]
- lapostető, pincefödém, nyílászárók hővesztesége: Q1, Qp, Qny [W]
- homlokzati fal teljes hővesztesége: Q [W]

A homlokzati fal eredő hőátbocsátási tényezőjének meghatározásához pedig a belső homlokzati falfelületet kell meghatároznunk a geometriai modellből:

$$U_R[\frac{W}{m^2 * K}] = \frac{Q}{A * \Delta T}$$
(9)

ahol:

- teljes hőveszteség: Q [W]
- homlokzati fal belső felülete: A [m²]
- ΔT: külső és belső hőmérsékletek különbsége [°C]

6.5. Egyszerűsített számítások

A numerikus szimulációs vizsgálatokon túl az eredmények összehasonlítása végett különböző egyszerűsített számításokkal is meghatároztam a homlokzati részlet eredő hőátbocsátási tényezőjét. Ezekhez a számításokhoz is a geometriai adatokat a BIM modell szolgáltatta.

6.5.1. Hőátbocsátási tényező számítása

Magyarországon a különböző épülethatároló szerkezetekre számolt hőátbocsátási tényezőre vonatkozó követelményeket a 7/2006 TNM rendelet [18] tartalmazza, mely értékeknek akkor kell teljesülniük, ha új épületet építünk vagy jelentős felújítást végzünk. A homlokzati falra, a lapostetőre, valamint a pincefödémre vonatkozó hőátbocsátási tényező követelményértékek a rendelet alapján a következők:

Épülethatároló szerkezet	Hőátbocsátási tényező követelményértéke [W/m ² K]
Homlokzati fal	0,24
Lapostető	0,17
Pincefödém	0,26

6. táblázat: Hőátbocsátási tényezők követelményértéke

Első lépésként meg kell határozni a homlokzati falra, a lapostetőre, valamint a pincefödémre számolt korrigálatlan hőátbocsátási tényezőt:

$$U = \frac{1}{R_{se} + \sum_i \frac{d_i}{\lambda_i} + R_{si}} \left[\frac{W}{m^2 * K}\right]$$
(10)

ahol:

- belső oldali ellenállás: $R_{si} = \frac{1}{h_{ci} + h_r} \left[\frac{m^{2} * K}{W}\right]$
 - konvekciós tag: h_{ci} hőáram irányától függő tényező
 - $h_{ci} = 5 \left[\frac{W}{m^{2} * K}\right]$ felfelé irányuló hőáram esetén
 - $h_{ci} = 2,5 \left[\frac{W}{m^2 * K}\right] vízszintesen irányuló hőáram esetén$
 - $h_{ci} = 0,7 \left[\frac{W}{m^2 * K}\right]$ lefelé irányuló hőáram esetén
 - sugárzásos tag: $h_r = \varepsilon * 4 * \sigma * T_m^3$
 - ε: felület emissziós tényezője
 - o σ : Stefan-Boltzmann állandó
 - o T_m^3 : a felület és a környezet átlagos termodinamikai hőmérséklete

- külső oldali ellenállás:
$$R_{se} = \frac{1}{h_{ce} + h_r} \left[\frac{m^{2} * K}{W}\right]$$

6.5.2. Inhomogenitások miatti korrekciók

A valóságban azonban a külső térelhatároló szerkezeteink különféle ismétlődő vonalmenti vagy pontszerű inhomogenitást tartalmaznak, az időjárásnak és így a nedvességnek kitettek, valamint jó eséllyel nem tökéletes kivitellel készülnek el, így a hőátbocsátási tényezőt ezen tényezők figyelembevételével korrigálni kell. Az MSZ EN ISO 6946:2017 szabvány [19] szerint a rétegtervi U érték a szerkezeten belüli hőszigetelő anyagok kitettsége, a szerkezeten belüli hibák, inhomogenitások, mechanikai rögzítések stb. alapján a következő képlet alapján számítható:

$$U[\frac{W}{m^2K}] = \frac{1}{R_{se} + \sum_i \frac{d_i}{\lambda_{2,i}} + R_{si}} + \Delta U_f + \Delta U_g + \Delta U_r$$
(11)

ahol:

- mechanikai rögzítőelemekre vonatkozó korrekciós tényező: ΔU_f
- hézagokra vonatkozó korrekciós tényező: ΔU_q
- fordított rétegrendű tetőkre vonatkozó korrekciós tényező: ΔU_r

Amennyiben a korrekció értéke nem haladja meg a teljes korrekció értékének 3%-át, úgy az MSZ EN ISO 6946:2017 szabvány[19] lehetővé teszi a rögzítések, valamint a szigetelésben előforduló légüregek hatásainak elhanyagolását.

Eljárások mechanikai rögzítőelemek által okozott hőhidak figyelembevételére:

- egyszerűsített eljárás: MSZ EN ISO 6946:2017 [19] szerinti módszer: ∆Uf
- részletes eljárás: MSZ EN ISO 10211:2017 [20] szerinti numerikus szimuláció: pontszerű hőátbocsátási tényezővel

6.5.3. Hőszigetelést rögzítő dübelek miatti korrekció

A hőszigetelést rögzítő dübelek hatását az MSZ EN ISO 6946 [19] szabvánnyal, valamint az ÉMKÉK v1.1 hőhídkatalógussal [21] is meghatároztam.

– MSZ EN ISO 6946 szabvány [19] alapján:

$$\Delta U_{f,d} = \alpha * \frac{n_{db} * A_f * \lambda_f}{d_0} * \left(\frac{R_1}{R_{th}}\right)^2 \tag{12}$$

ahol:

- $\circ \alpha = 0.8$ ha a rögzítő teljesen átszúrja a hőszigetelő réteget
- $\circ \quad \alpha = 0.8 * \frac{d_1}{d_0}$ süllyesztett rögzítőelem, amit a 6.ábra illusztrál
 - *d*₀: hőszigetelő réteg vastagsága
 - *d*₁: hőszigetelést átszúró rögzítőelem hossza
- o *n*_{db}: rögzítőelemek egy négyzetméterre jutó darabszáma
- \circ A_f: egy rögzítőelem hőszigetelést átszúró keresztmetszetének területe m²-ben
- λ_f: rögzítőelem hővezetési tényezője
- $\circ \quad R_1 = \frac{d_0}{\lambda_{h\tilde{o}szigetelés}} \text{ a rögzítés által átszúrt hőszigetelés hővezetési tényezője}$
- $\circ \quad R_{th} = R_{se} + \sum_{i} \frac{d_i}{\lambda_i} + R_{si} \text{ a keresztmetszet korrigálatlan hővezetési ellenállása}$

– ÉMKÉK v1.1 hőhídkatalógus [21] alapján:

 $\Delta U_{f,d}$: táblázatból vett érték, homlokzati rétegrend alapján

6.5.4. Tartókonzolok hőtechnikai hatása miatti korrekció

A tartókonzolok hőtechnikai hatását a 2020-as TDK dolgozatomban közölt saját hőhídkatalógusom és korrekciós képletem [2], valamint a HILTI hőhídkatalógusa [22] alapján határoztam meg.

saját hőhídkatalógus:

Táblázatból vett érték lineáris interpolációval számolva, amelyhez az alábbi adatokra van szükség:

- o külső vakolat vastagság, hővezetési tényező
- o konzol rögzítések száma, hővezetési tényezője, átmérője, furatmélysége
- o konzol hővezetési tényezője, geometriája
- o hőhídmegszakító hővezetési tényezője, vastagsága

Dübel		1	Falszerkezet		Hőszigetelőanyag		Tartókonzol		Hőhidmegszakító		Pontbeli hőátbocsátási tényező	
db [1/m ²]	λ [W/mK]	furat hossz [m]	anyag	vastagság [m]	λ [W/mK]	vastagág [m]	λ [W/mK]	λ [W/mK]	geometria [m x sz x d]	λ [W/mK]	vastagság [m]	χ [W/K]
1	50	0,05	vasbeton	0,2	2,5	0,2	0,04	50	- 06x0,06x0,008	0,5	0,02	0,0221

19. ábra: Legördülő kereső a hőhídkatalógushoz

saját korrekciós képlet:

A számítás alapja a (12) egyenlettel megegyező dübelkorrekciós képlet, amelytől az eltérések a következők:

- α-tényező helyett k-korrekciós szorzó: korábbi TDK dolgozatomban [2] bemutatott korrekciós táblázatok alapján interpolálva
- \circ tartókonzolokra vonatkozó tényezők: $n_{db},\,A_f,\,\lambda_f$
- HILTI hőhídkatalógus:

Az egyik legjelentősebb rögzítőelemeket gyártó nemzetközi cég, a Hilti kiadott egy segédletet [22], amelyben az általuk gyártott konzoltípusokat vizsgálta végeselemes szimulációval. Mind

a hőhidak számítását, mind a numerikus számítást az EN ISO 10211:2017 [20] szabvány szerint végezték, azonban a hőhídmegszakító hővezetési tényezőjét saját adatbázis alapján 0,117 W/mK-nek, a kerámia tartófal hővezetési tényezőjét pedig 0,44 W/mK-nek vették fel. Az összes forgalomban lévő általuk gyártott konzolra és rendszermegoldásra létrehoztak egy-egy táblázatot, amelyből a felhasználók megkaphatják, hogy az általuk választott megoldással mennyire adódik a pontbeli hőátbocsátási tényező. Ezt a katalógust felhasználva meghatároztam a dolgozatban vizsgált homlokzatra a Hilti MFT-MFI M és MFT-MFI L konzoljaira vonatkozó korrekciókat.

6.5.5. Csatlakozási hőhidak figyelembevétele

A csatlakozási hőhidak hatását pedig a 7/2006 TNM rendelet [18] szerinti egyszerűsített módszerrel, valamint az ÉMKÉK v1.1 hőhídkatalógussal [21] határoztam meg. Az eredményeket ΔU korrekcióként is átszámítottam, ezáltal összehasonlítható.

- 7/2006 TNM rendelet alapján [18]:

A rendelet értelmében a csatlakozási hőhidak hatásait χ korrekciós tényezővel vehetjük figyelembe, mely értékének meghatározásához a hőhidasság mértékét az alábbi 7. táblázat alapján lehet meghatározni:

Határoló szarkazatak	A höhidak hosszának fajlagos mennyisége (fm/m ²)				
Thatarolo szerkezetek	Hatarolo szerkezet besorolasa				
	gyengén hőhidas	közepesen hőhidas	erősen hőhidas		
Külső falak	< 0,8	0,8 - 1,0	> 1,0		
Lapostetők	< 0,2	0,2 - 0,3	> 0,3		
Beépített tetőtereket határoló szerkezetek	< 0,4	0,4 - 0,5	> 0,5		

7. táblázat: Hőhidak besorolása 7/2006 TNM rendelet értelmében

A ΔU_{csh} korrekciót a χ -tényezővel korrigált hőátbocsátási tényező, valamint a homlokzati rétegtervi hőátbocsátási tényező különbségeként kapjuk meg:

$$\Delta U_{csh} = U * (1 + \chi) - U \tag{13}$$

ÉMKÉK v1.1 hőhídkatalógus alapján [21]:

A vonalmenti hőátbocsátási tényezőket a numerikus szimulációkból meghatározott hőhídkatalógusból vett értékekkel vettem figyelembe.

A ΔU_{csh} korrekció meghatározásához az alábbi képlet alapján történik:

$$\Delta U_{csh} = \sum \frac{\psi_{*L}}{A} \left[\frac{W}{m^{2} * K} \right]$$
(14)

ahol:

- Ψ [W/mK]: vonalmenti hőátbocsátási tényező a falsarok, az ablakbeépítés, a közbenső födém, az erkélykonzol, az áthidaló, valamint a lapostető esetén hőhídkatalógusból vett értékek alapján
- L [m]: falsarok, az ablakbeépítés, a közbenső födém, az erkélykonzol, az áthidaló, valamint a lapostető csatlakozási hossza a geometriai modellből vett értékekkel
- A [m²]: belső homlokzati felület geometriai modellből levett értéke

6.5.6. Eredő hőátbocsátási tényező számítása

– 7/2006 TNM rendelet [18] egyszerűsített számítási módszer alapján:

$$U_R[\frac{W}{m^2K}] = (U + \Delta U_f + \Delta U_g + \Delta U_r + \sum_k n_k * \chi_k) * (1+\chi)$$
⁽¹⁵⁾

ahol:

- U: rétegtervi hőátbocsátási tényező
- $\circ \Delta U_f$: mechanikai rögzítőelemekre vonatkozó korrekciós tényező
- o ΔU_q : hézagokra vonatkozó korrekciós tényező elhanyagolva
- o ΔU_r : fordított rétegrendű tetőkre vonatkozó korrekciós tényező elhanyagolva
- o $\sum_k n_k * \chi_k$: pontbeli hőhidak hatását figyelembe vevő tényezők
- o $\sum_{i} l_i * \Psi_i$: vonalmenti hőhidak hatását figyelembe vevő tényezők
- Csatlakozási hőhidak értéke ÉMKÉK v1.1 hőhídkatalógusból [21]:

$$U_R[\frac{W}{m^2K}] = U + \Delta U_f + \Delta U_g + \Delta U_r + \sum_k n_k * \chi_k + \sum_j l_j * \Psi_j$$
(16)

ahol:

o $\sum_{j} l_j * \Psi_j$: vonalmenti hőhidak hatását figyelembe vevő tényezők

7. Eredmények

7.1. Numerikus szimulációk eredményei

A numerikus szimulációk segítségével meghatározott eredő hőátbocsátási tényezők számításához a 8-táblázatban kigyűjtött, a modellekből lekért, illetve kézzel számolt adatokra volt szükség:

Belső falfelület [m2]	Α	70,062
Hőmérsékletkülönbség [K]	ΔT	25
Hőmérsékletkülönbség a fűtetlen pince irányába [K]	ΔT_p	12
Lapostető felület [m ²]	A_t	4,73
Lapostető rétegtervi hőátbocsátási tényezője [W/m ² K]	U_t	0,1505
Pincefödém felület [A]	A_p	4,73
Pincefödém rétegtervi hőátbocsátási tényezője [W/m ² K]	U_p	0,1479
Nyílászárók felülete [m ²]	A_{ny}	13,10
Nyílászárókra számolt hőátbocsátási tényező [W/m ² K]	U_{ny}	0,8

8. táblázat: Numerikus szimulációk eredményeihez szükséges adatok

Lapostető hővesztesége:

 $Q_l = U_t * A_t * \Delta T = 17,797 W$

Pincefödém hővesztesége:

 $Q_p = U_p * A_p * \Delta T_p = 8,395 W$

Nyílászárók hővesztesége:

 $Q_{nv} = U_{nv} * A_{nv} * \Delta T = 261,900 W$

7.1.1. Hőszigetelt modell eredményei

Teljes felületre számolt hőáram: _

$$Q = 830,03 W$$

Teljes hőveszteség: _

$$\Sigma Q = Q - Q_l - Q_p - Q_{ny} = 541,939 \, W$$

Eredő hőátbocsátási tényező: _

$$U_R = \frac{\Sigma Q}{A * \Delta T} = 0,3094 \frac{W}{m^2 * K}$$

7.1.2. Mechanikai hőszigetelés rögzítéssel ellátott modell

Teljes felületre számolt hőáram: _

$$Q = 851,71 W$$

_

_

- Teljes hőveszteség:

$$\Sigma Q = Q - Q_l - Q_p - Q_{ny} = 563,619 W$$

Eredő hőátbocsátási tényező:

$$U_R = \frac{\Sigma Q}{A * \Delta T} = 0.3218 \frac{W}{m^2 * K}$$

eredményei

Teljes felületre számolt hőáram: _

Q = 886,88 W

Teljes hőveszteség: _

$$\Sigma Q = Q - Q_l - Q_p - Q_{ny} = 598,789 W$$

Eredő hőátbocsátási tényező: _

$$U_R = \frac{\Sigma Q}{A * \Delta T} = 0,3419 \frac{W}{m^2 * K}$$

7.1.3. Tartókonzolokkal szimulált modell 7.1.4. Mechanikai hőszigetelés rögzítéssel és tartókonzollal szimulált modell eredményei

Teljes felületre számolt hőáram: -

$$Q = 903,52 W$$

Teljes hőveszteség: -

$$\Sigma Q = Q - Q_l - Q_p - Q_{ny} = 615,429 \, W$$

$$U_R = \frac{\Sigma Q}{A * \Delta T} = 0,3514 \frac{W}{m^2 * K}$$

20. ábra: Hőmérsékleteloszlás ábrák csak hőszigetelt modell esetében

21. ábra: Hőmérsékleteloszlás ábrák mechanikai hőszigetelés rögzítéssel ellátott modell

22. ábra: Hőmérsékleteloszlás ábrák tartókonzollal ellátott modell

23. ábra: Hőmérsékleteloszlás ábrák mechanikai hőszigetelés rögzítéssel és tartókonzollal ellátott modell

7.2. Egyszerűsített számítások

7.2.1. Kézi számítás eredményei

- 1. Rétegtervi hőátbocsátási tényezők meghatározása:
- homlokzatra számolt rétegtervi hőátbocsátási tényező:

Külső teherhordó fal homlokzatburkolattal	hőátadási tényező h [W/m ² K]	rétegvastagság d [m]	hővezetési tényező λ [W/mK]	hőátbocsátási ellenállás R [m²K/W]
belső levegő	8	-	-	0,13
belső vakolat	-	0,01	0,8	0,02
kerámia falazóelem	-	0,30	0,19	1,58
külső vakolat	-	0,01	0,8	0,02
ásványgyapot hsz.	-	0,15	0,039	3,85
külső levegő	8,33	-	-	0,12
átszellőző légréteg	-	-	-	-
homlokzatburkolat	-	-	-	-
			ΣD	5 70

9. táblázat: Homlokzati rétegtervi hőátbocsátási tényező

$$U_0 = \frac{1}{R_{se} + \sum_i \frac{d_i}{\lambda_{2,i}} + R_{si}} = \frac{1}{5,70} = 0,1754 \frac{W}{m^2 * K}$$
(17)

- tetőre számolt rétegtervi hőátbocsátási tényező:

Lapostető	hőátadási tényező h [W/m2K]	rétegvas- tagság d [m]	hővezetési tényező λ [W/mK]	hőátbocsátási ellenállás R [m2K/W]
külső levegő	24	-	-	0,04
leterhelő réteg	-	-	-	-
szűrő/elválasztó réteg	-	-	-	-
csapadékvíz elleni szigetelés	-	-	-	-
lejtésképző hőszigetelés	-	0,25	0,039	6,41
párazáró rtg.	-	-	-	-
monolit vasbeton födém	-	0,2	2,5	0,08
belső vakolat	-	0,01	0,8	0,01
belső levegő	10	-	_	0,10
			ΣR	6,64

10. táblázat: Lapostető rétegtervi hőátbocsátási tényező

$$U_0 = \frac{1}{R_{se} + \sum_i \frac{d_i}{\lambda_{2,i}} + R_{si}} = \frac{1}{6,64} = 0,1505 \frac{W}{m^2 * K}$$
(18)

– pincefödémre számolt rétegtervi hőátbocsátási tényező:

Pincefödém	hőátadási tényező h [W/m2K]	rétegvas- tagság d [m]	hővezetési tényező λ [W/mK]	hőátbocsátási ellenállás R [m2K/W]
belső felület - levegő	6	-	-	0,17
kerámia burkolat	-	-	-	-
ragasztó	-	-	-	-
vasalt cementesztrich	-	0,07	1,15	0,06
TN elleni szig.+rétegei	-	-	-	-
monolit vasbeton födém	-	0,20	2,50	0,08
technológiai szigetelés	-	-	-	-
hőszigetelés	-	0,25	0,039	6,41
külső felület	24	_	_	0,04
44 - 7117 - 7		•••	ΣR	6,76

11. táblázat: Pincefödém rétegtervi hőátbocsátási tényező

(20)

$$U_0 = \frac{1}{R_{se} + \sum_i \frac{d_i}{\lambda_{2,i}} + R_{si}} = \frac{1}{6,76} = 0,1479 \frac{W}{m^2 * K}$$
(19)

– mechanikai rögzítőelemek korrekcióinak meghatározása: $\Delta U_{f,d}$

Dübelkorrekció MSZ EN ISO 6946 [19] alapján:

$$\Delta U_{f,d} = \alpha * \frac{n_{db} * A_f * \lambda_f}{d_0} * (\frac{R_1}{R_{th}})^2 = 0.01 \frac{W}{m^2 * K}$$

ahol:

α	0,8	ögzítőelem teljesen átszúrja a hőszigetelést				
n [db]	4,18	rögzítőelemek száma m²-ként [db/m2]				
$A_f[m^2]$	0,0000196	egy rögzítőelem keresztmetszeti területe				
$\lambda_{f} [W/mK]$	50	rögzítőelem hővezetési tényezője				
$d_0[m]$	0,15	hőszigetelő réteg vastagsága				
$R_1 [m^2 K/W]$	3,85	átszúrt hőszigetelő rtg. hővezetési ellenállása				
$RT_{,h}[m^2K/W]$	5,70	teljes km. hővezetési ellenállása korrekció nélkül				
	12. táblázat: Dübelkorrekcióhoz szükséges adatok					

Dübelkorrekció ÉMKÉK v1.1 [21] hőhídkatalógus alapján:

$$\Delta U_{f,d} = 0.015 \frac{W}{m^2 * K}$$
(21)

– fordított rétegrendű tetők korrekciója: ΔU_r

A fordított rétegrendű tetők korrekcióját elhanyagoljuk a modell egyszerűsítéseiből adódóan.

– illesztési hézagokra vonatkozó korrekció: ΔU_g

A modellezés során a hőszigetelés homogén rétegként került kialakításra az illesztési hézagok által okozott numerikus hibák elkerülése, valamint a végeselemes hálózás megkönnyítése végett, így az erre vonatkozó korrekciót elhanyagoljuk.

pontbeli hőhidak hatása:

Részletes számítási módszer esetében a tartókonzolok pontbeli hőátbocsátási tényezőjét az MSZ EN ISO 10211 szabvány [20] szerinti vagy azzal azonos eredményt adó numerikus szimulációkkal tudjuk meghatározni.

Saját hőhídkatalógusból vett értékek alapján:

A korábbi TDK dolgozatomban [2] közölt pontbeli hőátbocsátási tényezőket tartalmazó táblázataim több, mint 120 ezer numerikus szimulációs futtatás eredményét tartalmazzák, ezek felhasználásával lineáris interpolációval határoztam meg a jelenlegi geometriai elrendezésre az egyes tartókonzolok pontbeli hőátbocsátási tényezőjét, majd beszoroztam az összes tartókonzol darabszámmal. A lineáris interpolációhoz szükséges paramétereket a 13.táblázat tartalmazza, a 20. ábra a homlokzati konzolok és dübelek kiosztását mutatja.

fal vastagság d _{fal} [cm]	fal hővezetési tényező λ _{fal} [W/mK]	belső vakolat vastagság d _{vakolat} [cm]	belső vakolat hővezetési tényező λ _{vakolat} [W/mK]	hőszigetelés vastagság d _{hőszig} [cm]	hőszigetelés hővezetési tényező λ _{hőszig} [W/mK]
30	0,19	1,0	0,8	0,8 18	
külső vakolat vastagság d _{kvakolat} [cm]	külső vakolat hővezetési tényező λ _{vakolat} [W/mK]	rögzítések száma n [db]	konzol dübel hővezetési tényező λ _{dübel} [W/mK]	konzol dübel átmérő d _{dübel} [cm]	furatmélység l _{furat} [cm]
1	0,8	1(kicsi); 2(nagy)	50	1	10
konzol hővezetési tényező λ _{konzol} [W/mK]	konzol vastagság d _{konzol} [cm]	konzol magasság h _{konzol} [cm]	konzol szélesség w _{konzol} [cm]	hőhídmegsz. hővezetési tényező λ _{hmegszak} [W/mK]	hőhídmegsz. vastagság d _{hmegszak} [cm]
160	0,4	8,0(kicsi); 16,0(nagy)	6,2	0,25	0,5

13. táblázat: Interpolációhoz szükséges modell paraméterek

24. ábra: Tartókonzol és dübelezés kiosztás a homlokzaton

- csúszó kialakítású tartókonzol:
$$\sum_{k} n * \chi_{k,cs} = 0,0133 \frac{W}{m^{2}*K}$$
 (22)

n [db/m ²]	1,53	tartókonzolok száma m2-ként [107 db/70,062 m²]
χ[W/K]	0,0087	tartókonzol pontbeli hőátbocsátási tényezője

- fix kialakítású tartókonzol: $\sum_{k} n * \chi_{k,f} = 0,0146 \frac{W}{m^2 * K}$ (23)

n [db/m ²]	0,98	tartókonzolok száma m2-ként [69 db/70,062 m ²]
χ[W/K]	0,0149	tartókonzol pontbeli hőátbocsátási tényezője

$$\sum_{k} n * X = 0,0279 \frac{W}{m^2 * K}$$
(24)

Hilti hőhídkatalógusból vett értékek alapján:

Az egyik legjelentősebb rögzítőelemeket gyártó nemzetközi cég, a Hilti kiadott egy segédletet[22], amelyben az általuk gyártott konzoltípusokat vizsgálta végeselemes szimulációval. Mind a hőhidak számítását, mind a numerikus számítást az EN ISO 10211:2017 [20]szabvány szerint végezték, azonban a hőhídmegszakító hővezetési tényezőjét saját adatbázis alapján 0,117 W/mK-nek, a kerámia tartófal hővezetési tényezőjét pedig 0,44 W/mK-nek vették fel. Az összes forgalomban lévő általuk gyártott konzolra és rendszermegoldásra létrehoztak egy-egy táblázatot, amelyből a felhasználók megkaphatják, hogy az általuk választott megoldással mennyire adódik a pontbeli hőátbocsátási tényező. Ezt a katalógust felhasználva meghatároztam a dolgozatban vizsgált homlokzatra a Hilti MFT-MFI M és MFT-

MFI L konzoljai által okozott pontbeli hőátbocsátási tényezőket és összehasonlítottam a kézi számítások, valamint a szimulációk eredményeivel.

- MFT-MFI M konzolok X-érték számítása:

A számításokhoz az alábbi 14. táblázat X-értékei közül 15 cm vastag hőszigetelés esetében interpoláltam az értékeket:

$$\sum_{k} n * \chi_{MFTMFIM} = 0,0513 \frac{W}{m^2 * K}$$
(25)

n [db/m ²]	1,53	tartókonzolok száma m ² -ként [107 db/70,062 m ²]
χ[W/K]	0,0336	tartókonzol pontbeli hőátbocsátási tényezője

MFT-MFI Medium	Bra	ckets	MFI 125 M	MFI 125 M	MFI 155 M	MFI 185 M	MFI 215 M	MFI 245 M	MFI 275 M	MFI 275 M	MFI 275 M	MFI 275 M
Insulation thickness	d	[mm]	100	120	140	160	180	200	220	240	260	280
Thermal transmis- sion coefficient of the undisturbed wall	U ₀	[W/m²K]	0.2639	0.2293	0.2028	0.1817	0.1646	0.1505	0.1335	0.1284	0.1196	0.1120
Punctual thermal bridge loss coefficient of the bracket	x	[W/K]	0.0296	0.0312*	0.0328*	0.0344	0.0350*	0.0357*	0.0364*	0.0370*	0.0377*	0.0384*

14. táblázat: Hilti MFT-MFI M konzol pontbeli hőátbocsátási értékei katalógus szerint

A számításokhoz az alábbi 15 táblázat X-értékei közül 15 cm vastag hőszigetelés esetében interpoláltam az értékeket:

$$\sum_{k} n * \chi_{MFTMFIL} = 0,0534 \frac{W}{m^2 * K}$$
(26)

n [db/m2]	0,98	tartókonzolok száma m ² -ként [69 db/70,062 m ²]
χ [W/K]	0,0542	tartókonzol pontbeli hőátbocsátási tényezője

MFT-MFI Large Brackets		MFI 125 L	MFI 125 L	MFI 155 L	MFI 185 L	MFI 215 L	MFI 245 L	MFI 275 L	MFI 275 L	MFI 275 L	MFI 275 L	
Insulation thickness	d _o	[mm]	100	120	140	160	180	200	220	240	260	280
Thermal transmis- sion coefficient of the undisturbed wall	U _o	[W/m²K]	0.2639	0.2293	0.2028	0.1817	0.1646	0.1529	0.1386	0.1284	0.1196	0.1120
Punctual thermal bridge loss coefficient of the bracket	x	[W/K]	0.0478	0.0503*	0.0529*	0.0554	0.0564*	0.0575*	0.0586*	0.0597*	0.0607*	0.0618*

15. táblázat: Hilti MFT-MFI L konzol pontbeli hőátbocsátási értékei katalógus szerint

$$\sum_{k} n * X = 0,1047 \frac{W}{m^2 * K}$$
(27)

Korrekciós képlettel számolt értékek alapján:

– csúszó kialakítású tartókonzol:

$$\Delta U_{k,csúszó} = k * \frac{n_{db} * A_f * \lambda_f}{d_0} * (\frac{R_1}{R_{th}})^2 = 0,0258 \frac{W}{m^2 * K}$$
(28)

ahol:

k	0,109	korrekciós tényező saját táblázatból vett értéke				
n [db]	1,5272	rögzítőelemek száma m²-ként [db/m2]				
$A_f[m^2]$	0,00032	32 egy rögzítőelem keresztmetszeti területe				
$\lambda f[W/mK]$	160	rögzítőelem hővezetési tényezője				
$d_0[m]$	0,15	hőszigetelő réteg vastagsága				
$R_1 [m^2 K/W]$	3,85	átszúrt hőszigetelő rtg. hővezetési ellenállása				
$R_{T,h} [m^2 K/W]$	5,70	teljes km. hővezetési ellenállása korrekció nélkül				
<u> </u>	16. táblázat: Csúszó konzol paraméterei					

– fix kialakítású tartókonzol:

$$\Delta U_{k,fix} = k * \frac{n_{db} * A_f * \lambda_f}{d_0} * \left(\frac{R_1}{R_{th}}\right)^2 = 0,0337 \frac{W}{m^{2} * K}$$
(29)

ahol:

k	0,110	korrekciós tényező saját táblázatból vett értéke
n [db]	0,9848	rögzítőelemek száma m ² -ként [db/m2]
$A_f[m^2]$	0,00064	egy rögzítőelem keresztmetszeti területe

$\lambda f[W/mK]$	160	rögzítőelem hővezetési tényezője			
d ₀ [m]	0,15	hőszigetelő réteg vastagsága			
$R_1[m^2K/W]$	3,85	átszúrt hőszigetelő rtg. hővezetési ellenállása			
$R_{T,h} [m^2 K/W]$	5,70	teljes km. hővezetési ellenállása korrekció nélkül			
17. táblázat: Fix konzol paraméterei					

 $\Delta U_{k_{i}} = 0,0595 \frac{W}{m^{2} * K} \tag{30}$

A korrekciós tényező meghatározásához használt táblázat a következő linken érhető el, a 18. táblázat a jelenleg használt korrekciókat mutatja:

https://bit.ly/34uWrKH

	30 cm tégla tartófal λ=0,19 W/mK									
Konzol										
hővezetési	0	,1	0	,2	0	,3	Konzol			
tényező	Hő	szigetelé	s hővezet	ési ténye	ző [W/m	² K]	geometria			
[W/m ² K]	0,03	0,04	0,03	0,04	0,03	0,04	[m x d]			
	0,320	0,208	2,000	1,200	5,200	3,200	0,06 x 0,004			
17	0,224	0,144	1,440	0,920	4,400	2,560	0,06 x 0,008			
1/	0,224	0,144	1,440	0,920	4,400	2,560	0,2 x 0,004			
	0,176	0,104	1,120	0,720	3,440	2,000	0,2 x 0,008			
	0,128	0,080	0,960	0,560	2,800	1,760	0,06 x 0,004			
50	0,088	0,088	0,640	0,400	2,000	1,280	0,06 x 0,008			
50	0,104	0,056	0,720	0,440	2,240	1,440	0,2 x 0,004			
	0,064	0,064	0,480	0,296	1,520	0,960	0,2 x 0,008			
	0,044	0,029	0,344	0,224	1,120	0,720	0,06 x 0,004			
160	0,029	0,019	0,216	0,144	0,720	0,480	0,06 x 0,008			
100	0,034	0,022	0,256	0,160	0,880	0,560	0,2 x 0,004			
	0,022	0,014	0,160	0,104	0,560	0,320	0,2 x 0,008			

18. táblázat: Korrekciós tényezőket tartalmazó táblázat

korrigált homlokzati hőátbocsátási tényező: U

Az eltérő módszerekkel meghatározott dübel és tartókonzol korrekciók miatt összesen 6 db különböző korrigált homlokzati hőátbocsátási tényezőt határoztam meg, ezek megfelelőségét az alábbiak szerint kell ellenőrizni, az egyes módszerekhez tartozó értékeket az egyszerűsített számításokat összehasonlító 21. táblázat tartalmazza.

$$U = U_0 + \Delta U_f < 0.24 \frac{W}{m^2 * K} \quad MEGFELEL \tag{31}$$

2. Csatlakozási hőhidak meghatározása:

7/2006 TNM rendelet [18] alapján:

A 7/2006 TNM [18] rendelet értelmében a csatlakozási hőhidak hatásait χ korrekciós tényezővel vehetjük figyelembe, melynek értékeit a szerkezet típusa és a határolás tagoltsága függvényében az alábbi 19. táblázat tartalmazza, jelen kutatás során a vizsgált épületrészlet erősen hőhidas, mivel a csatlakozó hőhidak összhossza 98,65 m-re adódik, melyet a külső fal felületével (70,062 m²) elosztva 1,41 m/m²-t kapunk. Az alkalmazott hőhidak hatását kifejező korrekciós tényező ezáltal: $\chi = 0,3$

	A hőhidak hatását kifejező korrekciós tényező χ		
Külső falak ¹⁾	külső oldali, vagy szerkezeten belüli	gyengén hőhidas	0,15
	megszakítatlan hőszigeteléssel	közepesen hőhidas	0,20
		erősen hőhidas	0,30
	egyéb külső falak	gyengén hőhidas	0,25
		közepesen hőhidas	0,30
		erősen hőhidas	0,40

19. táblázat: χ korrekciós tényező meghatározás 7/2006 TNM rendelet alapján *vonalmenti hőátbocsátási tényező meghatározása ÉMKÉK v1.1 hőhídkatalógusból*

Jelen esetben egy numerikus szimulációval elkészített hőhídkatalógusból [21] vett értékekkel dolgoztam, amely segítségével meghatároztam a falsarok, az ablakbeépítés, a közbenső födém, az erkélykonzol, valamint a lapostető által okozott csatlakozási hőhidakat. A figyelembe vett csatlakozási hőhidakat és a belőlük eredő hőveszteségeket az alábbi 20. táblázat szemlélteti:

Típus	Ψ [W/mK]	Hossz [m]	Ψ*L [W/K]
falsarok	0,08	15,90	1,27
nyílászáróbeépítés	0,03	51,25	1,54
közbenső födém	0,09	29,58	2,66
erkélykonzol	0,31	1,80	0,56
lapostető	0,23	10,46	2,41
áthidaló	0,025	10,34	2,59
összesen			9,78

20. táblázat: Csatlakozási hőhidak meghatározása

(32)

A katalógus alapján számolt csatlakozási hőhidak korrekciója:

$$\Delta U_{csh} = \sum \frac{\Psi * L}{A} = 0,139 \frac{W}{m^2 * K}$$

3. Eredő hőátbocsátási tényező meghatározása: U_R

7/2006 TNM rendelet [18] egyszerűsített számítási módszere alapján:

Az eredő hőátbocsátási tényező meghatározásához a felületi, szerkezeti csatlakozásoknál keletkező hőhídveszteségeket a 7/2006-os TNM rendelet [18] értelmében egyszerűsített módszer alkalmazása esetén a következő összefüggés szerint kell figyelembe venni:

$$U_{R}[\frac{W}{m^{2} * K}] = U * (1 + \chi)$$
(33)

Ebben az esetben az eltérő módszerekkel meghatározott dübel és tartókonzol korrekciók miatt összesen 3 db különböző eredő hőátbocsátási tényezőt határoztam meg, az egyes módszerekhez tartozó értékeket az egyszerűsített számításokat összehasonlító 21. számú táblázat tartalmazza.

csatlakozási hőhidak ÉMKÉK v1.1 hőhídkatalógusból vett értékkel számolva:

A katalógus alapján az eredő hőátbocsátási tényező:

$$U_R[\frac{W}{m^2 * K}] = U + \Delta U_f + \sum_k n_k * \chi_k + \sum_j \frac{l_j * \Psi_j}{A}$$
(34)

Hasonlóan az előző esethez, ekkor is 3 db különböző eredő hőátbocsátási tényező adódott, melyeket a következő 21.táblázat tartalmaz.

	Egyszerűsített számítás						
		Pontbeli hőátbocsátási tényezők saját Pontbeli hőátbocsáta hőhídkatalógus alapján hőhídkatalóg		tási tényezők Hilti gus alapján	Pontbeli hőátbocsá korrekciós k	Pontbeli hőátbocsátási tényezők saját korrekciós képlet alapján	
		Dübelkorrekció MSZ EN ISO 6946 és csatlakozási höhidak 7/2006 TNM rendelet alapján	Dübelkorrekció és csatlakozási hőhídak ÉMKÉK v1.1 hőhídkatalógus alapján	Dübelkorrekció MSZ EN ISO 6946 és csatlakozási höhidak 7/2006 TNM rendelet alapján	Dübelkorrekció és csatlakozási hőhídak ÉMKÉK v1.1 hőhídkatalógus alapján	Dübelkorrekció MSZ EN ISO 6946 és csatlakozási höhidak 7/2006 TNM rendelet alapján	Dübelkorrekció és csatlakozási hőhídak ÉMKÉK v1.1 hőhídkatalógus alapján
tető rétegtervi U [W/m ² K]	$\mathbf{U}_{0,tet\ddot{o}}$	0,1505	0,1505	0,1505	0,1505	0,1505	0,1505
pincefödém rétegtervi U [W/m ² K]	U _{0,pince}	0,1479	0,1479	0,1479	0,1479	0,1479	0,1479
homlokzat rétegtervi U [W/m ² K]	U _{0,homlokzat}	0,1754	0,1754	0,1754	0,1754	0,1754	0,1754
dübel korrekció [W/m ² K]	$\Delta U_{f,d}$	0,01	0,015	0,01	0,015	0,01	0,015
tartókonzolok korrekciója [W/m ² K]	$\Delta U_{f,k}$	0,0279	0,0279	0,105	0,105	0,0595	0,0595
korrigált homlokzat rétegtervi U [W/m ² K] $U_{homlokzat}$ csatlakozási hőhidak korrekciója [W/m ² K] ΔU_{csh}		0,2133	0,2183	0,2901	0,2951	0,2449	0,2499
		0,06399	0,1390	0,08703	0,1390	0,07347	0,1390
eredő U [W/m ² K]	UR	0,2773	0,3573	0,3771	0,4341	0,3184	0,3889
teljes korrekció [W/m ² K]	ΔU	0,1019	0,1819	0,2017	0,2587	0,1430	0,2135

21. táblázat: Egyszerűsített számítások eredményeit összefoglaló táblázat

7.3. Eredmények kiértékelése, összehasonlítása

- Eredő hőátbocsátási tényezők numerikus szimulációkból

A különböző modellekre lefuttatott numerikus szimulációkból megkapott eredő hőátbocsátási tényezőket az alábbi 22. táblázat és 25. ábrán látható diagram tartalmazza:

Fredő		Numerikus	szimulációk	
hőátbocsátási tényező [W/m ² K]	Hőszigetelt modell	Hőszigetelt és dübelezett modell	Hőszigetelt és konzolozott modell	Hőszigetelt, dübelezett és konzolozott modell
U _R	0,3094	0,3218	0,3419	0,3514

22. táblázat: Eredő hőátbocsátási tényezők numerikus szimulációk alapján

25. ábra: Eredő hőátbocsátási tényezők numerikus szimulációkból: 1-Hőszigetelt modell; 2-Hőszigetelt és dübelezett modell; 3-Hőszigetelt és konzolozott modell; 4-Hőszigetelt, dübelezett és konzolozott modell

A hőszigetelt, dübelezett és konzolozott modell teljes homlokzati numerikus szimulációjából adódó eredő hőátbocsátási tényezőt vettem viszonyítási alapnak a vizsgálatokhoz. Az eredmények azt mutatják, hogy a homlokzatra elhelyezett mechanikai rögzítések számával egyre több hőáram keletkezik és nő az eredő hőátbocsátási tényező, az egyes modellekre kapott eredmények különbségéből a következő pontokban megállapításra kerülnek a rögzítések által okozott különböző korrekciók.

- Korrekciók meghatározása:
 - 1. Dübelkorrekciók meghatározása és összehasonlítása:

A különböző módszerekkel meghatározott dübelkorrekciókat az alábbi 23. táblázat és 26. ábrán látható diagram tartalmazza:

Dübelkorrekció [W/m ² K]	MSZ EN ISO 6946 alapján	ÉMKÉK v1.1. hőhídkatalógus alapján	Teljes homlokzat numerikus szimulációja alapján
$\Delta \mathrm{U}_{\mathrm{f,d}}$	0,0151	0,015	0,0124

23. táblázat: Dübelkorrekciók összehasonlítása

26. ábra: Dübelkorrekciók meghatározása: 1-MSZ EN ISO 6946; 2-ÉMKÉK v1.1 hőhídkatalógus; 3-Teljes homlokzat numerikus szimulációja alapján

Az eredmények azt mutatják, hogy mind a MSZ EN ISO 6946 szabvány [19] értelmében számolt, mind az ÉMKÉK v1.1 hőhídkatalógusból meghatározott eredmény 21%-kal nagyobb, mint a numerikus szimulációk alapján meghatározott korrekció. Az ábra alapján azt mondhatjuk, hogy mind a két számítási móddal közel hasonló végeredményt kapunk, amellyel a biztonság javára vett közelítéssel becsülhetjük a dübelkorrekció értékét.

2. Tartókonzol korrekciók meghatározása és összehasonlítása:

A különböző módszerekkel meghatározott tartókonzol korrekciókat az alábbi 24. táblázat és a 27. ábrán látható diagram tartalmazza:

Tartókonzol korrekció [W/m ² K]	Saját hőhídkatalógus alapján	Hilti hőhídkatalógus alapján	Saját korrekciós képlet alapján	Teljes homlokzat numerikus szimulációja alapján
$\Delta \mathrm{U}_{\mathrm{f,k}}$	0,0279	0,1047	0,0595	0,0325

24. táblázat: Tartókonzol korrekciók összehasonlítása

27. ábra: Tartókonzol korrekciók összehasonlítása: 1-Saját hőhídkatalógus, 2-Hilti hőhídkatalógus; 3-Saját korrekciós képlet; Teljes homlokzati numerikus szimuláció alapján

A tartókonzolok által okozott pontbeli hőhidak eredményei között nagy szórás mutatkozik. A teljes homlokzat numerikus szimulációja alapján meghatározott eredményt a legjobban, a saját hőhídkatalógus alapján számolt korrekció közelíti, ám ebben az esetben 15%-os eltéréssel a biztonság kárára közelítve kapott eredményt kapunk. A Hilti hőhídkatalógusa alapján számolt korrekciók több, mint 300%-kal nagyobbak, valamint a saját hőhídkatalógus alapján számolt korrekciók majdnem 200%-kal nagyobbak a teljes homlokzat numerikus szimulációja során meghatározott korrekciónál.

3. Teljes mechanikai rögzítések miatti korrekciók meghatározása és összehasonlítása:

A teljes mechanikai rögzítések miatti korrekciót a dübel-és tartókonzol korrekciók összegeként kapjuk meg, ezek összehasonlítását a 25. táblázat és 28. ábrán látható diagram tartalmazza:

Teljes mechanikai rögzítés miatti korrekció [W/m ² K]	Pontbeli hőátbocsátási tényezők saját hőhídkatalógus alapján		Pontbeli hőátbocsátási tényezők Hilti hőhídkatalógus alapján		Pontbeli hőátbocsátási tényezők saját korrekciós képlet alapján		Teljes homlokzat numerikus	Csak tartókonzolt és csak dübelkorrekciót tartalmazó teljes
	Dübelkorrekció MSZ EN ISO 6946 és csatlakozási hőhidak 7/2006 TNM rendelet alapján	Dübelkorrekció és csatlakozási hőhídak ÉMKÉK v1.1 hőhídkatalógus alapján	Dübelkorrekció MSZ EN ISO 6946 és csatlakozási hőhidak 7/2006 TNM rendelet alapján	Dübelkorrekció és csatlakozási hőhídak ÉMKÉK v1.1 hőhídkatalógus alapján	Dübelkorrekció MSZ EN ISO 6946 és csatlakozási hőhidak 7/2006 TNM rendelet alapján	Dübelkorrekció és csatlakozási hőhídak ÉMKÉK v1.1 hőhídkatalógus alapján	szimulációja alapján	homlokzati numerikus szimuláció összege
ΔU_{f}	0,0379	0,0429	0,1047	0,1197	0,0695	0,0745	0,0420	0,0449

25. táblázat: Teljes mechanikai rögzítések miatti korrekciók összehasonlítása

28. ábra: Teljes mechanikai rögzítés miatti korrekciók összehasonlítása: 1- Pontbeli hőátbocsátási tényezők saját hőhídkatalógus, Dübelkorrekció MSZ EN ISO 6946 és csatlakozási hőhidak 7/2006 TNM rendelet alapján, 2-Pontbeli hőátbocsátási tényezők saját hőhídkatalógus, Dübelkorrekció és csatlakozási hőhídak ÉMKÉK v1.1 hőhídkatalógus alapján, 3-Pontbeli hőátbocsátási tényezők Hilti hőhídkatalógus alapján, Dübelkorrekció MSZ EN ISO 6946 és csatlakozási hőhidak 7/2006 TNM rendelet alapján; 4-Pontbeli hőátbocsátási tényezők Hilti hőhídkatalógus alapján, Dübelkorrekció és csatlakozási hőhídak ÉMKÉK v1.1 hőhídkatalógus alapján; 5- Pontbeli hőátbocsátási tényezők saját korrekciós képlet alapján, Dübelkorrekció MSZ EN ISO 6946 és csatlakozási hőhidak 7/2006 TNM rendelet alapján; 6- Pontbeli hőátbocsátási tényezők saját korrekciós képlet alapján, Dübelkorrekció és csatlakozási hőhídak ÉMKÉK v1.1 hőhídkatalógus alapján; 7- Pontbeli alapján, Dübelkorrekció és csatlakozási hőhídak ÉMKÉK v1.1 hőhídkatalógus alapján; 7- Teljes homlokzati numerikus szimuláció alapján; 8-Csak tartókonzolt és csak dübelkorrekciót tartalmazó teljes homlokzati numerikus szimuláció összege alapján

A numerikus szimulációk esetében két különböző mechanikai rögzítésből adódó korrekciót kapunk, egyik esetben a korrekciót a dübelek és konzolok korrekciójának összegeként határozzuk meg, a másik esetben pedig a hőszigetelt, dübelezett és konzolozott modell, valamint a hőszigetelt modellek eredő hőátbocsátási tényezőinek különbségéből kapjuk, amely érték legjobban közelíti a valóságos értéket. A különbség abból adódik, hogy a hőhidak hatása alapvetően nem szuperponálható, de ebben az esetben a biztonság javára közelítünk azzal, hogy a ténylegesnél nagyobb korrekcióval számolunk. A 3-as és 4-es esetben kiugró értékek a Hilti

katalógus alapján számolt konzol korrekció miatt adódnak. A numerikus szimulációkból számolt eredményeket a saját pontbeli hőhídkatalógus alapján számolt korrekciók közelítik.

4. Csatlakozási hőhidak miatti korrekciók meghatározása és összehasonlítása:

A különböző módszerekkel meghatározott csatlakozási hőhidak miatti korrekciók összehasonlítását az alábbi 26. táblázat és 29. ábrán látható diagram tartalmazza:

Csatlakozási hőhidak miatti korrekció [W/m ² K]	7/2006 TNM rendelet alapján*	ÉMKÉK v1.1. hőhídkatalógus alapján	Teljes homlokzat numerikus szimulációja alapján
ΔU_{csh}	0,0612/0,0870/0,0735	0,139	0,134

*Mivel a csatlakozási hőhidak korrekciója a TNM rendelet esetében a rétegtervi hőátbocsátási tényezőtől függ, ezért 3 féle érték adódik

26. táblázat: Csatlakozási hőhidak miatti korrekciók összehasonlítása

29. ábra: Csatlakozási hőhidak miatti korrekciók összehasonlítása: 1-7/2006 TNM rendelet, 2-ÉMKÉK v1.1 hőhídkatalógus, 3-Teljes homlokzati numerikus szimuláció alapján

A 7/2006-os TNM rendelet módszertana alapján meghatározott csatlakozási hőhidak korrekciója függ a rétegtervi hőátbocsátási tényezőtől, így 3 különböző érték adódik, azonban mindegyik esetben jóval kevesebb értékek adódnak, mind az ÉMKÉK v1.1 hőhídkatalógus alapján számolt, valamint a teljes homlokzat numerikus szimulációjával meghatározott értékekhez képest. Részben ez eredményezi a 7/2006 TNM rendelet módszertanával számolt rétegtervi hőátbocsátási tényező eltérését is valóságot legjobban közelítő numerikus szimulációval meghatározott rétegtervi hőátbocsátási tényező eltérését is valóságot legjobban közelítő numerikus szimulációval meghatározott rétegtervi hőátbocsátási tényező hőz képest.

 Egyszerűsített számításokból és numerikus szimulációkból meghatározott eredő hőátbocsátási tényezők összehasonlítása:

A különböző egyszerűsített számításokból és a hőszigetelt, dübelezett és konzolozott numerikus szimulációból kapott eredő hőátbocsátási tényezők összehasonlítását az alábbi 27. és 28. táblázatok és 30. ábrán látható diagram tartalmazza:

Numerikus			Egyszerűsít	ett számítás			
szimuláció		Pontbeli hőátbocsátási tényezők saját hőhídkatalógus alapján		Pontbeli hőátbocsátási tényezők Hilti hőhídkatalógus alapján		Pontbeli hőátbocsátási tényezők saját korrekciós képlet alapján	
Mechanikai hőszigetelés rögzítések + tartókonzolok		Csatlakozási hőhidak 7/2006 TNM rendelet alapján	Csatlakozási hőhídak hőhídkatalógus alapján	csatlakozási hőhidak 7/2006 TNM rendelet alapján	Csatlakozási hőhídak hőhídkatalógus alapján	Csatlakozási hőhidak 7/2006 TNM rendelet alapján	Csatlakozási hőhídak hőhídkatalógus alapján
U _R	0,3514	0,2773	0,3573	0,2546	0,3399	0,3184	0,3889

30. ábra: Eredő hőátbocsátási tényezők összehasonlítása: 1-Pontbeli hőátbocsátási tényező saját hőhídkatalógus/Csatlakozó hőhidak 7/2006 TNM rendelet; 2-Pontbeli hőátbocsátási tényező saját hőhídkatalógus/Csatlakozó hőhidak ÉMKÉK v1.1 hőhídkatalógus; 3-Pontbeli hőátbocsátási tényező Hilti hőhídkatalógus/Csatlakozó hőhidak 7/2006 TNM rendelet; 4-Pontbeli hőátbocsátási tényező Hilti hőhídkatalógus/Csatlakozó hőhidak ÉMKÉK v1.1 hőhídkatalógus; 5-Pontbeli hőátbocsátási tényező saját korrekciós képlet/Csatlakozó hőhidak 7/2006 TNM rendelet; 6-Pontbeli hőátbocsátási tényező saját korrekciós képlet/Csatlakozó hőhidak 7/2006 TNM rendelet; 6-Pontbeli hőátbocsátási tényező saját korrekciós képlet/Csatlakozó hőhidak ÉMKÉK v1.1 hőhídkatalógus; 7-Mechanikai hőszigetelés rögzítések+tartókonzolok numerikus szimulációja alapján

Numerikus szimuláció				Egyszerűsíte	tt számítások		
		Pontbeli hőátbocsátási tényezők saját hőhídkatalógus alapján		Pontbeli hőátbocsátási tényezők Hilti hőhídkatalógus alapján		Pontbeli hőátbocsátási tényezők saját korrekciós képlet alapján	
m hố rö tart	echanikai szigetelés gzítések + ókonzolok	Csatlakozási hőhidak 7/2006 TNM rendelet alapján [%]	Csatlakozási hőhídak ÉMKÉK v1.1 hőhídkatalógus alapján [%]	Csatlakozási hőhidak 7/2006 TNM rendelet alapján [%]	Csatlakozási hőhídak ÉMKÉK v1.1 hőhídkatalógus alapján [%]	Csatlakozási hőhidak 7/2006 TNM rendelet alapján [%]	Csatlakozási hőhídak ÉMKÉK v1.1 hőhídkatalógus alapján [%]
U _R	0,3514	-21,1%	1,7%	-27,5%	-3,3%	-9,4%	10,7%

28. táblázat: Egyszerűsített számításokból és numerikus szimulációkból meghatározott eredő hőátbocsátási tényezők %-os eltérése

Az eredő hőátbocsátási tényezők közötti %-os eltéréseket vizsgálva az látható, hogy a 7/2006 TNM rendelet alapján meghatározott csatlakozási hőhidakkal számolt eredmények minden esetben a biztonság kárára tévednek és akár 28% -kal is eltérhetnek a numerikus szimulációval meghatározott eredménytől. Amennyiben a csatlakozási hőhidakat az ÉMKÉK v1.1 hőhídkatalógussal határozzuk meg, úgy saját hőhídkatalógussal vagy korrekciós képlettel meghatározott pontbeli hőátbocsátási tényezővel számolt korrekciók esetében a biztonság javára közelítjük az eredő hőátbocsátási tényező értéket, Hilti katalógust használva 3,3%-al a biztonság kárára közelítünk. A numerikus szimuláció során kapott eredményt legjobban az ÉMKÉK v1.1 hőhídkatalógus alapján számolt csatlakozási hőhidak és a saját hőhídkatalógusból számolt pontbeli hőhidak esete közelíti, ekkor 1,7%-os eltéréssel a biztonság javára tévedve adódik az eredő hőátbocsátási tényező.

8. Összefoglalás

Dolgozatomban egy Archicaddel modellezett, átszellőztetett homlokzatburkolattal rendelkező teljes épület homlokzati modelljét előállítva készítettem egy teljes homlokzatot magában foglaló numerikus hőtechnikai modellt, valamint mutattam be ennek folyamatát.

Először a hőszigetelt épület homlokzatrészletének teljes geometriai modelljét felhasználva futtatam a numerikus szimulációt, hogy megkapjam a homlokzati falszerkezetek hőveszteségeit, ezt követően pedig meghatároztam a teljes homlokzatburkolat alszerkezet épületfizikai hatását, beleértve a tartókonzolokat és rögzítőrendszert, valamint a hőszigetelést rögzítő dübeleket is. E hatásokat külön-külön is megvizsgáltam, ezáltal látható, hogy az egyes elemeknek egy teljes homlokzatot vizsgálva mekkora hatása van a szerkezet átlagos hőátbocsátási tényezőjére. Az eredmények értékeléséhez egyszerűsített számításokat is végeztem, mely során mind a 7/2006 TNM rendelet, illetve az abban hivatkozott szabványos számításokat, mind pedig korábbi TDK munkámban publikált hőhídkatalógust, illetve az ÉMKÉK v1.1. hőhídkatalógust is felhasználtam, számítottam továbbá a Hilti hőhídkatalógusának felhasználásával is eredményeket. Összehasonlítottam továbbá az egyszerűsített számításokkal meghatározott dübelkorrekciókat, tartókonzol korrekciókat és a csatlakozási hőhidak miatti korrekciókat is. Végezetül összesen hatféle egyszerűsített számítással meghatározott homlokzatrészlet eredő hőátbocsátási tényezőjét a numerikus szimulációval meghatározott eredménnyel összehasonlítva megállapítottam, hogy annak eredményeit a 2020-as TDK dolgozatomban publikált hőhídkatalógus és az ÉMKÉK v1.1 hőhídkatalógus alkalmazásával közelíthető meg a legjobban, mindössze 1,7% eltéréssel. Kijelenthet továbbá, hogy a 7/2006 TNM rendelet egyszerűsített hőhídkorrekcióját alkalmazva kaptam a legnagyobb eltéréseket.

Összegzésként megállapítható, hogy még hosszú út vezet a BIM-alapú épületfizikai modellezés gyors és hatékony végrehajtásához, az áttekintett átjárhatósági problémákkal még foglalkozni kell a jövőben, mert jelenleg megnehezítik és lassítják a folyamat automatizálhatóságát és sok olyan terület van, ahol továbbra is kézi beavatkozásokra van szükség. A legtöbb probléma akkor fordul elő, amikor a Revit-el vagy Archicad-el előállított BIM állományok energiaszimulációs és épületfizikai modellezéshez használt eszközökkel történő beolvasásakor, ezért ezek a munkafolyamatok a jövőbeli kutatási területek középpontjába kerülhetnek ezen a területen.

9. Köszönetnyilvánítás

Az Innovációs és Technológiai Minisztérium ÚNKP-21-2 kódszámú Új Nemzeti Kiválóság Programjának a Nemzeti Kutatási, Fejlesztési és Innovációs Alapból finanszírozott szakmai támogatásával készült.

A kutatás kapcsolódik az "Épületek és épületszerkezetek életciklus- és épületfizikai szemléletű optimalizációja komplex numerikus modellezéssel" című, FK 128663 számú kutatási projekthez, mely a Nemzeti Kutatási Fejlesztési és Innovációs Alapból biztosított támogatással, az FK_18 pályázati program finanszírozásában valósult meg.

10. Irodalomjegyzék

- T. Theodosiou, K. Tsikaloudaki, S. Tsoka, and P. Chastas, "Thermal bridging problems on advanced cladding systems and smart building facades," *J. Clean. Prod.*, vol. 214, pp. 62–69, Mar. 2019, doi: 10.1016/j.jclepro.2018.12.286.
- [2] F. Petresevics, "TDK Dolgozat Átszellőztetett homlokzatburkolatok rögzítőrendszereinek épületfizikai elemzése," pp. 1–60, 2020.
- [3] J. Hand, "OPTIMIZING THE PERFORMANCE OF COMPLEX BUILDING FACADES," *Newtecnic UK*, pp. 25–27.
- [4] I. Petri, S. Kubicki, Y. Rezgui, A. Guerriero, and H. Li, "Optimizing Energy Efficiency in Operating Built Environment Assets through Building Information Modeling: A Case Study," *Energies 2017, Vol. 10, Page 1167*, vol. 10, no. 8, p. 1167, Aug. 2017, doi: 10.3390/EN10081167.
- [5] Balázs Fürtön, "Épületinformációs modell felhasználása mérnöki számítások futtatására."
- [6] W. Lu, A. Fung, Y. Peng, C. Liang, and S. Rowlinson, "Cost-benefit analysis of Building Information Modeling implementation in building projects through demystification of time-effort distribution curves," *Build. Environ.*, vol. 82, pp. 317–327, 2014, doi: 10.1016/j.buildenv.2014.08.030.
- [7] GSA, "BIM Guide for Energy Performance."
- [8] C. Van Treeck, "MODEL VIEW DEFINITION FOR ADVANCED BUILDING ENERGY PERFORMANCE SIMULATION AEC3 Deutschland GmbH, Munich, Germany," no. September, 2016.
- [9] I. F. Classes, "MAGYAR SZABVÁNY MSZ EN ISO 16739-1 Ipari alaposztályok (IFC) az építőipar és a létesítmény gazdálkodás területén történő adatmegosztáshoz," 2020.
- [10] "IFC Formats buildingSMART Technical." https://technical.buildingsmart.org/standards/ifc/ifc-formats/ (accessed Oct. 31, 2021).
- [11] E. Kamel and A. M. Memari, "Review of BIM's application in energy simulation: Tools,

issues, and solutions," Autom. Constr., vol. 97, pp. 164–180, Jan. 2019, doi: 10.1016/J.AUTCON.2018.11.008.

- [12] R. Sacks, L. Ma, R. Yosef, A. Borrmann, S. Daum, and U. Kattel, "Semantic Enrichment for Building Information Modeling: Procedure for Compiling Inference Rules and Operators for Complex Geometry," *J. Comput. Civ. Eng.*, vol. 31, no. 6, p. 04017062, Aug. 2017, doi: 10.1061/(ASCE)CP.1943-5487.0000705.
- [13] N. Yu, "INFORMATION INTEROPERABILITY BETWEEN BUILDING INFORMATION MODELING AUTHORING TOOLS AND SIMULATION TOOLS TO SUPPORT ENERGY EFFICIENT BUILDING DESIGN," 2014.
- [14] B. Fürtön and B. Dr Nagy, "BIM Based Hygrothermal Modelling of Building Constructions," 2021.
- [15] J. Bedrick, W. Ikerd, and J. Reinhardt, "Level of Development (LOD) Specification Part
 I & Commentary For Building Information Models and Data," *BIMForum*, no.
 Diciembre, pp. 263–64, 2020, [Online]. Available: www.bimforum.org/lod.
- [16] Lechner Tudásközpont BIM kézikönyv 1.kötet 2.kiadás. 2019.
- [17] ComsolMultiphysics, "SIMULATION-DRIVEN DESIGN FOR THE THERMAL MANAGMENT OF BUILDINGS," 2017.
- [18] MAGYAR JOGSZABÁLY TÁR, "7/2006 TNM Rendelet," no. 3, 2020.
- [19] MSZ EN ISO 6946:2017, "Épületszerkezetek és épületelemek. Hővezetési ellenállás és hőátbocsátás. Számítási módszerek," *Hungarian Stand. Inst.*, 2020.
- [20] MSZ EN ISO 10211:2017, "Hőhidak az épületszerkezetekben. Hőáramok és felületi hőmérsékletek. Részletes számítások," *Hungarian Stand. Inst.*, 2019.
- [21] Balázs Dr.Nagy, "ÉMKÉK v1.1 Hőhídkatalógus." .
- [22] Hilti, "Átszellőztetett homlokzatburkolatok U-érték műszaki leírás," pp. 1–32, [Online].
 Available: https://www.hilti.se/content/dam/documents/e1/eurofox-data/Technical
 Manual VF_Section_06_U-Value.pdf.